
Introduction

Ecologists traditionally recognize three different

components of species diversity: alpha or within-commu-

nity diversity (α), beta or between-community diversity

(β) and gamma or total species diversity in a region (γ)
(Whittaker 1972). In particular β-diversity can be defined

also as the amount of turnover in species composition

from one location to another. In this sense, β-diversity is

essentially the same as McArthur’s (1965) between habi-

tat diversity.

A common approach to compute β-diversity is to look

at the degree to which the species composition of sample

plots differs. For presence and absence data, Whittaker

(1960) proposed to measure β-diversity as:

β = γ / α (1)

where γ is the species richness of the pooled set of plots,

and α is average species richness in the sample plots.

With some rearrangements of Eq. (1), it can be shown that

β reflects the inverse of the average frequency of species:

β = N / N�, where N is the total number of plots, and N� is

the average number of plots out of N plots that contain

species i (Vellend 2001). That is, rare species increase the

values of β more than frequent species.

Additional measures of β-diversity can be found in

Wilson and Shmida (1984), Tóthmérész (1998), Koleff et

al. (2003), Veech et al. (2002), and Legendre et al. (2005).

Most of these measures are essentially summary statistics

that quantify plot-to-plot variability in species composi-

tion independently of the position of individual plots on

environmental gradients (Vellend 2001). Nonetheless,

plant communities are generally spatially structured.

Therefore, in order to enhance the interpretation of dis-

tance-dependent community patterns, that is, the rate at

which biological similarity decays with increasing dis-

tance (Poulin 2003), spatially explicit measures of β-di-

versity are needed.

In recent years, many authors have looked at distance

decay of species composition similarity among sites. Ex-

amples from this recent literature include: Nekola and

White (1999), Wagner (2003), and Palmer (2005).

Among these authors, Wagner (2003) used geostatistical

analysis to extend multiscale ordination to nonsystematic

spatial samples.

In this paper, we will put the work of Wagner (2003)

into the context of diversity theory. We will show that the

autocorrelation structure in species composition within a

given set of plots provides a meaningful measure of spa-

tially dependent β-diversity. Additionally, by decompos-

ing this measure in single-species contributions to overall
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β-diversity, we will illustrate the effects of species fre-

quencies and species spatial distribution (i.e., clumped-

ness) in shaping community structure. To illustrate how

the proposed method works, we will show an example us-

ing a classical data set from a second-growth piedmont

hardwood forest (Reed et al. 1993).

Multivariate variogram modeling

Geostatistical methods deal with the question of how

the variance of a given variable depends on the distance

between observations (sample plots). For species pres-

ences and absences, the occurrence of a species i in a sin-

gle plot can be described as a binary variable x� that takes

the value 1 if species i is present in a plot, and 0 if it is

absent. Accordingly, the autocorrelation structure or dis-

tance-dependence of a given set of plots can be quantita-

tively described in terms of its semivariance γ�(h) for a

range of distance classes h:

(2)

where x�� and x�� are the values of the variable x� at plots

a and b, respectively, n(h) is the number of pairs of plots

a and b separated by the lag distance h, and M is the

number of mismatches (i.e., species present in one plot

and absent in the next plot, Wagner 2003; see also Podani

and Csontos 2006). γ�(h) is thus a measure of the autocor-

relation structure of x� as a function of h. The larger γ�(h),

the less similar are the plots. The experimental semi-

variogram relates the average semivariance of the differ-

ences in the data to the intervals between sample plots and

provides a concise description of the pattern of spatial

variability.

To quantitatively describe the way in which γ�(h)

changes with distance h, experimentally derived semi-

variances are commonly used to fit an approved

variogram function. The principal parameters of a fitted

variogram function are (Cressie 1993): nugget variance

(the level of spatial variation in the data at scales smaller

than the distance separating adjacent pairs of plots), sill

(the amount of spatially dependent structural variance in

the data), and range (the lag distance up to the beginning

of the sill where the spatial dependence extends).

As suggested by Wagner (2003), to generalize the uni-

variate definition of Eq. (2) to multivariate community

data the binary values x�� and x�� are substituted by the

vectors X� and X� that represent the presence/absence data

of S species x� at plots a and b and the empirical semivari-

ance becomes half the squared dissimilarity between X�

and X�:

(3)

where the term ||X� – X�|| represents the (symmetric) dis-

similarity between the binary vectors X� and X�. There are

in principle many coefficients that can be used to measure

plot-to-plot dissimilarity in species composition (for a re-

view, see Podani 2000). If the squared Euclidean distance

is used on species presence/absences, Eq. (3) becomes:

(4)

Therefore, using the squared Euclidean distance for sum-

marizing the dissimilarity between X� and X�, the empiri-

cal semivariance can be decomposed into the sum

of the empirical semivariances of the single species vari-

ables x�.

One might argue that the squared Euclidean distance

is not always the best distance to use in ecological data;

more suitable functions are the chord, Hellinger, chi-

square, or Bray-Curtis dissimilarity (Legendre et al.

2005). However, in this specific case, using the squared

Euclidean distance for computing plot-to-plot dissimilar-

ity in species composition, the resulting semivariance

γ�(h) equals the mean number of species that are present

in only one of a pair of observations, regardless of the di-

rection of comparison (see Eq. 4). That is, describes

the complementarity of the species composition of two

plots, thus representing an ecologically meaningful meas-

ure of spatially explicit β-diversity. Wagner (2003) refers

to as to the variogram of complementarity.

Worked example

Area and methods

The proposal of using geostatistical methods for sum-

marizing spatial-dependent β-diversity (see Eq. 4) is illus-

trated with a worked example on a classical data set from

a second-growth piedmont hardwood forest located in the

Oosting Natural Area of the Duke Forest, North Carolina

(Reed et al. 1993, Palmer and White 1994, Wagner 2003).

The study site considered contains an heterogeneous

assemblage of forest communities with gradual transition,

and the plot design was developed specifically to address

questions related to scale and spatial pattern (Reed et al.

1993). The more xeric communities are dominated by

Quercus alba, Q. rubra, and Carya tomentosa, while the

more mesic ones are mainly composed of Acer rubrum,

Liquidambar styraciflua, and Fagus grandifolia. Accord-
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ing to Reed et al. (1993), the abundance of typically suc-

cessional species, such as Pinus taeda and Liriodendron

tulipifera suggests that the site experienced a severe an-

thropogenic disturbance, probably in the late 1800s.

The vegetation of Oosting Natural Area is sampled in

a square grid consisting of 256 modules of 16 × 16 m
�
. A

nested series of square quadrats (with linear dimensions

of 0.125 m, 0.25 m, 0.5 m, 1 m, 2 m, and 4 m) is located

in the southwestern corner of each module. Presence was

recorded for all vascular plant species at each quadrat size

(for further details see Reed et al. 1993, Palmer and White

1994).

In this paper, we applied Eq. (4) to calculate the spa-

tially-explicit β-diversity for the 256 modules of 4 × 4 m
�
.

Unlike Wagner (2003), who used only the 25 most abun-

dant species, we used all 206 species present in at least

one 4 × 4 m
�

quadrat. All calculations were performed

with GSTAT (Pebesma 2004; see also gstat web site).

The maximal distance (h) at which semivariance is

computed was set equal to 128 m (i.e., half the extent of

the study area). This is because the central quadrats of the

sampling grid cannot contribute to semivariance estimate

for distances greater than the selected threshold (Wagner

2003).

The effects of single species patterns on community

structure

Figure 1 plots species complementarity vs. lag for the

analyzed data set. Due to coarse-scale heterogeneity, the

empirical variogram of Figure 1 is not bounded by a sill

such that β-diversity shows a continuous increase without

reaching a range within the usable distance h (Cressie

1993).

As for Whittaker’s β-diversity (see Eq. 1), the overall

pattern of species complementarity γ(h) can be decom-

posed into the single-species contributions γ�(h). One ad-

vantage of this additive property of γ�(h) is that we can

evaluate the role of each species in shaping the overall β-

diversity pattern. For instance, there are two major pa-

rameters that affect the contribution of each species to

γ�(h): species frequency and the degree of species overall

dispersion in the sampling grid, or species ‘clumpedness’

(Podani and Czárán 1997, Podani et al. 1998).

For binary data, such as species presences/absences

sampled in independent quadrats, the expected semivari-

ance is a function of the mean p� (i.e., the prob-

ability of occurrence of species i in a given quadrat):

. As a result, the highest semivari-

ance is reached for these species that are found in 50% of

the quadrats sampled. On the other hand, if the data show

some degree of autocorrelation, species semivariance be-

comes spatially dependent. In this case, the relation be-

tween and lag distance is expressed by Eq. (2).

From Eq. (2) it is easily shown that very rare and very

abundant species contribute only marginally to overall

species complementarity, while subdominant species

with intermediate abundance values are much more im-

portant in shaping the overall pattern of β-diversity. For

instance, for occasional species, nearly all terms in the

summation on the right-hand side of Eq. (2) become (x��
– x��)

�
= (0 – 0)

�
= 0, while for dominant species most of

these terms become (x�� – x��)
�

= (1 – 1)
�

= 0.

To show this effect in practice, for each species in the

Oosting data set, we analyzed the behavior of as a

function of the number of presences in the sampling quad-

rats N�. In Figure 2, the plot of vs. N� is shown for a lag
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distance h = 16 m. The plots of vs. N� for larger lag

distances provide analogous results and are not shown

here.

As shown in Figure 2, in good agreement with the

theoretical expectation, the highest semivariance values

are associated to species with intermediate number of

presences, while rare and dominant species both possess

very low values of . This general argument that species

at near 50% frequency influence the values of the most is

mathematically trivial. Nonetheless, this constitutes a ma-

jor difference with respect to Whittaker’s β that is worth

pointing out.

In addition, species with a comparable number of

presences in the sampling grid may have very different

semivariance values depending on their degree of

clumpedness. To illustrate the influence of species

clumpedness on , we compared the semivariance ob-

tained from the actual distribution of Quercus rubra (Fig-
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ure 3; 119 presences in the Oosting sampling grid) with

the equal-sized artificial distribution of Figure 4. In Fig-

ure 2, the semivariance value of Quercus rubra is denoted

by a triangle, while a diamond indicates the semivariance

of its artificial counterpart. Comparing both values, it be-

comes apparent that clumped species contribute less to

overall β-diversity than more dispersed (i.e., more evenly

distributed) species.

This is an obvious consequence of the spatially-ex-

plicit character of Eq. (2). For instance, for species that are

confined to a limited portion of the sampling grid, two ad-

jacent quadrats are most likely to be either both empty or

both filled such that most of the terms in the summation

on the right-hand side of Eq. (2) go to zero.

From an ecological viewpoint, species clumpedness is

an important factor for explaining the spatial heterogene-

ity of plant communities as it is directly related to major

biotic and abiotic constraints like dispersal strategies or

the distribution of local disturbances and limiting envi-

ronmental factors.

Conclusions

Community structure is spatially organized. This spa-

tial pattern need to be taken into account when developing

strategies for sustainable management of natural re-

sources in order to preserve the spatial organization of the

species-environment relationships necessary for nature to

recreate and maintain β-diversity (Legendre et al. 2005).

In this short paper, we point out the relationship be-

tween geostatistics and β-diversity. By contrast, the

analysis of the causes that create species turnover is be-

hind the scope of our paper. As shown by Nekola and

White (1999), some of it is due to strong, local environ-

mental gradients, while other turnover is due to geo-

graphic replacement among similar sites; disentangling

the observed turnover into ecological vs. geographic driv-

ers would deserve a much longer paper.

The advantage of using variogram modeling for the

analysis of plant community structure lies in its ability to

integrate a basic ecological concept as species diversity

within an advanced statistical method like geostatistics. In

this view, the multivariate semivariogram of Figure 1 rep-

resents a summary statistics at the community level ex-

pressing overall spatial relationships among the constitu-

ent species without any direct reference to the actual

details of their spatial positions and their interspecific dy-

namical interactions. To obtain information on the spatial

pattern of single species, or on the combined pattern of

any particular multiplet of species, β-diversity can be de-

composed into additive species-specific terms according

to Eq. (4). We hope, this additive property will prove

fruitful in future ecological research.
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