
The central nervous system (CNS) of a metamorphically competent larva of the caenogastropod
Ilyanassa obsoleta contains a medial, unpaired apical ganglion (AG) of approximately 25 neurons that
lies above the commissure connecting the paired cerebral ganglia. The AG, also known as the cephalic
or apical sensory organ (ASO), contains numerous sensory neurons and innervates the ciliated velar
lobes, the larval swimming and feeding structures. Before metamorphosis, the AG contains 5 serotoner-
gic neurons and exogenous serotonin can induce metamorphosis in competent larvae. The AG appears to
be a purely larval structure as it disappears within 3 days of metamorphic induction. In competent lar-
vae, most neurons of the AG display nitric oxide synthase (NOS)-like immunoreactivity and inhibition
of NOS activity can induce larval metamorphose. Because nitric oxide (NO) can prevent cells from
undergoing apoptosis, a form of programmed cell death (PCD), we hypothesize that inhibition of NOS
activity triggers the loss of the AG at the beginning of the metamorphic process. Within 24 hours of meta-
morphic induction, cellular changes that are typical of the early stages of PCD are visible in histological
sections and results of a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay
in metamorphosing larvae show AG nuclei containing fragmented DNA, supporting our hypothesis.
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INTRODUCTION

Larval Ilyanassa obsoleta, like most marine molluscs, undergo a series of physio-
logical and anatomical transformations at metamorphosis which allow them to begin
their juvenile life history phase. The most obvious external change is the loss of the
ciliated larval feeding organ or velum [39], which, in the laboratory, occurs with a
delay of some 12–36 hours after exposure to an inducing substance. In addition to
loss of the velum, within 48 hours of metamorphic induction, internal transforma-
tions include rearrangements within the digestive tract and nervous system [13, 14,
27]. However, until recently, few changes in larval physiology or morphology during
the 12–36 hour delay period in I. obsoleta had been described. In this species, by
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about 83% of larval development [27, 42], the CNS contains rudiments of all of the
adult ganglia along with a medial, unpaired apical ganglion (AG). Typically, the lar-
val AG innervates the muscular and ciliary components of the velar lobes [20, 29–31,
34, 35]. The AG is an outgrowth of the trochophore apical tuft and has long been pos-
tulated to have a sensory function [6, 34, 35, 38]. Recent experiments on a nudi-
branch provide evidence that the AG can detect a metamorphic cue [17], but a review
of literature about molluscan AGs suggests that they are sensorimotor, coordinating
the functions of the velar lobes [34, 35] and sensing inductive and other stimuli [34].
Currently, the AG appears to be the only part of the larval CNS that is lost at meta-
morphosis. Some evidence from I. obsoleta and other species suggests that the AG
is lost apoptotically [1, 27, 30] but where identification of AG neurons has depend-
ed upon immunocytochemical methods, it becomes unclear whether loss of the AG
occurs by a form of programmed cell death (PCD), a respecification of neuronal neu-
rotransmitter composition, or a migration of AG neurons into the adjacent cerebral
ganglia.

In the Leise laboratory, we have been studying the regulation and events of the
metamorphic process in I. obsoleta [11, 15, 23–25, 28, 42] and in this paper, we
describe the current state of our knowledge and briefly review recent results that shed
light on the fate of the AG and events that precede velar loss.

Serotonin and induction of metamorphosis in Ilyanassa

Adult I. obsoleta are facultative carnivores [19], but at sizes suggesting they are sev-
eral months past metamorphosis, small Ilyanassa grow successfully on diets of ben-
thic diatoms [8]. Our personal observations have also revealed that fish carrion is
unattractive to juveniles at 4 days after metamorphic induction, when the proboscis
and radula appear to be functional. Among molluscs, metamorphic inducers can be
associated with algal food sources [5, 21, 32, 41], so we tested acellular extracts from
cultures of several species of benthic diatoms to determine if any might be a source
of a natural metamorphic inducer for I. obsoleta. Cultures were derived from clones
of isolated single cells and one species of Coscinodiscus induced a significant num-
ber, about 60% of competent larvae, to metamorphose [24]. However, at best, these
diatom extracts induced somewhat less metamorphosis than our typical positive con-
trol solution of 0.1 mM serotonin (5HT, Fig. 1), suggesting either that the extract we
used is only part of a complex, natural odorant mixture to which competent larvae
can respond, or that 5HT triggers a stronger response than natural inducers.
Furthermore, the cultures we used were not axenic, so the inducer may arise from
associated marine bacteria. More experiments are needed to determine the cellular
source of this inductive substance.

In laboratory experiments that run for 48 hours, we can routinely induce meta-
morphosis in 75–100% of competent larvae with 5HT (Fig. 1) [11, 15, 26]. This
response was initially described by Levantine and Bonar [26], but they did not deter-
mine the active site for bath-applied 5HT. To distinguish between the two most com-



mon possibilities, that 5HT was interacting with membrane receptor proteins on
epithelial chemosensory neurons or that 5HT was being taken up by larvae to act
internally in the metamorphic pathway as a neurotransmitter or modulator, we con-
ducted a series of injection experiments using several serotonergic reagents. Results
with injections of 5HT, α-methyl-5HT, a 5HT agonist, fluoxetine, a 5HT reuptake
inhibitor, and gramine, a 5HT3 receptor blocker, were all consistent with the idea that
5HT acts internally [11]. However, our results did not eliminate the possibilities that
5HT might be modified after uptake or that it could bind to external chemoreceptors,
as GABA does in mimicking the action of an algal ligand that induces metamorpho-
sis in the abalone Haliotis rufescens [32]. Our experiments also did not reveal the
types of 5HT receptors that might be active in this pathway. Further experiments are
necessary to resolve these issues.

Serotonergic neurons are conserved in AGs or ASOs across animal phyla [20, 22,
34, 35]. In I. obsoleta, as in other molluscs [20, 30, 33–35], the AG contains 5 sero-
tonergic neurons (Fig. 2). Serotonin is an effective inducer of metamorphosis in
Ilyanassa, but 5HT does not act as a universal inducer of metamorphosis, even
though serotonergic neurons are highly conserved. As an example contrary to our
experience with Ilyanassa, in the oyster Crassostrea gigas, 5HT is only a weak
inducer of larval attachment [2], with little or no effect on metamorphosis [2]. Thus,
while AGs (or ASOs) and their serotonergic components appear to be phylogeneti-
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Fig. 1. Bath application [15] of the NOS inhibitor 7-Nitroindazole (7-NI) induces metamorphosis in
competent larvae at rates similar to 5HT. 7-NI was obtained from Alexis Biochemicals and retains

activity for approximately one year only if stored at –20 °C
(other manufacturers have different recommendations)
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Fig. 2. Confocal maximum intensity projections of immunolabeled serotonergic components of the AG
prepared as described previously by Kempf et al. [20]. A. Oblique frontal view at low magnification
showing location (dashed oval) of AG. Arrows, pre-trochal surface, E, eyespot, scale bar = 20 μm. B.
Orientation as in A. High magnification image of five 5HT neurons (1–5) and associated axons and den-
drites in the AG. The 2 more posterior, lateral neurons (1 and 2) are large and irregular in shape and each
neuron projects an axon (Ax1, Ax2) into the subjacent neuropil (Np). These neurons lack dendrites. The
2 anterior lateral neurons (3 and 4) and the medial neuron (5) have dendrites (D3-D5) extending to the
pre-trochal surface. Neuron 5 lies above the AG neuropil, but in this view the underlying neuropil axons
disguise this fact. Dendrites of neurons 3 and 4 have been digitally brightened for easier viewing. Scale
bar = 10 μm. C. Medial neuron (5) as in B. If the apical serotonergic complex of I. obsoleta is homolo-
gous to that of nudibranch larvae [20], the axons crossing diagonally originate from the AG neuropil and
innervate both velar lobes. Scale bar = 5 μm. D. Image of AG neurons illustrating the flattened nature of
the AG neuropil atop the cerebral commissure. Neurons 1, 2 and part of 5 are visible. Axons from neu-

rons 1 and 2 are seen entering the neuropil. Scale bar = 10 μm



cally ancient and important brain components, their specific cellular functions and
interactions have responded to selective pressures in difference ways.

Nitric oxide inhibition of metamorphosis

Unlike 5HT, nitric oxide (NO) is produced upon demand by the enzyme nitric oxide
synthase (NOS), whereupon it diffuses into adjoining cells to interact with intracel-
lular targets. The most common target for NO is the enzyme guanylyl cyclase [43],
although NO has other direct actions, including the modification of ion channels [9],
inhibition of apoptotic caspase activity [7] and suppression of cellular proliferation
by interference with DNA synthesis [37]. After NADPH diaphorase (NADPHd) was
demonstrated to be a form of NOS [18], and because staining for this enzyme had
illuminated sensory neurons in adult molluscs [10], we used this histochemical
method in an attempt to locate larval chemosensory neurons. We stained no epithe-
lial neurons, but discovered NADPHd activity in all ganglionic neuropils. Staining
intensity increased throughout larval development, with the neuropil of the AG dis-
playing the strongest NADPHd activity in competent larvae [28]. Once metamor-
phosis was initiated, staining intensity dropped dramatically [28]. With immunocy-
tochemical methods that incorporated the use of mammalian anti-neuronal NOS anti-
bodies, we determined that the majority of neurons in the AG of competent larvae
displayed NOS-like immunoreactivity (NOS-IR) [42]. These anatomical findings
raised questions concerning both the role of NO in the metamorphic process and in
its cellular actions in neurons of the AG.

To determine if NO promotes or inhibits metamorphosis, we conducted a series of
experiments in which we treated larvae with a variety of nitrergic reagents. We
applied NO donors to larvae in bath solution and injected NOS inhibitors directly
into larvae. Alone, NO-donors had no effect on larvae; in combination with 5HT, NO
reduced rates of serotonergically-induced metamorphosis. Although this reduction
may have resulted from direct interactions between NO and 5HT in solution, injec-
tions of NOS inhibitors confirmed that a decrease in NOS activity induced meta-
morphosis in significant numbers of larvae [15]. To date, the only NOS inhibitor that
has been effective in bath application is 7-Nitroindazole (7-NI) (Fig. 1).

Among its various actions in developing nervous systems, NO regulates cellular
proliferation [37] and apoptosis [7], although most of its endogenous actions in this
latter case are inhibitory. Because (1) the AG disappears during metamorphosis, (2)
most neurons in the AG display NOS-IR, and (3) the results of our experiments with
nitrergic reagents were all consistent with the idea that NO inhibited metamorphosis,
we hypothesized that NO’s major cellular activity as an inhibitor of metamorphosis
is to suppress PCD in the AG. To first confirm that the AG is indeed lost by a form
of PCD, we examined it within 24 hours of metamorphic initiation. Induction by
either 5HT or 7-NI yielded signs of cellular degeneration, condensation and loss of
nuclei, and evidence of phagocytic activity in histological sections [16]. In the early
stages of PCD, endonucleases cleave nuclear DNA into fragments that are multiples
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of 180–200 base pairs in length [40]. Results of a TUNEL assay, which identifies
such fragmented DNA, confirmed that cells of the AG are lost by a form of PCD
[16]. We also determined that within 60 hours of induction, cells of the AG exist only
as cytoplasmic remnants, which are then lost by 3 days after induction.

CONCLUSIONS

Together, results of our experiments with I. obsoleta suggest that in their natural
environment, a mixture of diatom or associated bacterial exudates, including that
from a species of Coscinodiscus, induce competent larvae to metamorphose. Some
epithelial chemosensory neurons may be serotonergic, but we expect that the
chemosensory process activates serotonergic neurons in the AG. Presumably, the
addition of 5HT to the bath seawater mimics the activation of such neurons. Through
a process that has yet to be discovered, perhaps by inducing changes in membrane
Ca++ currents, 5HT inhibits the activity of endogenous NOS throughout the AG. The
resulting decrease in NO production allows for activation of the programmed cell
death pathway. We also have some evidence which suggests that nitrergic inhibition
of PCD occurs through a cGMP-dependent pathway [12].

Our results allow us to infer possible mechanisms underlying metamorphic con-
trol, but they raise as many questions as they answer. Clearly, during the initial delay
period of some 12–36 hours, the AG is undergoing genetically programmed destruc-
tion. We expect this loss to be common among molluscs with AGs. To determine if
this loss is conserved more broadly throughout the animal kingdom, more experi-
mentation is required. In Ilyanassa, whether or not subsequent tissue losses and
metamorphic remodeling require AG degeneration or are merely triggered concur-
rently with this process, is unknown. Functions of the AG serotonergic neurons also
remain enigmatic, with interactions between serotonergic neurons and NOS activity
needing further clarification. And, while nitric oxide has been implicated in meta-
morphic regulation in the echinoderms and ascidians [3, 4], whether or not it also acts
in an anti-apoptotic fashion in these species is as yet unknown.

Finally, larval Ilyanassa retain their ability to metamorphose for several weeks in
culture and will begin to lose specificity and metamorphose spontaneously as they
age. Our research points towards an explanation for this loss of specificity.
Gifondorwa [16] discovered that in such larvae the AG is undergoing spontaneous
destruction. Like Pechenik [36], we suspect, but have not yet confirmed, that such
larvae show a decrease in NOS activity. How this might occur, at the translational or
transcriptional levels, is likewise unclear.
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