Skip to main content

Advertisement

Log in

[3,3]-Sigmatropic Rearrangement of Low-Volatile Propargyl Thiocyanates to Allenyl Isothiocyanates Using Solution Spray Flash Vacuum Pyrolysis

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Conventional flash vacuum pyrolysis is the best method for the preparation of isothiocyanate-substituted allenes by [3,3]-sigmatropic rearrangement. These synthetically useful allenes undergo a variety of successive reactions; the most prominent is thiazole ring formation after nucleophilic attack at the isothiocyanate carbon. We now present the development and application of the solution spray method in flash vacuum pyrolysis of low- or nonvolatile propargyl thiocyanates. By using model reactions, the setup was optimized for a synthetic scale approach utilizing also steel nozzles (distributed for oil-fired heating furnaces) for spray generation. Selected examples emphasize advantages such as enabling gas-phase reactions of nonvolatile compounds and improvement of challenging syntheses via highly reactive species under different operating conditions (400–600 °C, 0.01–0.05 mbar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billeter, O. Ber. Dtsch. Chem. Ges. 1875, 8, 462–466

    Article  Google Scholar 

  2. Gerlich, G. Justus Liebigs Ann. Chem. 1875, 178, 80–91.

    Article  Google Scholar 

  3. For reviews on history, see: (a) Hansen, H.-J. Chimia 1999, 53, 163–173

    CAS  Google Scholar 

  4. Hansen, H.-J. Chimia 2000, 54, 105–119.

    CAS  Google Scholar 

  5. Billeter, O. Helv. Chim. Acta 1925, 8, 337–338

    Article  CAS  Google Scholar 

  6. Mumm, O.; Richter, H. Ber. Dtsch. Chem. Ges. 1940, 73, 843–860

    Article  Google Scholar 

  7. DeWolfe, R. H.; Young, W. G. Chem. Rev. 1956, 56, 753–901; see page 856

    Article  CAS  Google Scholar 

  8. Smith, P. A. S.; Emerson, D. W. J. Am. Chem. Soc. 1960, 82, 3076–3082

    Article  CAS  Google Scholar 

  9. Iliceto, A.; Fava, A.; Mazzucato, U. Tetrahedron Lett. 1960, 1, 27–35; see issue 32

    Article  Google Scholar 

  10. Emerson, D. W.; Klapprodt Booth, J. J. Org. Chem. 1965, 30, 2480–2481

    Article  CAS  Google Scholar 

  11. Fava, A. Org. Sulfur Compd. 1966, 2, 73–91.

    Article  CAS  Google Scholar 

  12. Ferrier, R. J.; Vethaviyaser, N. J. Chem. Soc. C 1971, 1907–1913

    Google Scholar 

  13. Guthrie, R. D.; Williams, G. J. J. Chem. Soc. Chem. Commun. 1971, 923–927

    Google Scholar 

  14. Huber, S.; Stamouli, P.; Jenny, T.; Neier, R. Helv. Chim. Acta 1986, 69, 1898–1915.

    Article  CAS  Google Scholar 

  15. Henry, L. Ber. Dtsch. Chem. Ges. 1873, 6, 728–730

    Article  Google Scholar 

  16. Midtgaard, T.; Gundersen, G.; Nielsen, C. J. J. Mol. Struct. 1988, 176, 159–179.

    Article  CAS  Google Scholar 

  17. Banert, K.; Hückstädt, H.; Vrobel, K. Angew. Chem. 1992, 104, 72–74

    Article  CAS  Google Scholar 

  18. Banert, K.; Hückstädt, H.; Vrobel, K. Angew. Chem., Int. Ed. Engl. 1992, 31, 90–92.

    Article  Google Scholar 

  19. Banert, K.; Richter, F.; Hagedorn, M. Org. Process Res. Dev. 2015, 19, 1068–1070.

    Article  CAS  Google Scholar 

  20. Banert, K.; Groth, S.; Jawabrah Al-Hourani, B.; Vrobel, K. Synthesis 2005, 2920–2926

    Google Scholar 

  21. Jawabrah Al-Hourani, B.; Banert, K.; Gomaa, N.; Vrobel, K. Tetrahedron 2008, 64, 5590–5597

    Article  CAS  Google Scholar 

  22. Jawabrah Al-Hourani, B.; Banert, K.; Rüffer, T.; Walfort, B.; Lang, H. Heterocycles 2008, 75, 2667–2679.

    Article  Google Scholar 

  23. Banert, K.; Groth, S.; Hückstädt, H.; Lehmann, J.; Schlott, J.; Vrobel, K. Synthesis 2002, 1423–1433.

    Google Scholar 

  24. Clancy, M. G.; Hesabi, M. M.; Meth-Cohn, O. J. Chem. Soc., Chem. Comm. 1980, 1112–1113

    Google Scholar 

  25. Meth-Cohn, O.; Rhouti, S.; J. Chem. Soc., Chem. Comm. 1980, 1161–1163

    Google Scholar 

  26. Rubin, Y.; Lin, S. S.; Knobler, C. B.; Anthony, J.; Doldi, A. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 6943–6949

    Article  CAS  Google Scholar 

  27. Ohno, M.; Itoh, M.; Umeda, M.; Furuta, R.; Kondo, K.; Eguchi, S. J. Am. Chem. Soc. 1996, 118, 7075–7082

    Article  CAS  Google Scholar 

  28. Régimbald-Krnel, M.; Wentrup, C. J. Org. Chem. 1998, 63, 8417–8423

    Article  Google Scholar 

  29. Meth-Cohn, O. Acc. Chem. Res. 1987, 20, 18–27.

    Article  CAS  Google Scholar 

  30. For details, see Supporting Information.

  31. Jeon, H.-B.; Sun, G.; Sayre, L. M. Biochim. Biophys. Acta 2003, 1647, 343–354; Chem. Abstr. 2003, 139, 209740b.

    Article  CAS  Google Scholar 

  32. Austin, P. W. (Imperial Chemical Industries) EP 244962, 1987; Chem. Abstr. 1988, 108, P 89483d.

    Google Scholar 

  33. Toyo Soda Mfg. Co., Ltd., Patent JP57179102, 1982; Chem. Abstr. 1983, 98, 102715c.

    Google Scholar 

  34. Fraser, M.M.; Raphael, R. A. J. Chem. Soc. (Resumed) 1955, 4280–4283.

    Google Scholar 

  35. Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Azadi, R. Synthesis 2004, 92–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Banert.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, F., Dathe, R., Seifert, J. et al. [3,3]-Sigmatropic Rearrangement of Low-Volatile Propargyl Thiocyanates to Allenyl Isothiocyanates Using Solution Spray Flash Vacuum Pyrolysis. J Flow Chem 7, 4–8 (2017). https://doi.org/10.1556/1846.2016.00036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2016.00036

Keyword

Navigation