ERRATUM

ERRATUM TO: INVARIANT SUBSPACE METHOD:
 A TOOL FOR SOLVING FRACTIONAL PARTIAL
 DIFFERENTIAL EQUATIONS, IN: FCAA-20-2-2017

Sangita Choudhary ${ }^{1}$, Varsha Daftardar-Gejji ${ }^{2}$

This is erratum to our paper [1] in: Fract. Calc. Appl. Anal. 20, No 2 (2017), pp. 477-493, DOI: 10.1515/fca-2017-0024. Here we point out that Theorem 3.1 and Theorem 3.2 of [1] hold true more generally when fractional partial time derivatives $\frac{\partial^{\alpha+i}}{\partial t^{\alpha+i}}$ and $\frac{\partial^{i \alpha}}{\partial t^{i \alpha}}$ in FPDE (3.1) and (3.7) are Caputo as well as Riemann-Liouville ($\mathbf{R}-\mathrm{L}$) time derivatives.

Further, note that $\frac{d^{\alpha}\left(t^{-\alpha}\right)}{d t^{\alpha}}$ is not defined in case of Caputo derivative if $\alpha \in(0,1) \backslash\left\{\frac{1}{2}\right\}$. In the literature many authors have mistakenly ignored the fact that $\frac{d^{\alpha}\left(t^{-\alpha}\right)}{d t^{\alpha}}=\frac{\Gamma(1-\alpha) t^{-2 \alpha}}{\Gamma(1-2 \alpha)}$ is not valid in case of Caputo derivative, though it holds correct for R-L derivative.

In view of these facts, Example 4.2 and Example 4.7 are wrong if $\frac{d^{\alpha} f}{d t^{\alpha}}$ is taken as Caputo time derivative, but correct if we take fractional time derivative as R-L time derivative, i.e., $\frac{R L d^{\alpha} f}{d t^{\alpha}}$ in both these examples.

Hence Example 4.2 given in [1] should read as follows:

$$
\begin{equation*}
\frac{R L \partial^{\alpha} f}{\partial t^{\alpha}}+f \frac{\partial^{\beta} f}{\partial x^{\beta}}-d \frac{\partial^{\beta}}{\partial x^{\beta}}\left(\frac{\partial^{\beta} f}{\partial x^{\beta}}\right)=0, \alpha \in(0,1), \alpha \neq \frac{1}{2}, \beta \in(0,1], \tag{4.6}
\end{equation*}
$$

(c) 2018 Diogenes Co., Sofia
pp. 864-865, DOI: 10.1515/fca-2018-0046
where the solution continues to be the same, i.e.,

$$
f(x, t)=a t^{-\alpha}-\left[\frac{\Gamma(1-\alpha) t^{-\alpha}}{\Gamma(1+\beta) \Gamma(1-2 \alpha)}\right] x^{\beta} .
$$

Proceeding on similar lines, Example 4.7 from [1] should be considered as:

$$
\begin{equation*}
\frac{R L \partial^{\alpha} f}{\partial t^{\alpha}}-6 f \frac{\partial^{\beta} f}{\partial x^{\beta}}+\frac{\partial^{2 \beta}}{\partial x^{2 \beta}}\left(\frac{\partial^{\beta} f}{\partial x^{\beta}}\right)=0, \alpha \in(0,1) \backslash\{1 / 2\}, \beta \in(0,1] . \tag{4.38}
\end{equation*}
$$

The solution continues to be the same, i.e.,

$$
f(x, t)=a t^{-\alpha}+\left[\frac{\Gamma(1-\alpha) t^{-\alpha}}{6 \Gamma(1+\beta) \Gamma(1-2 \alpha)}\right] x^{\beta} .
$$

References

[1] S. Choudhary and V. Daftardar-Gejji, Invariant subspace method: A tool for solving fractional partial deifferential equations. Fract. Calc. Appl. Anal. 20, No 2 (2017), 477-493, DOI: 10.1515/fca-2017-0024; https://www.degruyter.com/view/j/fca.2017.20.issue-2/
issue-files/fca.2017.20.issue-2.xml.
Dept. of Mathematics, Savitribai Phule Pune University Ganeshkhind, Pune - 411007, INDIA
${ }^{1}$ e-mail: schoudhary1695@gmail.com
${ }^{2}$ e-mail: vsgejji@gmail.com, vsgejji@unipune.ac.in
Received: April 23, 2018
Please cite to this paper as published in:
Fract. Calc. Appl. Anal., Vol. 21, No 3 (2018), pp. 864-865, DOI: 10.1515/fca-2018-0046

