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Abstract: Among the classified neglected infectious diseases, the Ebola virus (EboV) remains a challenging epidemic. This
deadly virus has been reported as a category A bioweapon organism by the World Health Organization due to the serious
threat it poses. To date, Ebola drug discovery proves challenging. Proteins need to be targeted at the relevant biologically
active site for drug or inhibitor binding to be effective. Due to insufficient experimental data to confirm the biologically active
binding site for novel protein targets, researchers often rely on computational prediction methods to identify binding sites.
Many computational studies have attempted to identify the biological active site for EboV proteins, however, the methods
employed are not sufficiently validated. This has prompted us to provide a comprehensive molecular understanding of the
various targets of the EboV, including three-dimensional structures, active site identification and further validation. Herein
we report the account of a three-dimensional homology model of the unresolved EboV RNA-dependent RNA polymerase
(RdRp), as well as a comprehensive analysis of the binding site residues of all proteins of the EboV. Docking-aided active
site determination was carried out to identify possible active sites on the homology model of RdRp. Binding free energy
calculations revealed subtle differences in the binding at each site. These results can also provide some potential clues for
further design of novel inhibitors to treat this killer virus and is a critical cornerstone of research into the EboV.
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Abbreviations: 3D, three-dimensional; CADD, computer-aided drug design; CASTp, computed atlas of surface topography
of proteins; EboV, Ebola virus; GP, glycoprotein; MD, molecular dynamics; NP, nucleoprotein; PDB, Protein Data Bank;
POOL, partial order optimum likelihood; RBD, receptor binding domain; RdRp, RNA-dependent RNA polymerase.

Introduction

Since the largest Ebola outbreak in 2014, this killer
virus has infected 27,621 people and claimed the lives of
an estimated 11,268 people globally (Haque et al. 2015;
Martínez et al. 2015). Despite extensive ongoing Ebola
virus (EboV) research, to date, no cure has been found
for this deadly virus. The EboV is a lipid-enveloped,
negatively stranded RNA virus affecting both human
and non-human primates (Stahelin 2014; Muyembe-
Tamfum et al. 2012). The disease is characterized by
severe hemorrhagic fever, focal necrosis of the liver, kid-
ney and spleen, bleeding diathesis and sudden shock
with a mortality rate of 90% (Gebre et al. 2014). Thus
far, four species of the virus have been identified; these
include Zaire, Sudan, Ivory Coast and Reston EboV
with the highest fatality attributed to the Zaire species
(Muyembe-Tamfum et al. 2012; Chiappelli et al. 2015).

The EboV genome encodes seven structural pro-
teins, which serve as potential drug targets (Martínez
et al. 2015). These drug targets present binding pockets
also known as binding sites, which are typically located

on the surface concavities of proteins, whereas pockets
where smaller drug-like ligands bind can be found in
deeper cavities. In the event that a protein function is
associated with that of a specific binding site of a virus,
such as Ebola, it would be possible to target the binding
site, hereby enabling treatment of the virus. This can
be achieved through the use of drug-like molecules that
halt the progression of the disease by blocking disease-
related protein biochemical function.

The frequent outbreak of the EboV has drawn
much attention to drug development for this deadly
pathogen. Several approaches have been employed in
the development of drugs to combat Ebola, such as the
development of peptides, application of monoclonal an-
tibodies, small molecule inhibitors, recombinant DNA
vectors as well as repurposing existing drugs (Haque et
al. 2015; Nyakatura et al. 2015). Therapeutics target
and attack the virus at different stages of its life cycle,
thereby halting virus replication and reducing destruc-
tion of the host immune system (Feldmann & Geisbert
2011). There remains a huge gap in literature with re-
gard to the guidelines towards the discovery of anti-
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Table 1. Ebola virus drug targets.a

EboV PDB code Structure Function Length Ref.

GP 5F18 Binds to receptors on the cell surface and
membrane fusion; pathogenicity

676 [1-3]

VP40 1H2C
Viral assembly and budding; structural

integrity of viral particles; maturation of the
virion

326 [4]

VP24 4M0Q
Nucleocapsid formation; encapsulates and
shields viral genome from nucleases; viral

replication

251 [5–7]

VP30 2I8B Viral transcription activator 288 [8,9]

VP35 4IJE Multi virulence functionality; innate immune
antagonist and an RNAi silencing suppressor

340 [10,11]

NP 4Z9P Viral replication; scaffold for additional viral
proteins

739 [12–14]

RdRp Not available — Synthesis of positive sense RNA 2212 [12]

aEboV, Ebola virus proteins; VP40, matrix protein VP40. Structures were retrieved from PDB. Ref., references: [1] Lee et al. 2009;
[2] Dahms et al. 2014; [3] Lai et al. 2014; [4] Hartlieb & Weissenhorn 2006; [5] Noda et al. 2007; [6] Watt et al. 2014; [7] Huang et al.
2002; [8] Mühlberger 2013; [9] Okumura et al. 2010; [10] Haasnoot et al. 2007; [11] Leung et al. 2011; [12] Watanabe et al. 2006; [13]
Noda et al. 2011; [14] Johansen et al. 2013.

Ebola inhibitors, which might be due to the lack of in-
formation on the Ebola drug targets, binding sites and
mechanisms of action. Finding novel, effective drugs at
present is heavily dependent on the investigation and
understanding of the molecular basis of this pathogenic
virus. A lack of experimental data in literature con-
cerning potential Ebola drug targets, their inhibitors,
as well as strategies for the design of drugs and the issue
of drug resistance has prompted research in this field.

Biological targets of the EboV

Over the years, increasing interest has been placed on
identifying proteins whose biological functions are cru-
cial and can be linked to various severe diseases. These
proteins then become biological targets for inhibitors or
drug molecules, which could be used in halting or treat-
ing these deadly diseases via therapeutic action or by
inhibiting the function of the target protein. In order for
drugs or inhibitors to be effective, the protein must be
targeted at the relevant biological active site. A lack of
experimental data to confirm the biological active site of
novel protein targets has prompted researchers towards
the use of computational tools for the prediction of pos-

sible binding sites. This has become a valuable platform
for experimental and computational efforts towards the
design and discovery of novel drugs and inhibitors that
could be used to target these proteins linked to various
diseases.

The EboV is a single-stranded, non-segmented,
negative RNA genome comprising ∼ 19,000 nucleotides
in length (Wilson et al. 2001). The EboV encodes
seven structural proteins, which serve as potential drug
targets that is the glycoprotein (GP), matrix pro-
tein (VP40), nucleoprotein (NP), nucleocapsid proteins
(VP30, VP24 and VP35), and RNA-dependent RNA
polymerase (RdRp) (Martínez et al. 2015; Rougeron et
al. 2015) (Table 1). Due to the integral role that these
proteins play in the life cycle of the virus, EboV pro-
teins are a major target for drug therapy (Picazo &
Giordanetto 2014).

Reported studies on active site identification of
EboV targets

Table 2 highlights the identified and unidentified ac-
tive site residues of all biological targets of the EboV
supported by evidence experimentally or in silico.
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Table 2. Status quo of the available drug targets of the EboV.

Targets Active site residues PDB code Ref.

GP Unvalidated experimentally (experimental and in silico methods) 5F18 [1,2]
VP24 Unvalidated experimentally (in silico methods) 4M0Q [3,4]
VP30 Unvalidated experimentally (in silico methods) 2I8B [3]
VP35 Unvalidated experimentally (in silico methods) 4IJE [3-5]
VP40 Unvalidated experimentally (in silico methods) 1H2C [3-6]
NP Not reported 4Z9P [7].
RdRp Not reported Not available [8]

aTargets mean biological targets. Structures were retrieved from PDB. Ref., references: [1] Joob & Wiwanitkit 2014; [2] Manicassamy
et al. 2005; [3] Setlur et al. 2016; [4] Shah et al. 2015; [5] Palamthodi et al. 2012; [6] Tamilvanan & Hopper 2013; [7] Rahangdale et al.
2015; [8] Islam et al. 2016.

Wang et al. (2011) studied the receptor binding
domain of the GP of the EboV and its role in viral
entry. Previous studies have identified the N-terminal
region of the GP1 as crucial for receptor binding. Re-
sults showed that Arg64 and Lys95 were involved in
receptor binding (Wang et al. 2011). Putative recep-
tor binding residues were also identified and reported
in this study (Wang et al. 2011). Manicassamy et al.
(2005) investigated the role of the EboV GP1 in vi-
ral entry. The putative binding site residues perceived
to be involved in receptor binding were Asp55, Leu57,
Leu63, Arg64, Phe88, Lys95 and Ile170 (Manicassamy
et al. 2005). Results from this study also suggest the
N-terminal 150 residues in mature GP1 as the receptor
binding domain (RBD) (residues 33-185).

In their transduction study, Manicassamy et al.
(2005) performed site-directed mutagenesis analysis on
the EboV GPΔO. They classified the region between
residues 57 and 64 as well as residues Phe88, Lys95 and
Ile170 as part of the RBD (Manicassamy et al. 2005).
Brindley et al. (2007) investigated important residues
required for the binding and post binding of the EboV
GP1. Residues Gly87/Phe88, Lys114/Lys115, Lys140,
Gly143 and Tyr162 were found to be important for re-
ceptor binding (Brindley et al. 2007).

Palamthodi et al. (2012) identified drug lead
molecules against the EboV. The structural informa-
tion of the target proteins VP40 and VP35 was ob-
tained from Protein Data Bank (PDB) and their active
sites were determined using PyMOL (Palamthodi et al.
2012). Major active site residues of VP40 were Leu304,
Ile305, Thr306 and Gln307. Active residues of VP35
include Lys309, Arg312, Lys339, Lys319, Arg322 and
Arg305 (Palamthodi et al. 2012).

In a study by Tamilvanan & Hopper (2013), high
throughput virtual screening and docking studies were
carried out on VP40 of the EboV. Grid boxes were gen-
erated and positions and size of the active site were rep-
resented by receptor grids. Grid point’s level for the x, y,
z axes were 3.68, 19.15 and 25.87, respectively. Thr123,
Phe125 and Arg134 residues were within the gridbox.
Grid generation was performed using optimized poten-
tial for liquid simulations (Tamilvanan & Hopper 2013).
Wiwanitkit (2014) studied the binding site prediction
within EboV VP40. There are detected 17 binding sites
within the VP40 protein, however, the positions are not

precisely defined in the study (Wiwanitkit 2014). These
predicted sites can be further used as targets for antivi-
ral drug development (Wiwanitkit 2014).

In a study by Shah et al. (2015), the active site
of three Ebola viral receptors were carried out using
the computed atlas of surface topography of proteins
(CASTp) server and visualized in Discovery studio vi-
sualizer 4.0 (Shah et al. 2015). The active site residues
obtained for VP40 (PDB code: 1H2D) were identified as
Gln159, Arg148, Arg151, Leu168, Asn130 and Pro131.
VP24 (PDB code: 4M0Q) active sites were found to be
Met149 and Glu46, whereas VP35 (3FKE) active site
residues were Gln329, Val314, Ser317, Lys334, Thr335
and Aap252. Setlur et al. (2016) predicted the active
site residues of four EboV proteins VP24 (PDB code:
4M0Q), VP30 (2I8B), VP35 (4IJE) and VP40 (1H2C)
using the CASTp server using default parameters of the
web server.

In a study by Rahangdale et al. (2015), the crystal
structure of the NP of the EboV (PDB code: 4U2X)
was applied. The coordinates for the active sites of the
NP (4U2X) were defined as X = –15.04; Y = –46.99;
Z = –28.39 (volume of cavity = 1140.192) Rahangdale
et al. 2015). However, the authors failed to provide de-
tails concerning active site residues. The predicted ac-
tive site of the RdRp of the EboV was generated using
the CASTp server as indicated in a study by Islam et
al. (2016), however, active site residues were also not
reported there.

EboV active site identification: further valida-
tion

Protein function can be linked to various diseases. The
way, in which a protein functions, can be defined by
its interactions with other molecules. In silico methods
for the identification and characterization of the active
sites of biological targets have become of great interest
to researchers (Fukunishi & Nakamura 2011). This can
be attributed to a number of newly resolved structures
whose molecular interactions and biochemical functions
have been poorly characterized (Laurie & Jackson 2005;
Fukunishi & Nakamura 2011). Due to the rapidly in-
creasing number of known protein structures available,
focus has been placed on the use of analytical tools
as means of identifying the active sites of target pro-
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Table 3. Active site residues as determined using bioinformatics tools on biological targets of the EboV.a

Biological
targets

PDB Active site residues
from literature

PDB Active site residues
(Metapocket)

Active site residues
(POOL)

Graphical
representation

GP Not reported R64; K95 [5] 5F18 T108; L110; F165; G166;
G167; V169; L162; G163;
T164; I109; C107; N114;
N104; C161; N106; L100;
N118; Q117; P160; E79;
Q75; I76; Y22; H26; F27;
L97; P99; Y115; L151; F116

Y115; G163; E79;
D159; H140; Y137;
D153; N114; D124;
Q117; N118; D136;
H120; H125; L113;
P160; H69; F116; D73;
L162; H138; C161;
L110; S119; E19

D55; L57; L63; R64;
F88; K95; I170 [6]
G87/F88;
K114/K115; K140;
G143; Y162

VP24 4M0Q [1] M149; E46 [1] 4M0Q S151; K39; E46; D48; S155;
F47; A229; T226; L152;
F230; R154; L158; I45;
K228; T231; G44; L158;
N162; F230; I45; T231;
A229; G44; Y41; R154;
N162; I161; I157; E46;
S155; K228; S151; F47;
T226; D48; K39; L152;
S225; T34; Q36; G37;
TRP38; V49; T50; S225;
K159

R154; R154; Y41;
Y41; E46; E46; D25;
G44; E18; G44; K15;
I45; I45; A43; E18;
K14; C27; S155; CS27;
A43; K19; S151; D48;
V31; T231

4M0Q [2] S155; L158; R154;
F230; T226; F47;
E46; S225; F230;
E46 [2]

VP30 2I8B L247; S187; C174;
L144; C251; S182;
V176; K180; S182;
F181; Q185; T178 [2]

2I8B L173; C174; F242; L243;
A246; T178; A151; F181;
V176; L247; L147; L144;
I148; L189; K180; R179;
T146; L249; Q185; L144;
S182; K183; H215; C251;
K251; Q185; S184; K180;
I148; S182; R179; F181;
S184; P250; L147; E252;
K183; L249; L188; K215;
V176; L173; T178; A151;
L247; A246; C174; F242;
L243

C251; K180; C251;
K180; C174; E252;
L249; P250; Y211;
F181; L144; M177;
F181; R179; M77;
E252; L144; L249;
H193; A246; Q185;
C174; R179; T143;
Y211

VP35 3FKE [1] D252; Q329; V314;
S317; K334; T335 [1]

4IJE D289; A319; D321; A322;
E262; A265; S266; E269;
R283; D271; Q279; C275;
I278; E269; K282; D271;
Q279; D321; R283; S266;
C275; I340; A322; G323;
T281; K282; I320; K339;
D271; E269; I278; E262;
TRP324; P285; I258; Q288;
R283; Q279; I340; S266;
G323; A319; D252; N254;
V284; S317; P318; P315;
S253; P316; T281; I320;
D289; P313; I286; K339;
V314; S255; P285; A312;
S255; I286; N254; S253;
E262; C275; I258; V284;
P285; I258; TRP324; P315;
Q288; L256; D257; A290;
A290; P316; S317; P318;
D289; S255; Q288; K282;
I286; Q329; HIS296; V294;
D252; S253; N254; T281;
P313; V314; P293; P292;
A291; G333; L256; D257;
D321; L249; T335; L330;
Q331; K248; V314; V245;
P315; P316; T335; I280;
A265; V325; L242; F263;
A276; S272; G270; G270;
S272; I278

K339; D271; I340;
D289; R283; E262;
D321; D271; E269;
E269; K282; C275;
K339; C275; E262;
I258; A322; Q288;
D257; V284; Q279;
R283; A319; TRP324;
S317

Not reported [3] K309; R312; K339;
K319; R322; R305 [3]

4IJE [2] L267; G270; D321;
A322; S310; S255;
V245; T237; K339;
P316; I286; I258;
S255; K251 [2]
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Table 3. (continued)

Biological
targets

PDB Active site residues
from literature

PDB Active site residues
(Metapocket)

Active site residues
(POOL)

Graphical
representation

VP40 1H2D [1] 1H2C H124; P31; Q159; E160;
L163; V166; L168; G12;
Q170; Y171; F125; K127;
A128; Q167; P169; N130;
F172; T129; L158; P165;
P164

Y120; R137; L138;
S119; T121; H124;
N136; G139; A118;
R134; L117; K127;
R148; N154; H145;
P140; G153; M116;
I115; Q155; L149;
L176; D102; V135;
Y106

Not reported [3] Q159; R148; R151;
L168; N130; P131;
L304; I305; T306;
Q307 [3]

1H2C [2] P164; Q167; P93;
W95; Q170; A128;
P131; F125 [2]

Not reported [4] 208; 216; 249 [4]

NP — — 4Z9P M198; V199; R202; L203;
G63; F60; A62; V64; T206;
I200; D65; F66; Q67; N207;
A70; F208; E68; D71; S69;
L209; R39; L300; N301;
L302; S303; F104; I41;
H290; Y98; F212; Y293;
H102; L99; V40; P42; S72;
P122; Y44; G103; R37;
K289; A35; Q38; G101;
V36; F106; L75

C78; H216; Y83;
D229; H81; H220;
Q217; K211; D71;
L213; C53; A82; L214;
Y293; F212; L209;
E292; D226; H80;
Y98; L300; I210; F208;
R298; H102

aPDB means Protein Data Bank code. References: [1], Shah et al. (2015); [2], Setlur et al. (2016); [3], Palamthodi et al. (2012); [4],
Joob & Wiwanitkit (2016); [5], Wang et al. (2011); [6], Manicassamy et al. (2005). Amino acids highlighted in green and yellow indicate
an overlap of active site residues as per literature and online tools.

teins (Laurie & Jackson 2005). The precise description
of active sites of biological targets remains a challenge
(Fukunishi & Nakamura 2011).

The advent of bioinformatics tools have enabled
the identification of such active sites with many ap-
proaches being developed and used in literature as well
as our own reports (Chetty & Soliman 2014; Arodola
& Soliman 2015). PDB present a number of 3D crys-
tal structures of protein targets (Kamdar & Dumontier
2015), which are increasing at a rapid rate, however,
data on experimental protein-ligand binding for novel
protein targets and their inhibitors are lacking. It is for
this reason that active site residues need to be identified
to enable docking of potential inhibitors to the active
site (Laurie & Jackson 2005). Identification, descrip-
tion and understanding of potential binding pockets on
the 3D structure of the protein is a critical starting
point and, if performed accurately, it can successfully
pave the way for the development of novel drugs or
inhibitors. If the correct binding site cannot be iden-
tified then any effort to validate it using techniques,
such as molecular docking, molecular dynamics (MD)
and other in silico approaches would be rendered futile.
Hence, this report aims to further elaborate on studies
in literature concerning the active sites of the biological
targets of the EboV.

There currently exists a number of computational
methods that can be utilized to identify active site
residues. The crystal structure of EboV proteins in com-
plex with bound inhibitors was reported and is available
in PDB. Active site identification of EboV proteins has
also been identified using unvalidated in silico methods

as per literature. Most of the published reports use only
one method of active site identification without any val-
idation, hence, the outcome could be questionable. To
further validate the outcome of the reported active site
residues, we use “cross validation” as a means to pro-
vide more reliable and accurate results. In this study we
opted to use two programs: (i) MetaPocket (Huang et
al. 2010; Zhang et al. 2011); and (ii) Partial Order Op-
timum Likelihood (POOL) (Somarowthu & Ondrechen
2012) – as the methods of choice to aid in the identifi-
cation of possible binding sites on the EboV proteins.
MetaPocket 2.0 (Heo et al. 2014), a consensus method
that combines 8 different energy and geometry-based
predictors, whereas the software POOL relates func-
tional binding sites to sequence (Somarowthu & On-
drechen 2012). It predicts catalytic residues using evo-
lutionary, electrostatic as well as pocket geometric in-
formation. Geometry cleft sizes can be determined by
this program using ConCavity (Capra et al. 2009) and
sequence alignment-based conservation scores can be
identified using an information-theoretic approach for
functional site identification (INTREPID) (Sankarara-
man & Sjölander 2008; Somarowthu et al. 2011). The
crystal structures of the six EboV proteins were ob-
tained from PDB as from the basic search tool. The
results obtained from MetaPocket and POOL estab-
lished the locality of possible binding pockets of the
EboV proteins (Chetty & Soliman 2014). Following the
identification of each pocket, the pocket size can then
be determined, which takes into account the surface
area, volume and depth as well as surface atoms and
potential interacting residues (Saberi Fathi & Tuszyn-
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ski 2014). The data represented below highlights the
best active sites and active site residue numbers of all
the proteins of the EboV.

Table 3 highlights the active site residues obtained
in our study using two different bioinformatics tools. On
comparison of the results generated using MetaPocket
and POOL, it can be seen that the active site residues
do overlap based on their similarity, however, it was also
observed that a number of these active site residues do
not share any similarity, as determined using the two
softwares. It was also interesting to note that active site
residues, as reported in literature, were similar to that
identified in our study with the exception of a few. The
identification of active site residues is a crucial and fun-
damental step towards the design of EboV inhibitors.
Subsequent to the EboV protein homology model and
target site determination, several paths may be utilized
in the development of inhibitors. The challenge that
the identification of active sites residues present has
prompted us to further investigate and enrich the cur-
rent information concerning this. This study will offer
a step forward towards providing valuable information
that will fill in the gap of knowledge in this area.

A huge emphasis is currently placed on the inves-
tigation of host proteins and druggable viral targets
(Omotuyi 2015). An in-depth analysis of the biological
targets of the EboV is required for binding site identifi-
cation (Joob & Wiwanitkit 2014). This can be achieved
by a complex crystallography study. With the increas-
ing efforts towards understanding and applying bioin-
formatics technology, it is possible for further manipu-
lation of the crystal structure of EboV proteins. This
in turn will allow further analysis of the druggability
within the identified active pocket (Joob & Wiwanitkit
2014). In order to expand the search for new drugs, a
sound knowledge of viral protein structures is essential.
The identification of active sites of biological targets is
a critical process prompting further studies towards the
design and discovery of anti-Ebola drugs.

Homology modeling

In the absence of an experimentally determined crys-
tal structure, homology modeling provides a useful 3D
model for a protein of interest that is related to that of
a known protein structure (Eswar et al. 2007). Protein
modeling plays a pivotal role in the process of drug
discovery. The goal being to predict a structure from
its sequence with an accuracy that is comparable to
the best results achieved experimentally (Bishop et al.
2008; Samant et al. 2014). However, there is a number
of restrictions associated with homology modeling and
these include limitations in the availability of 3D crystal
structures, as well as the presence of loops and inserts
(Bishop et al. 2008; Honarparvar et al. 2014). The qual-
ity and accuracy of a homology model is also dependent
on a number of different factors and these include a high
resolution experimental protein structure required as a
template, the degree of sequence identity between the
query and template sequence and alignment errors in-

crease rapidly when sequence identity is less than 30%.
A medium accurate model requires a sequence identity
of between 30–50% (Bishop et al. 2008).

With a vast array of DNA sequencing techniques
available providing researchers with a wealth of knowl-
edge concerning genomic data, experimental structure
determination techniques require further efforts. Sub-
sequently the gap between the number of known pro-
tein sequences and protein structures are growing at
an increasing rate. Thus, in order to fill in the gap, a
number of computational approaches have been devel-
oped to predict the tertiary structure of a protein using
its amino acid sequence (Mariani et al. 2013; Prashat
2015). In our lab we use various methods to generate
3D crystal structures of unresolved proteins (Fig. 1),
and this can be seen in our publications (Maharaj &
Soliman 2013; Chetty & Soliman 2014; Moonsamy et al.
2014; Arodola & Soliman 2015). One of the most promi-
nent and promising approaches is comparative model-
ing of a protein (homology modeling), a most reliable
method used to predict and construct a plausible 3D
structure of a target protein.

Despite many targets being resolved, there still ex-
its a few of which no crystal structure is available (Ta-
ble 1). This has prompted us to attempt to build a
homology-based 3D model for our protein of interest.
This model has been put forth as a guideline to assist
researchers to conduct future studies. BLASTp was per-
formed against PDB to retrieve the best suitable tem-
plates for modeling the protein of interest. The tem-
plate of choice contains the maximum sequence iden-
tity and lowest e-value. The modeling of the 3D struc-
ture of the protein was performed using an online soft-
ware tool, RaptorX. RaptorX, a protein structure pre-
diction server established by the Xu’s group was found
to be valuable in predicting the 3D structure of a pro-
tein sequence devoid of protein homologs from the PDB
(Källberg et al. 2012). Following the submission of an
input query sequence, the software predicts both the
secondary and tertiary structures together with solvent
accessibility and disordered regions. It also assigns con-
fidence scores to indicate the quality of the predicted
model (Källberg et al. 2012).

Once the 3D structure of the protein of interest has
been modeled and target sites identified, a number of
different strategies can then be put into place towards
developing potential inhibitors. If the drug target is an
enzyme, a designed chemical molecule of choice may be
able to fit within the active site pocket. In view of these
homology modeling methods offered, the only possible
way at present is to obtain structural information for a
large number of proteins. In silico methods could prove
to be useful in assisting researchers as well as medicinal
chemists towards the design of potential inhibitors by
analyzing the physiochemical and structural properties
of a protein (Prashat 2015).

Homology model of RdRp of the EboV

In order for computer-aided drug design (CADD) of
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Fig. 1. Highlights of the homology modeling protocol we adopted in our research group (Maharaj & Soliman 2013; Chetty & Soliman
2014; Moonsamy et al. 2014; Arodola & Soliman 2015).

Ebola inhibitors to occur, a 3D crystal structure of a
target protein is needed. Reduced availability of exper-
imentally determined target protein structure, RdRp
proved to be a limitation in this study. Theoretical mod-
els built by homology modeling have served as a practi-
cal and effective alternative of this unresolved protein.
The tertiary structure of RdRp was not available in
PDB, therefore the complete EboV protein sequence
was retrieved from the National Centre for Biotechnol-
ogy Information (accession No.: NP 066251.1) and sub-
mitted to RaptorX for the generation of a 3D homol-
ogy model (Fig. 2). The quality and validation of the
generated model was done using a Ramachandran plot
analysis using Maestro (http://www.schrodinger.com/)
(Schrödinger 2013). Results from the Ramachandran
plot revealed that 84.1% (1859/2210) of all residues

were in favored (98%) regions and 94.0% (2078/2210)
of all residues were in allowed (> 99.8%) regions.

Results from our study reveal that RaptorX pro-
vided a reliable and favorable result on the basis
of structure prediction and validation using the Ra-
machandran plot (Fig. 2A). The homology model gen-
erated using RaptorX was therefore selected as a model
of choice and utilized for further computational analy-
sis. The homology model was superimposed with the
template 5A22 A using Swiss-Pdb Viewer (v4.1.0). As
can be seen in Figure 2B, the structure presents a few
outliers which mainly lie outside the active site region of
the protein. However, despite the low percentage of se-
quence identity with the template (22%) this homology
model can be accepted based on the superimposition,
as it aligns well with the template protein 5A22 A.
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Fig. 2. (A) Homology model of the RdRp generated using RaptorX. (B) Superimposition of the homology model (red) generated using
RaptorX with template protein (grey; PDB code: 5A22) using the Swiss-Pdb Viewer.

Docking-guided active site determination

RaptorX is used for secondary protein structure predic-
tion, template-based tertiary structure modeling, align-
ment quality assessment as well as sophisticated prob-
abilistic alignment sampling (Källberg et al. 2012).
This software distinguishes itself from other servers
and hence chosen based on the accuracy of alignment
between a target sequence, one or multiple distantly
related template proteins, by a novel nonlinear scor-
ing function and a probabilistic-consistency algorithm
(Källberg et al. 2012). Subsequently, RaptorX provides
high-quality structural models for a number of unre-
solved targets (Källberg et al. 2012). The RdRp se-
quence has been analyzed and a homology model gener-
ated using RaptorX. However, due to this protein con-
sisting of more than 2,000 amino acid residues, active
site determination proved to be difficult and this has
also been reported in a recent publication (Grifoni et al.
2016). Therefore, we embarked on a different approach
to identify possible active site residues using docking-
guided active site determination. Molecular docking is
a method that is used to predict the binding affinity
as well as the position of the ligand in the active site
pocket (Kumalo et al. 2015; Ramesh et al. 2016). Here
we employ docking in order to identify the location of
possible active sites as well as protein-ligand binding
interactions, which play a critical role in the develop-
ment of novel EboV inhibitors. This method provides
an account of the calculated binding free energies at
the different docking sites. Docking studies were car-
ried out as per our previous publications (Chetty &
Soliman 2014; Cele et al. 2016) using the homology
model of RdRp with an experimentally reported in-
hibitor, Favipiravir (T-705). However, it is unclear ex-
actly where on the protein the inhibitor binds. Favipi-
ravir (T-705), a pyrazine derivative, was found to be
potent against the influenza virus. It is active against a
range of influenza viruses as well as other RNA viruses
(Harris & Pierpoint 2012). Recently, it has been shown

to inhibit EboV infection in cell culture, as well as
reduce viremia and cell death, making it a promising
target for the treatment of Ebola (Harris & Pierpoint
2012). Grooves of the protein were identified and the
grid box was defined as large as possible to allow for
more runs and increase the search space. Binding ener-
gies were then compared and the best conformation was
selected. This approach is more reasonably valid based
on our previous methods as per our previous publica-
tions (Chetty & Soliman 2014; Kumalo & Soliman 2015;
Ramesh et al. 2016).

Docking calculations

Docking studies were performed on the retrieved lig-
and Favipiravir (T-705) (zinc code 13915654), in a
mol2 format, downloaded from the zinc database
(https://docking.org/; Irwin & Shoichet 2005). The
ligand was assessed in Molegro Molecular Viewer
(http://www.molegro.com/) to ensure that it dis-
played the correct bond angles and hybridization state.
AutoDock Tools (Morris & Huey 2009) graphical user
interface was used to define the gridbox at different po-
sitions on the protein as the active site was unknown
and not documented in literature. The gridbox mea-
sured in Angstroms for sites 1-3 was defined using the
following parameters: site 1, centre (X = 11.362, Y =
–0.828, Z = 33.439) and dimensions (X = 126, Y = 126,
Z = 126); site 2, centre (X = 15.182, Y = –9.253, Z =
40.559) and dimensions (X = 126, Y = 126, Z = 126);
site 3, centre (X = –15.767, Y = 9.186, Z = 34.694) and
dimensions (X = 126, Y = 126, Z =126). The exhaus-
tiveness of the system was set at 500 and the number of
modes at 20. Docking calculations using the Lamarkian
genetic algorithm were performed with AutoDock Vina
(Morris & Huey 2009).

Docking results revealed that the ligand Favipi-
ravir (T-705) bound to the same area of the protein
with closely related binding energies (Table 4). Visual
inspection of the docked results, together with the dock-
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Fig. 3. Docked complexes and two-dimensional interaction maps at sites S1-S3 on the protein.

ing scores indicated that the ligand fitted better at site
1 and site 2 as can be seen in Table 4 and Figure 3.

The difference in the docking results for sites

1 and 2 (−7.2 kcal/mol) in comparison to site 3
(−7.1 kcal/mol) is almost negligible. Based on dock-
ing results and relative binding energy obtained for the
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Table 4. Docking results showing binding free energies of the
Favipiravir (T-705) at the three different sites (S1-S3).

Docking scores (kcal/mol)
Inhibitor

S1 S2 S3

Favipiravir (T-705) –7.2 –7.2 –7.1

Fig. 4. Interacting residues of RdRp with Favipiravir (T-705) at
binding site 1.

three sites, site 1 and site 2 can be selected as the possi-
ble active sites on the protein for the binding of Favipi-
ravir (T-705) as it resulted in the highest binding energy
(−7.2 kcal/mol).

Ligand interaction plots (Fig. 3) provided us with
the predicted interactions of the ligand at each selected
docking site. Figures 3 and 4 provide a summary of
the interaction of the ligand with residues of the RdRp
at potential binding sites (S1–S3). A hydrogen bond
occurred between the polar residue Ser970 and the hy-
droxyl group of the ligand for sites 1, 2 and 3. Polar
amino acids, Ser970 and Ser1028 contributed to the po-
lar solvation energy. Gly971 contributes to the electro-
static and polar solvation energies. Residues Pro1126,
Leu1122, Leu1127, Val1026, Trp1118, Ala962, Val966,
Phe965 and Pro969 participate in hydrophobic interac-
tions, thereby contributing to the overall van der Waals
energy. Arg1114 and Arg1125 are positively charged
amino acids that contribute to the electrostatic and po-
lar solvation energies. In general, a large number of hy-
drophobic interactions were observed from the binding
of the protein and ligand following docking.

Despite docking being efficient, the limitation sur-
rounding this method stems from the lack of a univer-
sally adopted standard for scoring functions Warren et
al. 2006). Another factor, which contributes to the re-
liability and accuracy of results has a lot to do with
the confirmation of the receptor that has been selected
(Kitchen et al. 2004; Alonso et al. 2006), thus docking
alone cannot provide reliable results (Arodola & Soli-
man 2015). Further validation methods, such as MD
simulations can be used to aid in the understanding of
the dynamic nature of a biomolecule at different time
frames (Hansson et al. 2002; Alonso et al. 2006), as
well as to obtain the binding free energies, which are
more accurate than those obtained from docking alone
(Alonso et al. 2006). These results provide critical in-
formation concerning the nature of the binding site and
the key protein-ligand interactions that are responsible
for the molecular recognition serving as a validation
tool.

In-silico route map towards the design and dis-
covery of EboV inhibitors

Prompted by limited experimental and in silico re-
search into potential EboV inhibitors, we put forth a
beneficial route map (Fig. 5), which will highlight the
various techniques that may be successfully utilized to-
wards EboV drug design. CADD is a representation of
computational methods that are implemented towards
the design and discovery of new therapeutic solutions
(Song et al. 2009). There exists a number of bioin-
formatics tools, which have aided in the advancement
of the drug discovery process (Bamborough & Cohen
1996; Anderson 2003). The recent improvements made
in computational chemistry software, CADD and MD
simulations, have led to innovative research methods in
the pharmaceutical industry (Huang et al. 2010).

Conclusion

The current EboV outbreak has highlighted the need
for effective anti-filoviral therapeutic agents. The iden-
tification of ligand-receptor binding sites is crucial for
any structure-based drug design. Apart from elucidat-
ing the functional characterization of a protein, a sound
knowledge of the potential binding sites can guide re-
searchers towards the design of inhibitors. We suggest
using multiple software for the identification of poten-
tial active site residues on EboV targets, as the ones re-
ported in our study are not entirely consistent to what
has been previously documented. These can then be
validated using computational methods, such as molec-
ular docking, MD simulations as well as thermodynam-
ics like free binding energy and entropy calculations.
Easily accessible tools and servers are available, which
can be utilized to gain further insight on proteins in
three-dimensions as well as to gather in-depth infor-
mation about proteins using in silico approaches. For
example, molecular docking, which yielded a top score
of –7.2 kcal/mol at sites 1 and 2 suggesting that these
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Fig. 5. Route map toward the in-silico design of EboV inhibitors using the homology modeled RdRp protein.

could be the possible active sites on the protein for the
binding of Favipiravir (T-705), a promising inhibitor.
It is also interesting to note that Favipiravir (T-705)
forms a strong hydrogen bond with Ser970 as can be
seen from the two-dimensional interaction map. This
research provides a valuable platform in assisting re-
searchers to provide a better understanding towards
further experimental and computational efforts to de-
sign novel drugs and inhibitors that could effectively
target disease-related proteins and eradicate this deadly
virus.
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