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A b s t r a c t  

This paper presents a study of the nonlinear estimation of the 
ground motion prediction equation (GMPE) using neural networks. The 
general regression neural network (GRNN) was chosen for its high learn-
ing rate. A separate GRNN was tested as well as a GRNN in cascade 
connection with linear regression (LR). Measurements of induced seis-
micity in the Legnica-G�ogów Copper District were used in this study. 
Various sets of input variables were tested. The basic variables used in 
every case were seismic energy and epicentral distance, while the addi-
tional variables were the location of the epicenter, the location of the 
seismic station, and the direction towards the epicenter. The GRNN im-
proves the GMPE. The best results were obtained when the epicenter lo-
cation was used as an additional input. The GRNN model was analysed 
for how it can improve the GMPE with respect to LR. The bootstrap re-
sampling method was used for this purpose. It proved the statistical sig-
nificance of the improvement of the GMPE. Additionally, this method 
allows the determination of smoothness parameters for the GRNN. Pa-
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rameters derived through this method have better generalisation capabili-
ties than the smoothness parameters estimated using the holdout method.  

Key words: ground motion prediction equation, artificial neural net-
work, general regression neural network. 

1. INTRODUCTION 
Since the beginning of seismic hazard analysis, ground motion prediction 
equations (GMPEs) have been effectively used to estimate ground motions 
in deterministic and probabilistic seismic hazard analyses. The basic method 
of estimation of GMPE is linear regression (LR), where magnitude and the 
logarithm of distance are independent variables, and the logarithm of peak 
ground acceleration is the dependent variable (Cornell 1968). Instead of 
magnitude, the logarithm of energy can also be used (e.g., Golik and Men-
decki 2012, Lasocki 2013).  

While there are GMPEs with more expanded formulae (e.g., Douglas 
2011), which incorporate higher powers of magnitude (e.g., Trifunac and 
Brady 1976, Joyner and Boore 1988, Akkar and Bommer 2010) and complex 
functions incorporating source models (e.g., Abrahamson and Silva 2008, 
Boore and Atkinson 2008, Campbell and Bozorgnia 2008), the use of artifi-
cial neural networks (ANNs) to estimate the GMPE does not require 
knowledge of these models. 

Basically, GMPEs vary considerably depending on the seismic zone 
(Douglas 2011), and it is common to perform GMPE estimation for each 
particular case individually. For induced seismicity, the most effective 
GMPEs are often basic LR models (Golik and Mendecki 2012, Lasocki 
2013). 

ANNs have been chosen as a tool to answer the question of whether us-
ing nonlinear regression can help create a model that results in a significant-
ly better description of the predicted mean of the GMPE.  

For nonlinear estimation, three types of neural networks are used most 
frequently: multilayer perceptrons (MLPs) with one or two hidden layers 
(Pozos-Estrada et al. 2014), networks with radial based functions (RBFs), 
and general regression neural networks (GRNNs). All three solutions have 
been applied to the GMPE (Günaydin and Günaydin 2008), with MLP being 
used most often (Güllü and Erçcelebi 2007, Derras et al. 2012, Hong et al. 
2012, Arjun 2013). The magnitude and epicentral or hypocentral distance 
have been used as input data for the GMPE estimation with the help of 
ANNs. The additional input data that have also been used are: focal depth 
(Pozos-Estrada et al. 2014); shear wave velocity down to 30 m (VS30) and 
focal depth (Hong et al. 2012, Derras et al. 2012); the thickness of the sedi-
mentary layers below the site down to a shear wave velocity equal to 
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800 m/s, and the corresponding resonant frequency (Derras and Bekkouche 
2011); the fundamental resonance frequency, as determined by the horizon-
tal-to-vertical (H/V) spectral ratio technique (Derras et al. 2012); site condi-
tions (Güllü and Erçelebi 2007, Günaydin and Günaydin 2008); and the 
average values of shear wave velocity, primary wave velocity, standard pen-
etration test blow count, and the density of soil (Arjun 2013).  

For this paper we chose the GRNN method, because it is fast-learning 
and trends toward the optimal regressional surface. In the case of testing the 
usefulness of ANN for GMPE estimation, using the GRNN gives a quicker 
result, without the need to analyse whether the ANN is optimally trained. 

Recently, GRNN networks have been applied for solving different prob-
lems in the fields of seismic hazard and earthquake engineering. García et al. 
(2003) and Derras and Bekkouche (2011) applied GRNN together with other 
ANN methods for estimation of the GMPE. Yaghmaei-Sabegh and Tsang 
(2011, 2014) applied the GRNN as well as probabilistic neural network 
(PNN) for site classification based on an H/V spectral ratio technique. 
Yaghmaei-Sabegh (2012) also employed the GRNN for ranking and 
weighting the GMPE models in the logic tree. Hanna et al. (2007) employed 
the GRNN for assessing liquefaction in soil deposits. 

Although earlier studies have not shown any better effectiveness of the 
GMPE estimated by GRNN than the MLP (García et al. 2003, Derras and 
Bekkouche 2011), the possibility of quick learning and the uniqueness of 
training allow the examination of the distribution of GMPE model error us-
ing the bootstrap method, and testing the statistical significance of the im-
provement of the GMPE. The effectiveness of the GMPE estimated by 
GRNN is improved by applying the GRNN in connection with the LR, 
where the GRNN reduces the error of LR. 

Data on induced seismicity in the Legnica-G�ogów Copper District 
(LGCD) in Poland were used in this study. Tremors with energy of up to 
109 J occur in this region, and generate motions of up to 3 m/s2. The GMPEs 
for this region have been previously estimated based on LR methods 
(Lasocki 2013). 

2. THE  GRNN 
The concept of the GRNN (Specht 1991) is based on computing the condi-
tional mean of y, given X, according to the formula 
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where X is a particular measured value of the random variable x and f(X|y) is 
the condition probability density function of X given y. Because f(X|y) is not 
known, usually the estimator proposed by Parzen (1962) is used. 

In the implementation of the GRNN, the integration is performed by 
summation, according to the formula: 

 � �
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where n is the number of samples used for learning. 
The GRNN consists of four layers (Fig. 1): input, pattern, summation 

and output. The input layer is made up of units corresponding to each of the 
independent variables used to estimate the ground motion. The number of 
units in the pattern layer is the same as the number of samples in the training 
set. The ith unit in the pattern layer, which corresponds to the ith sample in the 
training set, computes p(x|yi) according to the formula: 

 � �
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2exp i
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 , (3) 

where � is the smoothness parameter of the GRNN and Di is the distance be-
tween the ith sample and the value in the input layer. The summation layer 
consists of two units that compute the numerator  
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Fig. 1. Diagram of the GRNN. 
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and the denominator: 

 � �
1

n

i
i=

D = p x | y� . (5) 

The output layer realises the division: 

 � �ˆ Sy x =
D

. (6) 

The smoothness parameter + is the only value selected during the network 
learning process. The holdout method proposed by Specht (1991) consists of 
removing one sample at a time and constructing a network based on all of 
the other samples. Then, the network is used to calculate the squared error 
between the expected Y and the estimated Ŷ for the removed sample. By re-
peating this process for each sample, and for the particular value of �, the 
sum of squared errors (SSE) for all samples is calculated. The value of � 
with the smallest SSE is used in the GRNN. In the following sections, the 
other method for determining � is proposed. It is based on the bootstrap 
method.  

As a preprocessing step, we scale all input variables such that they have 
approximately the same ranges or variances. The need for this process stems 
from the fact that the probability density function f(X|y) is to be estimated us-
ing (3) with only one smoothness parameter (Specht 1991). Therefore, the 
metric in the form 
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was used, where k is the number of input variables (Fig. 1). 
The GRNN has advantages and disadvantages when compared to MLPs. 

The GRNN has a solid mathematical background (Wasserman 1993). It is a 
one-pass learning algorithm (i.e., lazy learning). Prediction is unique, which 
means that it is not dependent on the training procedure or the initial condi-
tions. On the other hand, the GRNN requires more memory space to store 
the model and is slower than MLPs when classifying new cases.  

3. DATA  USED  TO  TEST  THE  GRNN 
Copper ore extraction by three underground mines in the LGCD in south-
west Poland, which takes place in hard rocks at depths of 800-1100 m, gen-
erating earthquakes that can exceed 4.5 of local magnitude and 109 J of 
energy, often significantly affects buildings and other surface structures. The  
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Fig. 2. Distribution of earthquakes recorded in the LGCD, 2001–2012. Dots – earth-
quakes, triangles – stations. 

strongest events are capable of producing a peak ground acceleration (PGA) 
of more than 3 m/s2. 

A GMPE is a function of values describing an event, site, and source-to-
site route. For the LGCD, only data on ground motion, seismic energy, the 
location of the epicenter, and the location of the station are provided and can 
be used for estimation of the GMPE. The data consisted of 2991 ground mo-
tion measurements of 904 events recorded by up to 11 accelerometers (Fig. 
2) in the period from April 2001 to November 2012. For the GMPE estima-
tion, we used values that were functions of the original values:  

– log E – the logarithm of energy, 
– log R – the logarithm of distance, where 

 2 2
0R = r +h , (8) 

and r is the source-receiver epicentral distance calculated from the coordi-
nates of the epicenter and station, whereas the coefficient h0 is the common 
depth factor introduced by Joyner and Boore (1993). The value h0 = 800 was 
chosen by minimising the error of linear regression of log E and log R. The 
additional input variables are: 
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Fig. 3. Histograms of inputs (a-h) and output of the GRNN (i): (a) logarithms of dis-
tances; (b) logarithms of energies; (c & d) coordinates of the epicenters; (e & f) co-
ordinates of the seismic stations; (g) cosines of radial directions; (h) sines of radial 
directions; (i) logarithms of peak horizontal accelerations. 

– xe, ye – the coordinates of the epicenters, 
– xs, ys – the coordinates of the seismic stations, 
– cos�, sin� – the cosines and sines of radial direction – instead of 

cos� and sin�, angles � could be used as well; however, the cosine 
and sine functions vary smoothly when the angle changes from 
360° to 0°. 

The output value was the logarithm of peak horizontal component of ground 
acceleration (i.e., Peak Horizontal Acceleration, PHA). Figure 3 shows indi-
vidual histograms of these values, while Fig. 2 better illustrates the distribu-
tion of coordinates (xe, ye and xs, ys) as they are, in fact, 2D variables. 

The dataset is divided randomly into training and test sets during the 
bootstrap test.  Any outliers are not removed. 

4. APPLYING  THE  GRNN  TO  THE  GMPE  
The GRNN was tested both separately and in cascade with an LR estimator. 
Several GMPE models were compared (Fig. 4). 
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Fig. 4. Diagrams of the GMPE models: (a) LR of log R and log E; (b) separate 
GRNN, where log R and log E are some of the inputs; (c) GRNN in cascade with 
LR, where log R and log E are not inputs of the GRNN; (d) GRNN in cascade with 
LR, where log R and log E are inputs of the GRNN. 

The reference model is the LR model (Fig. 4a), which is commonly used 
for GMPE (Douglas 2011), especially in the case of mining induced seismic-
ity (Golik and Mendecki 2012, Lasocki 2013). The effectiveness of all 
GRNN models is compared to that of the LR. The considered form of the LR 
model is:  
 log log log ,a = + � E + � R�  (9) 

where a is the PHA in m/s2 estimated from the model. The form of LR was 
chosen because it was applied to the GMPE in the LGCD by Lasocki (2013). 
The estimated parameters of LR were: 
 � = 0.41,  

 � = 0.47, (10) 

 � = –1.42, 

 R2 = 0.731. 

The value of the R2 is typical of mining induced GMPEs. The coefficient 
of determination obtained by Lasocki (2013), for the LR model covering dif-
ferent parts of the LGCD and estimated from a smaller amount of data (1818 
records), was lower (R2 = 0.532). In the case of induced seismicity in the 
Upper Silesian Coal Basin in Poland (Golik and Mendecki 2012), the coeffi-
cients of determination of GMPE models are in the range of 0.64 (region of 
“Bielszowice” coal mine) to 0.79 (region of “Ziemowit” coal mine). The er-



J. WISZNIOWSKI 
 

2438

ror of LR (10) model does not have a normal distribution (Fig. 5). It did not 
pass Lilliefors’s normality test (p = 0.007).  

The next tested model was the separate GRNN (Fig. 4b). Its inputs were 
log R, log E, and combinations of the following pairs of variables (described 
as ‘(…)’ in Fig. 4): 
 (xe, ye), (xs, ys), (cos�, sin�). (11) 

However, log R, cos � and sin � are functions of xe, ye and xs, ys. Therefore, 
another GMPE model, in the form of the GRNN(log E, xe, ye, xs, ys), was also 
analysed. It was the only model in which the distance was not given as log R. 

The models in Figs. 4c and 4d are combinations of LR and the GRNN. 
Both models consist of two components in cascade. The first component is 
the LR. Its inputs are only log R and log E. Its output is the linear prediction 
of ground motion. The second component is the GRNN. It is trained by re-
siduals of the LR. The output of the whole model is the sum of the outputs of 
the LR and GRNN. The GMPE model, in which the GRNN improves results 
of the LR, is referred to as GRNNR. In the model presented in Fig. 4c, the 
GRNN input incorporates only combinations of inputs (11), whereas in the  
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Fig. 5. Normal probability plot for the LR model. 
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model presented in Fig. 4d, the inputs log R and log E are also included in 
GRNN. As the smoothness parameter increases, the output of the GRNN ap-
proaches the mean value of log PHA, whereas GRNNR approaches the result 
of the LR. Therefore, the GRNNR is less sensitive to large values of �. 

Table 1  
Results of holdout method Optimum smoothness parameter values  

obtained with the help of the holdout method and corresponding residual sum  
of squares, and the coefficient of determination for various GMPE models  

utilising the GRNN and various combinations of inputs 

GMPE model � SSres R2 
Separate 
GRNN 

(Fig. 4b) 

GRNN(log E, log R) 0.096 142.84 0.77 
GRNN(log E, log R, xe, ye, xs, ys, cos�, 
sin�) 

0.235 115.23 0.81 

GRNN(log E, log R, xe, ye, xs, ys) 0.175 110.12 0.82 
GRNN(log E, log R, xe, ye, cos�, sin�) 0.224 113.57 0.82 
GRNN(log E, log R, xs, ys, cos�, sin�) 0.222 118.76 0.81 
GRNN(log E, log R, xe, ye) 0.138 104.14 0.83 
GRNN(log E, log R, xs, ys) 0.113 119.93 0.81 
GRNN(log E, log R, cos�, sin�) 0.166 129.77 0.79 

 GRNN(log E, xe, ye, xs, ys) 0.147 109.87 0.82 
GRNNR 

with inputs 
log E and 

log R 
(Fig. 4d) 

GRNNR(log E, log R) 0.100 142.19 0.77 
GRNNR(log E, log R, xe, ye, xs, ys, cos�, 
sin�) 

0.294 106.22 0.83 

GRNNR(log E, log R, xe, ye, xs, ys) 0.180 104.21 0.83 
GRNNR(log E, log R, xe, ye, cos�, sin�) 0.271 105.32 0.83 
GRNNR(log E, log R, xs, ys, cos�, sin�) 0.264 111.41 0.82 
GRNNR(log E, log R, xe, ye) 0.141 100.93 0.84 
GRNNR(log E, log R, xs, ys) 0.114 120.16 0.81 
GRNNR(log E, log R cos�, sin�) 0.183 125.05 0.80 

GRNNR 
without in-
puts log E, 
and log R 
(Fig. 4c) 

GRNNR(xe, ye, xs, ys, cos�, sin�) 0.102 115.48 0.82 
GRNNR(xe, ye, xs, ys,) 0.069 111.24 0.82 
GRNNR(xe, ye, cos�, sin�) 0.097 115.80 0.82 
GRNNR(xs, ys, cos�, sin�) 0.088 147.43 0.76 
GRNNR(xe, ye) 0.012 112.13 0.82 
GRNNR(xs, ys) 0.039 161.03 0.74 
GRNNR(cos�, sin�) 0.107 163.99 0.74 
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The quality of methods is assessed based on the residual sum of squares, 
SSres, and the coefficient of determination, R2 . SSres is defined as 

 
� �� �

n

=i
iires yy=SS

1

2ˆ
, (12) 

where yi is the measured output and iŷ  is the output of the GMPE model. R2 
is defined as 

 tot

res

SS
SS=R �12

, (13) 

where SStot is the total sum of squares defined as: 
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and: 
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Table 1 shows the SSres and R2 for the smoothness parameter that was se-
lected using the holdout method (Specht 1991) for the analysed models and 
for the analysed GMPE inputs. The best prediction improvement for all the 
GRNN models was obtained when the epicenter of the earthquake was in-
corporated as an input value. Prediction was also improved when the only 
GRNN inputs were log R and log E. The model with no log R as input 
(GRNN(log E, xe, ye, xs, ys)) also yielded good results. Using too many input 
parameters did not improve the GMPE. In the case of epicenter location (xe, 
ye), the quality of the results was reduced when the station location (xs, ys), or 
the angular coefficients (cos�, sin�), were included. However, the best re-
sults were obtained for GRNNR with inputs log E and log R, which suggests 
that adding the inputs log R and log E had no negative impact on prediction. 

5. TESTING  THE  SIGNIFICANCE  OF  GMPE  IMPROVEMENT 
FOR  THE  GRNN  

Due to the differences in the LR and GRNN methodologies, a method based 
on the bootstrap (Efron 1979) was chosen to compare them. The full list of 
records was randomly divided into the subset for training the network and 
the test subset. The training subset contained one-quarter of all records. The 
remaining validation subset was used for estimation of the prediction error 
(Moody 1994). This operation was performed 1000 times for each GRNN 
model and for each set of inputs. The results are presented in Fig. 6. The 
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bootstrap tests were performed for various values of � that gave the distribu-
tion of R2 as a function of �. The mean values of R2 of GRNNs are shown as 
solid lines, whereas the 5th and 95th percentiles of R2 are shown as dotted 
lines. 

The LR was estimated and tested in an analogous way, and the following 
result was obtained: 

– The mean value of R2 was 0.7281; 
– The 5th percentile of R2 was 0.7202; 
– The 95th percentile of R2 was 0.7334. 

 

 

 
Fig. 6. Values of the coefficient of determination for bootstrap testing of the GRNN 
as a function of the smoothness parameter. Solid lines – mean R2 calculated for the 
testing set (data not used for training the GRNN); dashed lines – mean R2 calculated 
using LR; dotted lines – 5th and 95th percentiles of R2. a-h: results for the separate 
GRNN (Fig. 4b). Continued on next page. 
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Fig. 6 continuation: Solid lines – mean R2 calculated for the testing set (data not 
used for training the GRNN); dashed lines – mean R2 calculated using LR; dotted 
lines – 5th and 95th percentiles of R2. i-p: Results for the cascade GRNN with log E 
and log R as GRNNR

 inputs (Fig. 4d). Continued on next page. 

The mean value of R2 of the LR is shown as dashed lines in Fig. 6, 
whereas the 5th and 95th percentiles of R2 of the LR are shown as dotted lines. 

Marking the 5th percentile for the GRNN and the 95th percentile for the 
LR in Fig. 6 allows us to conclude whether or not the estimation made using 
the GRNN is statistically significantly better than that made using LR, and 
for which values of �. If we take an optimum � that maximises the 5th per-
centile of R2, the bootstrap method can be used to assess the minimum 
GRNN improvement of the GMPE estimation with the probability is greater 
than 95%, and to select the corresponding value of �. 
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Fig. 6 continuation: Solid lines – mean R2 calculated for the testing set (data not 
used for training the GRNN); dashed lines – mean R2 calculated using LR; dotted 
lines – 5th and 95th percentiles of R2. q-w: Results for the cascade GRNN without 
log E and log R as GRNNR inputs (Fig. 4c); x: Results for the GRNN replacing 
log R with station location and epicentral location as inputs. 

The bootstrap analysis has confirmed that the best GMPE improvement 
is achieved when the epicenter location is used as an input (Figs. 6d, 6l, and 
6s). The improvement of the GMPE is also significant when only log E and 
log R are inputs for the GRNN, both for the separate GRNN (Fig. 6a) and for 
the cascade mode with the LR (Fig. 6i). The information about the station 
location improves the GMPE most when it is combined with log E and log R 
(Figs. 6b and 6j). 

The test using only the station location in cascade with LR (GRNNR(xs, 
ys)) shows a small but statistically significant improvement of the GMPE 
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(Fig. 6q). To assess this case, a GMPE model with relative local amplifica-
tion factors (e.g. Lasocki 2013) was analysed and estimated using LR ac-
cording to the formula: 

 
1

log log log
J

i j i, j
j=

a = �+ � E +� R+ w � , (16) 

where i is the station number, ai are the PHA values recorded by the ith sta-
tion, wi is the estimated amplification factor at the ith station location, i,j is 
Kronecker’s delta, and J = 19 is the number of stations. The other symbols 
are the same as in (9). R2 = 0.747 was calculated for the tested data using a 
GMPE model with relative local amplification factors. The result is compa-
rable with GRNNR(xs, ys). 

In particular, the bootstrap test did not show a significant improvement 
for the model GRNN(log E, xe, ye, xs, ys), which did not consider the distance 
from the earthquake as an input (Fig. 6x). The results yielded by the holdout 
method were very good, whereas the bootstrap test did not show a significant 
improvement. This model either has low generalisation capability, or it is 
very sensitive to the reduction of the training set. 

The application of the angular coefficients was based on the assumption 
that the GMPE is related to direction. An improvement of the GMPE in 
models with angular coefficients as the only inputs would suggest a constant 
trend for the whole zone. On the other hand, an improvement of the model in 
the case of angular coefficients in combination with the epicenter location 
would confirm that the earthquake mechanisms depend on location. The test 
results (Figs. 6o and 6v) show an improvement in the GMPE when xe and ye 
are added as inputs along with cos� and sin�; however, the results are worse 
than for xe and ye alone. We can see, however, that GRNNR(cos�, sin�) re-
quires a larger smoothness parameter (Fig. 6r) than GRNNR(xe, ye) (Fig. 6s). 
In addition, R2 for larger values of � – optimum for GRNNR(xe, ye, cos�, 
sin�) (Fig. 6v) – is a little larger than R2 in the model GRNNR(xe, ye). Thus, it 
cannot be ascertained whether the poorer results of the GMPE for the inputs 
xe, ye, cos� and sin� are a result of the lack of dependency, or of the un-
matched inputs for one smoothness parameter. 

Applying more inputs does not improve the results. The GRNN is most 
effective when only one additional input is incorporated to log R and log E. 
In particular, combined information about the epicenters and directions did 
not improve the GMPE. It can be concluded that either focal directions in 
one place do not have any influence on the ground motion, or that this model 
of GRNN does not work properly with this combination of input variables. 
This could be overcome by using the input-dependent smoothing parameter, 
�, which would further complicate the training of the GRNN, or by searching 
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for a better metric D to calculate a distance between samples of GRNN in-
puts. 

6. CONCLUSIONS 
Only one method of nonlinear estimation of GMPE by artificial neural net-
works was tested – the GRNN. Nonetheless, this approach proved that 
nonlinear regression modelled by artificial neural networks improves the 
GMPE. 

The abilities of the GRNN were first analysed through learning, by em-
ploying a classic selection of the smoothness parameter using the holdout 
and bootstrap methods. The bootstrap tests showed that the results obtained 
from the classic selection using the holdout method are too optimistic, and 
the generalisation is in some cases not rewarding. The bootstrap method 
showed that some of the GRNN models significantly improved the GMPE, 
whereas others do not. This was not dependent on the value of the coeffi-
cient of determination. The bootstrap method has proved successful for veri-
fying the GMPE model for some input sets, and for some of the GRNN 
models.  

Various input variables for the GRNN were tested. The best results were 
obtained when one of the inputs was the location of the epicenter. The 
GMPE was also improved by applying to the GRNN inputs only the loga-
rithms of distance and energy, which are commonly used in LR. A small but 
significant improvement in the GMPE was achieved when the station loca-
tion was applied; the result was comparable to the GMPE calculated using 
the LR method with amplification factors. No significant improvement was 
achieved when the direction towards the earthquake source was taken as the 
input for the GRNN. 

Out of all the models that were tested, the best results were obtained for 
a cascade connection of the GRNN with an LR of the logarithms of energy 
and distance, when these two values were also inputs of the GRNN. This 
model is superior to the separate GRNN, because the result is not as influ-
enced by large values of the smoothness parameter. It is also superior to the 
cascade model without log E and log R as GRNN inputs, due to the non-
linear relationship between log PHA and the logarithms of energy and dis-
tance, which can be estimated by the two former models only. 

The GRNN does not exhaust the possibilities of nonlinear methods of 
predicting ground motion. It was chosen to test whether using these kinds of 
methods is reasonable, because it is the fastest of the ANN methods, and the 
prediction is unique. Further studies are required in order to identify the most 
suitable method of estimating the GMPE in the LGCD. 
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Data and resources  
The data and ground motions used in this study were collected using a classi-
fied network of the KGHM Polska Mied� S.A, and cannot be released to the 
public. 

Our calculations and figures were made using the Matlab program.  
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