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A b s t r a c t  

An integrated Visual Basic Application interface is described that 
allows for sensitivity analysis, calibration and routing of hydraulic-
hydrological models. The routine consists in the combination of three 
freeware tools performing hydrological modelling, hydraulic modelling 
and calibration. With such an approach, calibration is made possible even 
if information about sewers geometrical features is incomplete. Model 
parameters involve storage coefficient, time of concentration, runoff co-
efficient, initial abstraction and Manning coefficient; literature formulas 
are considered and manipulated to obtain novel expressions and variation 
ranges. A sensitivity analysis with a local method is performed to obtain 
information about collinearity among parameters and a ranking of influ-
ence. The least important parameters are given a fixed value, and for the 
remaining ones calibration is performed by means of a genetic algorithm 
implemented in GANetXL. Single-event calibration is performed with a 
selection of six rainfall events, which are chosen so to avoid non-uniform 
rainfall distribution; results are then successfully validated with a se-
quence of four events. 

Key words: calibration, genetic algorithm, identification analysis, rain-
fall-runoff model, sensitivity analysis. 
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1. INTRODUCTION 
Since urban areas and human activities have an impact on the natural water 
cycle, drainage systems have to deal with both wastewater and stormwater. 
Typically, the most convenient way to tackle the problem is via separated 
sewer systems, but in Europe (Butler and Davies 2004, Kleidorfer 2010) 
combined sewer systems are mainly used, where wastewater and runoff are 
collected in the same drainage network. To correctly dimension and manage 
this type of systems, engineers need reliable techniques to estimate the 
amount of collected water. This operation is usually difficult because of the 
complexity of phenomena regulating the hydrological processes and the 
transformation of rainfall into runoff. In an urban context, a significant com-
plication in the development of management strategies is given by a constant 
increase in impervious areas (Barco et al. 2008), which implies a consequent 
increase in runoff volumes. 

Nowadays, various models are available to manage urban runoff, inclu-
ding HEC-1 (US Army Corps of Engineers 1985), TR-20 and TR-55 
(McCuen 1982), MOUSE (Danish Hydraulic Institute 2002), Hydroworks 
(H.R. Wallingford Ltd. 1997) and StormWater Management Model 
(SWMM) (Gironàs et al. 2010). However, these models usually require de-
tailed information about structure and geometrical properties of a drainage 
network; such information is often unavailable or incomplete for widespread 
networks that have undergone significant changes in centuries. To enhance 
the quality of data, remote sensing techniques are often implemented in rain-
fall-runoff models to obtain realistic prediction of hydrological parameters 
such as rainfall spatial distribution, infiltration features, streamflow lines and 
land cover (Schreider et al. 2001, Aubert et al. 2003, Brocca et al. 2010, 
Stisen and Sandholt 2010). 

In this paper, a method is presented that overcomes such a problem by 
adopting two different modelling levels, the first involving hydrological pro-
cesses of the subcatchments, the second involving hydraulic features of the 
main channel. With such an approach, geometrical information is needed for 
the main sewer, whereas only basic information is needed for the 
subcatchments. Accordingly, the proposed method was built by combining 
together different consolidated, freeware software modules. 

In the present paper, the method was tested on the Arena S. Antonio 
(ASA) urban basin, which is one of the largest drainage basins of Naples, It-
aly. The terminal section of ASA basin consists in a treatment plant that has 
suffered surcharge problems in the last years, because of a combination of 
both an uncontrolled urbanization of the area and an increasing number of 
high intensity rainfall events due to climate change. The plant represents the 
closing section of minor drainage basins as well, so that each malfunctioning 
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of the plant reflects in a malfunctioning of the whole system. Thus, it is of 
the utmost importance to build a modelling instrument that is able to perform 
a realistic prevision of ASA collected runoff, in order to prevent surcharge in 
the treatment plant and to possibly schedule retrofitting operations within the 
sewer system. 

2. MODEL  DESCRIPTION 
ASA is one of the most complex drainage basins within Naples drainage sys-
tem, since it is made up of both urbanized and rural subcatchments, the for-
mer ones having a sewer system which is not known in detail, the latter ones 
being characterized by a natural, surface drainage network. The lack of de-
tailed information about geometrical features of the sewer system is so se-
vere that the application of consolidated hydraulic models is not 
straightforward. Instead, a hydrological modelling is needed for the sub-
catchments; however, the main sewer is suitable for a hydraulic modelling. 

Provided the impossibility of applying the aforementioned hydraulic 
modelling tools, a Visual Basic Application interface was built that com-
bines different tools. Specifically, three modules can be recognized: 
� Hydrological module. For each subcatchment a rainfall-runoff transfor-

mation is performed with Clark’s method, and each output hydrograph is 
applied on the main sewer as a local input. Model parameters are runoff 
coefficient, initial abstraction, storage coefficient and time of concentra-
tion. 

� Hydraulic module. Once the subcatchments contributions have been ap-
plied along the main channel, storm water is routed within EPA-SWMM 
5.0. SWMM is a dynamic rainfall-runoff simulation model used for sin-
gle-event or continuous simulation of runoff quantity and quality for pri-
marily urban areas, with many applications in non-urban areas as well. 
SWMM conceptualises a drainage system as a series of water and mate-
rial flows among several environmental compartments (Rossman 2004). 
In the present paper, only the Transport Compartment was used. Thus, 
this model only takes Manning coefficient into account as a model pa-
rameter. 

� Optimization algorithm. Calibration of the hydrologic-hydraulic model 
was performed using a Genetic Algorithm which solved an optimization 
procedure relating observed rainfall to measured runoff, basing on differ-
ent rainfall events. Genetic Algorithm is a global search technique, mod-
elled after the process of natural selection, which can be used to find 
near-optimal solutions to highly non-linear optimization problems (Cheng 
et al. 2006). In the present paper, the Genetic Algorithm implemented in 
GANetXL (Optimization Add-in for Microsoft Excel) (Savì� et al. 2011) 
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was adopted. GANetXL has already been used for many different situa-
tions in water supply networks, such as for the optimization of water sup-
ply reservoirs, of pump energy costs and turbidity at customer nodes 
(Bagirov et al. 2013); in these applications, the use of GANetXL is com-
bined with EPANET (Savì� et al. 2011). Single event calibration was pre-
ferred to continuous calibration because it gives an accurate reproduction 
of peak and hydrograph shape, whereas continuous calibration gives a 
better estimate of runoff volume (Tan et al. 2008). However, geometrical 
watershed features were considered as fixed, and not adjusted with cali-
bration like other model parameters, which is a common technique when 
performing single-event calibration: when using SWMM, in particular, 
percentage impervious areas and subcatchment slopes are usually consid-
ered as calibration parameters (Mancipe-Munoz et al. 2011). 
Available planimetric data about ASA sewer network and the related 

drainage areas were processed by using ArcGIS 9.3 in order to extract in-
formation about channel lengths, slopes and impervious areas; the Hydrolo-
gy tool was used to derive the hydrological features of the only subcatch-
ment that was classified as natural. GIS technology is a standard tool when 
building a model, since it can be, for instance, applied to obtain a spatial dis-
tribution of rainfall (Barco et al. 2008); it can also be directly interfaced with 
different predictive water resources models (Martin et al. 2005) and specifi-
cally with SWMM (Barco et al. 2008). 

Rainfall is provided by three rain gauges. As concerns calibration, it was 
specifically decided to only select uniformly distributed rainfall events; this 
was done because rainfall spatial variability is recognized as one of the main 
sources of error when calibrating rainfall-runoff models (Niemczynowicz 
1987). Runoff data is available at the closing section thanks to a level gauge.  

3. MODEL  INPUT 
3.1 Study area 
Arena S. Antonio is the largest drainage basin in Western Naples, having a 
total area of 1760 ha and a length of the main channel equal to 8.5 km 
(Fig. 1). Originally it was a stormwater sewer system, but after a strong ur-
banization of the area it now collects wastewater as well; the catchment is 
mainly urbanized, with a total percentage of impervious area equal to 62%. 
The sewer starts from 159 m a.s.l., whereas its terminal section, located at 
Coroglio treatment plant, has an average altitude of 1 m a.s.l. Different 
cross-section configurations occur along the main sewer, with a terminal rec-
tangular cross-section with a width of 9 m and a height of 3.7 m.  

With the assistance of ArcGIS it was possible to derive geometric and 
morphological features of every subcatchment and the hydraulic profile of 
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Fig. 1. Study area: main sewer, subcatchments, and rain gauges. 

the sewer with its main inlets. The whole basin could be divided into 20 sub-
catchments, and, for each of them, percentage of urbanized area, runoff coef-
ficient, length and average slope of the main channels were computed. 
Impervious areas were estimated by means of the analysis of both Corine 
Land Cover Map (Bossard et al. 2000) and aerial photographs commissioned 
by Naples City Council.  

As can be seen in Table 1, the largest subcatchments are Pianura (id 19) 
and Verdolino (id 20) which alone account for about 50% of the whole ASA 
basin. All subcatchments have quite a high imperviousness rate, except for 
Verdolino, whose percentage of imperviousness is the smallest. Only for this 
subcatchment, the length of the main channel was estimated by using the 
Hydrology Tool available for ArcGIS 9.3. Slope information was extracted 
by means of a Digital Terrain Model available for the Campania Region. 
Average slopes range from a minimum of 0.70% for Via Cilea (id 16) to a 
maximum of 22.29% for Arena S. Antonio 10 (id 9). 

The input file (file extension “.inp”) for SWMM describing the basin 
main channel was built as a sequence of conduits, homogeneous in terms of 
geometric and hydraulic properties, and junctions. The main channel was 
sectioned into many portions whenever changes in slope, cross section, 
roughness or singularities such as drops or convergences occurred. Inputs for 
SWMM are the coordinates and invert elevations for each junction and 
cross-section shape and dimensions, length, Manning coefficient, starting 
and ending junction and outlet offset, if needed, for each conduit.  The final 



G. DEL GIUDICE  and  R. PADULANO 
 

1760

Table 1  
Characteristics of subcatchments 

id Subcatchment name A 
[ha] 

A 
[% 

ASA] 

AU 
[% sub-
catch.]

I 
[%] 

K 
[min] 

PU
[-]U

1 Via Pigna 62.5 3.6 52 5.30 10.1 0.564 
2 Via Epomeo 143.1 8.1 60 1.05 22.8 0.620 
3 Arena S. Antonio 3 26.6 1.5 100 6.84 5.2 0.900 
4 Via Pignatiello 105.1 6.0 66 3.05 13.1 0.662 
5 Fosso S. Stefano 18.2 1.0 81 7.39 4.9 0.767 
6 Arena S. Antonio 7 22.0 1.3 84 6.20 5.5 0.789 
7 Via Caravaggio 29.2 1.7 100 7.63 5.1 0.900 
8 Via Diocleziano 114.4 6.5 100 1.29 15.5 0.900 
9 Arena S. Antonio 10 8.3 0.5 34 22.29 3.7 0.439 

10 Via S. Giacomo dei Capri 9.0 0.5 100 8.82 3.3 0.900 
11 Via Jannelli 36.7 2.1 68 5.44 7.5 0.676 
12 Arena S. Antonio13 62.8 3.6 69 4.64 9.4 0.680 
13 Arena S. Antonio15 85.1 4.8 87 6.98 7.9 0.808 
14 Via Camaldolilli 49.7 2.8 46 5.63 9.5 0.676 
15 Viale Traiano 81.2 4.6 68 6.96 4.9 0.900 
16 Via Cilea 22.7 1.3 100 0.70 14.3 0.900 
17 Scaricatore di Via Cilea 39.9 2.3 100 7.76 4.1 0.900 
18 Via Mario 14.3 0.8 100 3.12 24.2 0.606 
19 Pianura 668.6 38.0 58 11.41 7.4 0.522 
20 Verdolino 159.7 9.1 4 12.46 27.0 0.229 

 
model of the main channel had 149 conduits and 150 junctions (free outfall 
included). 

As concerns subcatchments, the lack of detailed information made it im-
possible to reproduce their sewer network in SWMM; as a consequence, a 
rainfall-runoff model was applied for each of them to obtain hydrographs. 
Each hydrograph was then treated as a lateral inflow for the main channel 
and placed along it at the closing section of each subcatchment. The chosen 
rainfall-runoff model was the Clark’s model (Clark 1945), which interprets 
the hydrologic response as a combination of two separate functions, transla-
tion and attenuation, reproduced by a linear channel and a single reservoir 
respectively. A convolution was performed between available excess rainfall 
data and the Clark Instantaneous Unit Hydrograph (CIUH) shown in Eq. 1, 
derived from the general expression under the simplifying assumption of a 
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linear time-area relation, for each subcatchment i (with i ranging between 1 
and 20): 
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The parameters for Clark’s model are, for each subcatchment i, the storage 
coefficient Ki and the concentration time tci, both in [h]; more specifically, 
Clark’s tc is the travel time required by the drop of rainfall excess at the hy-
draulically most remote point of the catchment to reach the channel network, 
as opposed to the canonical meaning of travel time to the basin outlet (Straub 
et al. 2000). 

In spite of the availability of other hydrological models, the CIUH was 
adopted since it is a very effective tool for simulating the rainfall-runoff 
transformation, especially in catchments having unusual shapes with large 
length to width ratios and complex geomorphology (Sabol 1988). It is a 
standard simulating tool implemented in the HEC-1 (U.S. Army Corps of 
Engineers 1985) computer program for performing routine hydrologic stud-
ies; as part of the update from HEC-1 to HEC-HMS, a modified Clark meth-
od was created which accounts for spatial variations in rainfall and runoff on 
the watershed. In the present paper, however, the traditional lumped version 
of the model was adopted. 

Many methods exist that enable the estimation of the model parameters 
K and tc (Jawed 1973, Sabol 1988, Melching and Marquardt 1997, Straub et 
al. 2000) basing on the analysis of the hydrograph shape, or on regional 
analyses involving geomorphological characteristics of catchments; given 
the complexity of the rainfall-runoff transformation processes and the sub-
sequent difficulty of reproducing them by means of a simple model, in the 
present paper K and tc will be both considered as calibration parameters. 

The storage coefficient K in Clark’s model accounts for the time delay 
between the hyetograph and the hydrograph generated by the same excess 
rainfall. If the single linear reservoir method is used, K is equal to the time 
lag, which is the distance between the centroids of the two diagrams, meas-
ured on the time axis. Many empirical equations have been proposed that re-
late K to different watershed characteristics; according to a notation by 
Desbordes (1975) one can distinguish between stationary formulas, just ac-
counting for geomorphological features such as watershed area, channel 
length and mean slope, imperviousness percentage (Schaake et al. 1967, Rao 
et al. 1972, Sarma et al. 1973, Desbordes 1974, 1975; Rao and Delleur 1974, 
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McEnroe and Zhao 1999, Inman 2000) and non-stationary formulas (Rao et 
al. 1972, Sarma et al. 1973, Rao and Delleur 1974, Desbordes 1975), also 
accounting for storm event features, such as duration and rainfall depth. A 
general relation representing such expressions, for each subcatchment i, is 
given by Eqs. 2 (stationary formula) and 3 (non-stationary formula): 

 i i i i iK A I IMP L: * 8 ��� � � � �  (2) 

 i i i i i i iK A I IMP L d H: * 8 � � I�� � � � � � �  (3) 

Ki being the time lag of the subcatchment [min], Ai the subcatchment extent 
[ha], Li the main channel length [m], Ii its mean slope [%], IMPi the ratio of 
impervious to total area of the subcatchment, di the duration of the storm 
event on the subcatchment [min], and Hi the excess rainfall depth [mm]. Lit-
erature values suggest that stationary formulas accounting for both A and L 
are overparameterized, as only one variable is significant whereas the other 
seems marginal, and the sum of their exponents remains quite similar for 
each model; this could be due to the fact that watershed area and main chan-
nel length are closely related (Rao and Delleur 1974). In the following sec-
tions it will be considered that  �U = 0. Besides, the influence of slope is 
minimal in non-stationary formulas. 

As concerns time of concentration, the following formula was consid-
ered: 

 i
ci

Kt
c

�  (4) 

which corresponds to the SCS formula if  c = 0.6  (McCuen 1982). 

3.2 Rainfall data 
Rainfall data were provided by CEMPID (CEntro funzionale per la previ-
sione meteorologica e il Monitoraggio meteo.Pluvio-IDrometrico) (Centre 
for Weather Forecast and Rainfall-Runoff Monitoring); rainfall depths were 
collected via three weather stations which were the closest to the investi-
gated area with a time pace of 10 min.  

To obtain excess rainfall from total rainfall, initial abstraction I0 [mm] 
was subtracted from data and a runoff coefficient formula was conceived 
basing on the Wisner and P’ng’s formula: 

 nui ui
i

i

a A b A
A

P
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�  (5) 
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with a and b being dimensionless calibration parameters for the runoff coef-
ficient, as well as I0, which was evaluated with reference to Lim et al. 
(2006), Mannina et al. (2006), Thorndahl et al. (2006, 2008), and Freni et al. 
(2008). Equation 5 coincides with Wisner and P’ng formula (Wisner and 
P’ng 1983) when  a = 0.2  and  b = 0.9; also, in Eq. 5 Ai is the total area of 
the subcatchment, Aui is the urbanized area and Anui is the non-urbanized 
area. 

Basing on rainfall data recorded in 2012, ten rain events were selected 
that were registered by all three available rain gauges with similar values. 
Random differences occurring among rain gauges were neglected by adopt-
ing an average rainfall. Then, six of the ten events were sequenced in a 
unique, artificial event (Calibration Event, CE) with the rain events spaced 
one hour apart, which is the estimated drain time of the system. The remain-
ing four events were similarly grouped in a Validation Event (VE). 

3.3 Runoff data 
Runoff data are expressed in terms of water depth in the channel cross-
section; data were recorded by means of an ultrasound level gauge at the 
terminal section of the sewer, 80 m before the pre-treatment plant in Coro-
glio. The time step of the recording is 90 s. As SWMM only deals with 
stormflow, for each month an average daily base flow was extracted by an 
STL (Seasonal Trend decomposition based on Loess) analysis of runoff data 
in dry periods, and removed from data (Cleveland et al. 1990).  

4. HYDRAULIC-HYDROLOGICAL  MODEL 
Basing on the above-mentioned data, a VBA routine was built that can per-
form both a simple runoff simulation for fixed parameter values and a full 
calibration, accessing SWMM for runoff calculations and GanetXL for pa-
rameters tuning. An ExCel interface allows for setting computation features, 
such as: initial values and variation range for hydraulic and hydrological pa-
rameters, rainfall input data, measured runoff. In the same sheet, computed 
runoff values (in terms of both water depth and discharge) are written at the 
end of the routine, and, when measured runoff is available, efficiency indices 
are computed. Finally, GANetXL settings sheet was made visible, so that 
users can define chromosomes cell range and the objective function that 
must be minimized, as well as other settings for the genetic algorithm.  

The model interface provides four possible efficiency indices in accor-
dance with ASCE (1993): two of them are continuous modelling-oriented 
(the deviation of runoff volumes Dv and the Nash-Sutcliffe coefficient NSE), 
whereas the remaining ones are single event-oriented (the percent error in 
peak PEP and the residuals sum of squares G) (Nash and Sutcliffe 1970, 
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Green and Stephenson 1986, Martinec and Rango 1989). However, in the 
present paper computations were performed by minimizing only one of the 
proposed indices, namely the Nash–Sutcliffe coefficient NSE, which was 
considered as the objective function: 
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where Qi is the observed discharge at time ti, Q’i is the simulated discharge 
at the same time, Q is the average of all Qi values, and n is the number of 
data. The Nash–Sutcliffe coefficient can vary between –� and 1, which 
represents the perfect fit. NSE can result in a negative value, which is mean-
ingless in terms of data interpretation;  NSE = 0  implies the model gives no 
better prediction of runoff if compared to the average of observed data.  

Although minimization was performed with respect to NSE, an in-depth 
look at the values of the other efficiency indices should be given. Indeed, a 
lower value of NSE does not necessarily imply poor results (Mancipe-Munoz 
et al. 2014), if other goodness-of-fit measures are satisfied; for example, 
PEP is more representative for extreme flood prevision, whereas Dv is used 
in runoff volume estimation models. 

4.1 Simulation 
If a simple simulation is launched, the routine acquires parameters initial 
values and input rainfall data for the different rainfall stations; initial abstrac-
tion is subtracted from rainfall data, average excess rainfall is computed and 
convolutions for each subcatchment are performed. Then, the routine com-
pletes the input file for SWMM, which was previously prepared with geo-
metrical information representing ASA main channel, with information 
about subcatchments hydrographs. SWMM uses this input file to perform 
flow routing by means of the dynamic library swmm5.dll and prints the re-
sulting water depths within the ExCel interface, so that a graphical represen-
tation of the output hydrograph is automatically generated. If measured 
water depths are available for the considered rainfall event, graphical com-
parison between measured and computed values is done and the proposed ef-
ficiency indices are computed for goodness-of-fit evaluation. 
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4.2 Sensitivity analysis 
One of the main problems when calibrating a model, especially with large 
sets of parameters, is that each parameter affects the output with a different 
weight, resulting in a different uncertainty that can be associated to each of 
them (Beven and Binley 1992). In other words, if the influence of a parame-
ter on results is high, the reliability of its estimate will also be high, and vice 
versa. For parameters whose importance in the model is little, it can be con-
venient to consider them as constants, so that a new calibration can be per-
formed with a smaller number of parameters, and their estimate will be even 
more reliable (Confalonieri et al. 2010). Procedures aiming at identifying pa-
rameters influence on the model output are called sensitivity analyses (SA), 
and different techniques are available in literature, differentiated in global 
methods and local methods (Saltelli et al. 2008). Global methods evaluate 
the effect of a factor while all other parameters are varied as well, and thus 
they account for interactions between variables and do not depend on the 
choice of the initial point (Kucherenko et al. 2009). A global method which 
is very frequent in literature is the GLUE technique, largely employed for 
uncertainty estimation and sensitivity analysis within environmental simula-
tion models, thanks to its simplicity and applicability to nonlinear models; 
however, literature also provides some critical points of view about this 
popular methodology (Kuczera and Parent 1998, Mantovan and Todini 2006, 
Freni et al. 2008, 2009; Stedinger et al. 2008). Local methods evaluate the 
derivative of the model response with respect to the variation of input pa-
rameters, which are changed one at the time, by means of a model lineariza-
tion. Thus, they do not directly account for interactions among variables and 
results are related to the initial set of parameter values. However, local 
methods are often used to solve identification problems in rainfall-runoff 
models (Mancipe-Munoz et al. 2014) mostly because the required computa-
tional effort is minimum if compared to global techniques, which are often 
based on Monte-Carlo simulations, so that local methods can be easily inte-
grated in modelling software to provide a preliminary identification analysis 
(Kleidorfer 2010). Global methods can be adopted to enhance identification 
results for models with a large number of parameters, or when results of lo-
cal methods need in-depth analysis.  

In the present paper a local sensitivity analysis technique by Brun et al. 
(2001) was integrated in the VBA interface as a preliminary operation to 
model calibration. This methodology provides for a procedure that enables 
ranking of the most sensitive parameters in a model, along with an identifi-
cation analysis of the whole parameter set.  

Let a runoff recording be considered with a series of registered runoff 
depths Ii, with  i = 1...n,  with the corresponding rainfall depth also known. 
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If the proposed rainfall-runoff transformation model is applied with a pa-
rameter set  G0 = [G10, G20,...,Gm0], an output  I0 = I(G0) = [I10, I20,...,In0]  is 
obtained. If a different set G is applied in the model, a different output I(G0) 
will be gained; according to Brun et al. (2001), the output I(G0) can be de-
scribed by a linearization operation 

 � 	 � 	 � 	 � 	 � 	 � 	
0

0 0 0 0
�

5
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5
G G

I G
I G I G G G I G G G

G
V  (7) 

where V is the n×m derivative matrix evaluated at 0� . In other words, for a 
parameter Gj with initial value Gj0, the output Iij at time i is the following 
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If derivatives are expressed as finite differences, the generic derivative ele-
ment vij of matrix V can be expressed as follows  
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Once matrix V is compiled, in order to preserve the dimensionless nature of 
the sensitivity function, it is recommended considering a dimensionless sen-
sitivity matrix S with a generic element sij such that 

 j
ij ijs v

SC
G


� �  (10) 

where vij is the generic element in V, ��j is the chosen variation given to pa-
rameter j, and SC is a scale factor accounting for possible different scales of 
different outputs. In the present paper, the scale factor is chosen as the mean 
value of the output I0 
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� � �  (11) 

Finally, the generic element of sensitivity matrix can be computed as 
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Once the S matrix is known, some indices can be computed for each parame-
ter: 
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Ranking the m parameters by decreasing 8j
msqr provides a parameters impor-

tance classification that allows the identification of the most sensitive pa-
rameters. Nevertheless, such a subset does not necessarily suffice for a 
calibration procedure, since it is possible that a linear or near-linear depend-
ence makes them non-identifiable even if they individually have a deep in-
fluence on the model output. To assess the degree of linear dependence 
among the parameters, a normalized sensitivity matrix S~  must be evaluated, 
whose generic element ijs~  can be computed as the ratio of the corresponding 
sij to the norm of the corresponding sensitivity function: 
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ij n

ij
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�
�  (14) 

Once the normalized sensitivity matrix S~ has been evaluated, the collinearity 
index can be computed for every subset of p parameters 

 
pp

pg
7::

1
ˆ~min

1

1

��
� S

 (15) 

where :̂  is the coefficient vector of a possible linear regression and pS~  is 

the extraction of S~  referring to the p parameters of interest. The denomina-
tor in the second member represents the minimum norm of the matrix :̂~

pS  

under the condition that  ˆ 1: � , 7p is the minimum eigenvalue of the matrix 

p
T
p SS ~~  (with T

pS~  being the transposed matrix of pS~ ) and p is the amplitude 
of all the possible combinations that can be found in the subset of m parame-
ters, with  1 < p � m. A high value of the collinearity index gp (usually 
greater than 10-15) means that the subset of those p parameters is poorly 
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identifiable (Reichert and Vanrolleghem 2001, Freni et al. 2009); a collin-
earity index equal to 1 means that the variables are mutually independent. 

Sensitivity analysis was integrated in the VBA interface; the routine pro-
vides computation of matrices V and S, of indices in Eq. 13, of collinearity 
indices for all the possible combinations of parameters subsets and a repre-
sentation of pairwise scatterplots. Also, a list of parameters according to 
their 8j

msqr values is printed. 

4.3 Calibration 
If the calibration procedure is launched, after the last step described in the 
Simulation section the routine access the optimization algorithm GANetXL, 
which chooses a different set of parameter values and repeats simulation, for 
a fixed number of times. Then, the algorithm selects the parameter set which 
minimizes the chosen objective function and the routine prints the related re-
sults within the interface. Table 2 shows GANetXL settings used in this pa-
per. 

Table 2  
GANetXL settings 

Function call Value 
Problem type Single-objective 
Population 50 
Algorithm Generational-elitist 
Selector Tournament 
Crossover Simple one point 
Crossover rate 0.95 
Mutator Simple by gene 
Mutation rate 0.05 
Use adaptive mutation no 
Replacer First weaker 
Use simulation yes 
Macro name SWMM Interface.evaluation 

 

5. DISCUSSION  OF  RESULTS 
Sensitivity analysis was performed by adopting the set of starting values �0 
chosen by looking at the considered literature formulas (Table 3), and, as pa-
rameter variation ��, the fourth part of each variation range (Brun et al. 
2001). The resulting ranking (Table 4) shows that the least influent parame- 
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Table 3  
Starting values and variation ranges  

for calibration parameters 

 Min Max Starting 
value 

a 0.10 0.30 0.20 
b 0.30 0.90 0.60 
c 0.45 0.75 0.60 
�U 0.49 7.16 3.83 
:U 0.30 0.54 0.42 
*U –0.51 –0.08 –0.29 
8U –0.45 –0.08 –0.26 
I0 0.10 1.00 0.50 
n 0.01 0.03 0.02 

 

Table 4  
Results of sensitivity analysis 

  8j
msqr 8 jmabs 8 j

mean 8 j
min 8 j

max 

�U 0.494 0.189 0.022 –3.963 0.671 
8U 0.423 0.150 0.012 –3.509 0.575 
:U 0.369 0.139 0.011 –3.384 0.494 
n 0.344 0.205 0.160 –2.440 0.916 
*U 0.340 0.125 0.017 –3.172 0.439 
b 0.273 0.094 0.094 0.000 2.214 
I0 0.150 0.089 –0.089 –1.258 0.000 
c 0.076 0.020 0.000 –0.088 1.015 
a 0.054 0.025 0.025 0.000 0.545 

 
ters are a (Eq. 5) and c (Eq. 4), whose 8j

msqr values are way lower than the 
other parameters.  

Figure 2 shows pairwise scatterplots for the 16 pairs of variables with the 
highest collinearity index g2. It is evident from Fig. 2 that some pairs are 
linearly related, such as a and b in Eq. 5 (this is consistent with  a + b = 1.1  
in Wisner and P’ng formula) and : and 8 in Eq. 2. However, the existence of 
deep linear dependences among some of the calibration parameters does not 
necessarily imply that such parameters cannot be identified: to asses this, 
considerations stemming from pairwise scatterplots must be enhanced by an 
in-depth look at the global identification conditions.  
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Fig. 2. Scatterplot of sij for the 16 pairs of parameters with the highest collinearity 
index g2 (from top-left to down-right corner). 

Figure 3 shows collinearity indices gp for all the 502 possible combina-
tions of the nine model parameters, with  p = 2, 3,..., 9.  If a threshold of 10 
is chosen, all the subsets are identifiable; however, because of the small 
number of parameters in the proposed model, a threshold of 5 is applied 
(Mandenius and Titchener-Hooker 2013). Consequently, all the subsets with 
p � 4  are clearly identifiable since their gp is lower or equal to the threshold 
value; the complete subset (p = 9) cannot be identified, since g9 is higher 
than the threshold value. It is expected that a larger calibration set (right side 
of Fig. 3) provides a more accurate reproduction of data, namely of runoff 
recording at the basin closing section for a given rainfall event; at the oppo-  
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Fig. 3. Identifiability of possible parameter subsets. 

site, if a small parameter set is considered (left side of Fig. 3), calibration ef-
ficiency is expected to be poor. Under these considerations, for the proposed 
model the subset was chosen with the largest possible dimension p, given 
that gp is lower than the fixed threshold. Since the subset with  p = 9  proved 
to be unidentifiable, for  p = 8  the only identifiable subset is the one neglect-
ing a (grey mark in Fig. 3). This is consistent with the results of both sensi-
tivity analysis (Table 4) and pairwise scatterplots (Fig. 2), since a is the 
parameter with the smallest influence on the model, and it is also linearly 
correlated with other parameters (b, I0 and c, for instance) invalidating the 
identification of the whole set. Accordingly, a was considered as the only 
unidentifiable parameter in the model; in other words, the model is over-
parametrized only by means of a. Consequently, the only calibration pa-
rameters are: �, :, *, 8 in the storage coefficient formula (Eq. 2), c in the 
time of concentration formula (Eq. 4), b in the runoff coefficient formula 
(Eq. 7), initial abstraction I0 and Manning coefficient n. 

With a constant value of a, equal to its literature value 0.2, calibration 
was performed for each of the ten selected rainfall events, with different re- 
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Fig. 4. Variation range (black lines), initial value (dotted line), and CE results (grey 
line) for calibration parameters (parameter values are adimensionalised by means of 
initial value). 

Table 5  
Parameter values after calibration of CE 

Runoff coefficient b 0.38 
Time of concentration c 0.67 
Storage coefficient �U 5.32 
Storage coefficient :U 0.47 
Storage coefficient *U –0.26 
Storage coefficient 8U –0.25 
Initial abstraction I0 0.12 
Manning coefficient n 0.029 

U
sults of parameter values; this was done to investigate about the variability 
of each parameter with respect to rainfall magnitude and characteristics. Fig-
ure 4 shows, for each model parameter, the different results adimensional-
ized by means of the corresponding initial value. It can be noted that, for 
most of the parameters, values span across the entire proposed variation 
range, whereas for some of them the range proves to be more extended than 
needed (: and 8). Also, : and c have the smallest variation bands. For none 
of the parameters the proposed range seems to be too narrow. 

Once these evaluations were made, Calibration Event was used to per-
form a calibration to obtain definitive parameter values (Table 5). Calibrated 
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Fig. 5. Observed data and calibration results for: CE (a) and VE (b). 

parameters are shown in Fig. 4 as grey lines. It can be noted that CE parame-
ter values are roughly similar to the average of single-event values; they are 
also very close to the initial value line for b, c, �, and * (where single-event 
parameters spread across the variation range) whereas a bias exists for n, I0, 
:V and 8 (where single-event parameters concentrate within a smaller range 
than the proposed one). 

CE parameters were used to simulate the Validation Event, to verify the 
model reliability. Figure 5 shows the graphical output of the model for both 
CE and VE; it can be noted that flow reproduction is successful in both 
cases, as also shown by the efficiency indices values in Table 6. It must be 
noted, in particular, that runoff volumes are correctly reproduced even 
though a single-event calibration was performed with fixed values of water 
sheds geometrical features. Also, the highly satisfying goodness of fit for 
both CE and VE implies that the model results do not depend on the specific 
rainfall characteristics, supporting the choice of a stationary expression for 
the storage coefficient, and that the assumption of rainfall spatial uniformity 
for the selected events is realistic.  
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Table 6  
Results of calibration and validation 

 G [m2] PEP [%] Dv [%] NSE [-] 
CE 20.97 –1.34 –4.34 0.90 
VE 30.14 0.23 5.70 0.78 

 

6. CONCLUSIONS 
The proposed model aims at overcoming problems stemming from a general 
lack of details about the geometrical configuration of sewer subsystems, 
which hinders a straightforward application of traditional hydraulic models. 
On this basis, an integrated interface is described that combines different 
modules, each using a consolidated, freeware tool: a Visual Basic Applica-
tion module that solves hydrologic convolution, EPA-SWMM for hydraulic 
computations along the main sewer and GANetXL as optimization algo-
rithm. Readers interested in the interface can contact the Authors via e-mail. 

Parameter tuning involves coefficient b in the runoff coefficient formula, 
initial abstraction I0, coefficients �, :, *, 8 in the storage coefficient formula 
(hydrologic module) and Manning coefficient n (hydraulic module). Initial 
values and variation range for parameters were determined by means of an 
accurate literature analysis. Geometrical properties of subcatchments are de-
rived with GIS and aereal photographs and they are considered as fixed data. 

Single-event calibration is performed and validated with a selection of 
rainfall events that proved to be uniform within the basin, to avoid problems 
coming from spatial variation of rain depth. The chosen objective function is 
the Nash–Sutcliffe efficiency, but peak and volume errors and square sum of 
errors are computed as well to have an in-depth look at the efficacy of cali-
bration. Results of calibration for ASA basin are highly satisfactory in terms 
of peaks and volumes reproduction and overall shape of the hydrograph, 
both for the calibration and for the validation event.  

R e f e r e n c e s  

ASCE (1993), Criteria for evaluation of watershed models, J. Irrig. Drain. Eng. 
ASCE 119, 3, 429-442. 

Aubert, D., C. Loumagne, and L. Oudin (2003), Sequential assimilation of soil mois-
ture and streamflow data in a conceptual rainfall-runoff model, J. Hydrol. 
280, 1-4, 145-161, DOI: 10.1016/S0022-1694(03)00229-4. 



COMBINED  USE  OF  EPA-SWMM  AND  GENETIC  ALGORITHM 
 

1775 

Bagirov, A.M., A.F. Barton, H. Mala-Jetmarova, A.Al Nuimat, S.T. Ahmed, 
N. Sultanova, and J. Yearwood (2013), An algorithm for minimization of 
pumping costs in water distribution systems using a novel approach to pump 
scheduling, Math. Comput. Model. 57, 3-4, 873-886, DOI: 10.1016/ 
j.mcm.2012.09.015. 

Barco, J., K. Wong, and M. Strenstrom (2008), Automatic calibration of the U.S. 
EPA SWMM model for a large urban catchment, J. Hydraul. Eng. 134, 4, 
466-474, DOI: 10.1061/(ASCE)0733-9429(2008)134:4(466). 

Beven, K., and A. Binley (1992), The future of distributed models: model calibration 
and uncertainty prediction, Hydrol. Process. 6, 3, 279-298, DOI: 
10.1002/hyp.3360060305. 

Bossard, M., J. Feranec, and J. Othael (2000), CORINE Land Cover technical guide 
– Addendum 2000, Technical Report N. 40, European Environment Agency, 
Copenaghen, Denmark. 

Brocca, L., F. Melone, T. Moramarco, W. Wagner, V. Naeimi, Z. Bartalis, and 
S. Hasenauer (2010), Improving runoff prediction through the assimilation of 
the ASCAT soil moisture product, Hydrol. Earth Syst. Sci. 14, 10, 1881-
1893, DOI: 10.5194/hess-14-1881-2010. 

Brun, R., P. Reichert, and H.R. Künsch (2001), Practical identifiability analysis of 
large environmental simulation models, Water Resour. Res. 37, 4, 1015-1030, 
DOI: 10.1029/2000WR900350. 

Butler, D., and J.W. Davies (2004), Urban Drainage, 2nd ed., CRC Press. 
Cheng, C.T., M.Y. Zhao, K. W. Chau, and X.Y. Wu (2006), Using genetic algorithm 

and TOPSIS for Xinanggjiang model calibration with a single procedure, 
J. Hydrol. 316, 1-4, 129-140, DOI: 10.1016/j.jhydrol.2005.04.022. 

Clark, C.O. (1945), Storage and the unit hydropgraph, Trans. ASCE 110, 1419-1446. 
Cleveland, R., S. Cleveland, J.E. McRae, and I. Terpenning (1990), STL: A Seaso-

nal-trend decomposition procedure based on Loess, J. Official Stat. 6, 1, 3-
33.  

Confalonieri, R., G. Bellocchi, S. Bregaglio, M. Donatelli, and M. Acutis (2010), 
Comparison of sensitivity analysis techniques: a case study with the rice 
model WARM, Ecol. Modell. 221, 16, 1897-1906, DOI: 10.1016/ 
j.ecolmodel.2010.04.021. 

Danish Hydraulic Institute (2002), MOUSE Surface Runoff Models Reference Man-
ual, Horsholm, Denmark. 

Desbordes, M. (1974), Réflexions sur les méthodes de calcul des réseaux urbains 
d'assainissement pluvial. Ph.D. Thesis, University of Montpellier 2, France 
(in French). 

Desbordes, M. (1975), Un essai de modélisation des phénomènes de ruissellement 
pluvial urbain, Tecniques et Sciences Municipales 70, 3, 121-126 (in French). 



G. DEL GIUDICE  and  R. PADULANO 
 

1776

Freni, G., G. Mannina, and G. Viviani (2008), Uncertainty in urban stormwater qual-
ity modelling: the effect of acceptability threshold in GLUE methodology, 
Water Res. 42, 8-9, 2061-2072, DOI: 10.1016/j.watres.2007.12.014. 

Freni, G., G. Mannina, and G. Viviani (2009), Identifiability analysis for receiving 
water body quality modelling, Environ. Modell. Softw. 24, 1, 54-62, DOI: 
10.1016/j.envsoft.2008.04.013. 

Gironàs, J., L.A. Roesner, L.A. Rossman, and J. Davis (2010), A new applications 
manual for the Storm Water Management Model (SWMM), Environ. Modell. 
Softw. 25, 6, 813-814, DOI: 10.1016/j.envsoft.2009.11.009. 

Green, I.R.A., and D. Stephenson (1986), Criteria for comparison of single event 
models, Hydrol. Sci. J. 31, 3, 395-411, DOI: 10.1080/02626668609491056. 

H.R. Wallingford Ltd. (1997), HydroWorks On-line Manual, Wallingford, U.K. 
Inman, J. (2000), Lagtime relations for urban streams in Georgia, Report 00-4049, 

U.S. Geological Survey, Water-Resources Investigations, Atlanta, USA. 
Jawed, K. (1973), Comparison of methods of deriving unit hydrographs, M.Sc. The-

sis, Colorado State University, USA. 
Kleidorfer, M. (2010), Uncertain Calibration of Urban Drainage Models, Innsbruck 

University Press. 
Kucherenko, S., M. Rodriguez-Fernandez, C. Pantelides, and N. Shah (2009), Monte 

Carlo evaluation of derivative-based global sensitivity measures, Reliabil. 
Eng. Syst. Safety 94, 1135-1148. 

Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty 
in conceptual catchment models: the Metropolis algorythm, J. Hydrol. 211, 
1-4, 69-85, DOI: 10.1016/S0022-1694(98)00198-X. 

Lim., K.J., B.A. Engel, S. Muthukrishnan, and J. Harbor (2006), Effects of initial 
abstraction and urbanization on estimated runoff using CN technology, J. Am. 
Resour. Assoc. 42, 3, 629-643, DOI: 10.1111/j.1752-1688.2006.tb04481.x. 

Mancipe-Munoz, N.A., S.G. Buchberger, and M.T. Suidan (2011), Calibration of 
distributed rainfall-runoff model in Hamilton County, Ohio. In: On Modeling 
Urban Water Systems, CHI Press, Toronto, 177-191. 

Mancipe-Munoz, N.A., S.G. Buchberger, M.T. Suidan, and T. Lu (2014), Calibra-
tion of rainfall-runoff model in urban watersheds for stormwater management 
assessment, J. Water Resour. Plan. Manag. 140, 6, 05014001, DOI: 10.1061/ 
(ASCE)WR.1943-5452.0000382. 

Mandenius, C.F., and N.J. Titchener-Hooker (eds.) (2013), Measurement, Monitor-
ing, Modelling and Control of Bioprocesses, Springer, Berlin. 

Mannina, G., G. Freni, G. Viviani, S. Saegrov, and L.S. Hafskjold (2006), Integrated 
urban water modelling with uncertainty analysis, Water Sci. Technol. 54, 6-7, 
379-386, DOI: 10.2166/wst.2006.611. 

Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assess-
ment: incoherence of the GLUE methodology, J. Hydrol. 330, 1-2, 368-381, 
DOI: 10.1016/j.jhydrol.2006.04.046. 



COMBINED  USE  OF  EPA-SWMM  AND  GENETIC  ALGORITHM 
 

1777 

Martin, P.H., E.J. LeBoeuf, J.P. Dobbins, E.B. Daniel, and M.D. Abkwitz (2005), 
Interfacing GIS with water resource models: a state-of-the-art review, J. Am. 
Water Resour. Assoc. 41, 6, 1471-1487, DOI: 10.1111/j.1752-1688.2005. 
tb03813.x. 

Martinec, J., and A. Rango (1989), Merits of statistical criteria for the performance 
of hydrological models, Water Resour. Bull. 25, 2, 421-432. 

McCuen, R.H. (1982), A Guide to Hydrologic Analysis Using SCS Methods, Pren-
tice-Hall, Inc. 

McEnroe, B.M., and H. Zhao (1999), Lag times and peak coefficients for rural wa-
tersheds in Kansas, Report No. K-TRAN: KU-98-1, University of Kansas, 
USA. 

Melching, C.S., and J.S. Marquardt (1997), Equations for estimating synthetic unit-
hydrograph parameter values for small watersheds in Lake County, Illinois, 
USGS Open-File Report 96-474, U.S. Geological Survey. 

Nash, J.E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual 
models. Part 1 – A discussion of principles, J. Hydrol. 10, 3, 282-290, DOI: 
10.1016/0022-1694(70)90255-6. 

Niemczynowicz, J. (1987), Storm tracking using rain gauge data, J. Hydrol. 93, 1-2, 
135-152, DOI: 10.1016/0022-1694(87)90199-5. 

Rao, R.A., and J.W. Delleur (1974), Instantaneous Unit Hydrographs, peak dis-
charges and time lags in urban basins, Hydrol. Sci. J. 19, 2, 185-198, DOI: 
10.1080/02626667409493898. 

Rao, R.A., J.W. Delleur, and B.S.P. Sarma (1972), Conceptual hydrologic models 
for urbanizing basins, J. Hydraul. Div. 98, 7, 1205-1220. 

Reichert, P., and P. Vanrolleghem (2001), Identifiability and uncertainty analysis of 
the River Water Quality Model No. 1 (RWQM1), Water Sci. Technol. 43, 7, 
329-338. 

Rossman, L.A. (2004), Storm Water Management Model User’s Manual Version 
5.0, U.S. Environmental Protection Agency (EPA). 

Sabol, G.V. (1988), Clark unit hydrograph and R-parameter estimation, J. Hydraul. 
Eng. 114, 1, 103-111, DOI: 10.1061/(ASCE)0733-9429(1988)114:1(103). 

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, 
M. Saisana, and S. Tarantola (2008), Global Sensitivity Analysis. The Primer, 
John Wiley & Sons. 

Sarma, P.B.S., J.W. Delleur, and A.R. Rao (1973), Comparison of rainfall-runoff 
models for urban areas, J. Hydrol. 18, 3-4, 329-347, DOI: 10.1016/0022-
1694(73)90056-5. 

Savi�, D.A., J. Bicik, and M.S. Morley (2011), A DSS Generator for multiobjective 
optimisation of spreadsheet-based models, Environ. Modell. Softw. 26, 5, 
551-561, DOI: 10.1016/j.envsoft.2010.11.004. 

Schaake, J.C., J.C. Geyer, and J.W. Knapp (1967), Experimental evaluation of ra-
tional method, J. Hydraul. Div. 93, 6, 353-370. 



G. DEL GIUDICE  and  R. PADULANO 
 

1778

Schreider, S.Y., P.C. Young, and A.J. Jakeman (2001), An application of the 
Kalman filtering technique for streamflow forecasting in the Upper Murray 
Basin, Math. Comput. Modell. 33, 6-7, 733-743, DOI: 10.1016/S0895-
7177(00)00276-4.  

Stedinger, J.R., R.M. Vogel, S.U. Lee, and R. Batchelder (2008), Appraisal of the 
generalized likelihood uncertainty estimation (GLUE) method, Water Resour. 
Res. 44, 12, W00B06, DOI: 10.1029/2008WR006822. 

Stisen, S., and I. Sandholt (2010), Evaluation of remote-sensing-based rainfall prod-
ucts through predictive capability in hydrological runoff modelling, Hydrol. 
Process 24, 7, 879-891, DOI: 10.1002/hyp.7529. 

Straub, T.D., C.S. Melching, and K.E. Kocher (2000), Equations for estimating 
Clark unit hydrograph parameters for small rural catchments in Illinois, Re-
port 00-4184, Water-Resources Investigations, USGS. 

Tan, S.B.K., L.C.H. Chua, E.B. Shuy, E.Y. Lo, and L.M. Lim (2008), Performances 
of rainfall-runoff models calibrated over single and continuous storm flow 
events, J. Hydraul. Eng. 13, 7, 597-607, DOI: 10.1061/(ASCE)1084-
0699(2008)13:7(597). 

Thorndahl, S., C. Johansen, and K. Schaarup-Jensen (2006), Assessment of runoff 
contributing catchment areas in rainfall runoff modelling, Water Sci. Technol. 
54, 6-7, 49-56, DOI: 10.2166/wstr=.2006.621. 

Thorndahl, S., K.J. Beven, J.B. Jensen, and K. Schaarup-Jensen (2008), Event based 
uncertainty assessment in urban drainage modelling, applying the GLUE 
methodology, J. Hydrol. 357, 3-4, 421-437, DOI: 10.1016/j.jhydrol.2008.05. 
027. 

U.S. Army Corps of Engineers (1985), HEC-1 flood hydrograph package, Hydro-
logic Engineering Center, Davies, California, USA. 

Wisner, P., and J.C. P’ng (1983), IMPSWM urban drainage modelling procedures, 
Department of Civil Engineering, University of Ottawa, Canada. 

Received  4 August 2015 
Received in revised form  3 November 2015 

Accepted  14 December 2015 




