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A b s t r a c t  

In this study, we investigated the temporal variability of dissolved 
oxygen and water temperature in conjunction with water level fluctua-
tions and river discharge in the Narew lowland river reach. For this pur-
pose, high resolution hydrologic and water quality time series have been 
used. Spectral analyses of time series using continuous wavelet transform 
scheme have been applied in order to identify characteristic scales, its 
duration, and localisation in time. The results of wavelet analysis have 
shown a great number of periodicities in time series at the inter-annual 
time scale when compared to the classical Fourier analysis. Additionally, 
wavelet coherence revealed the complex nature of the relationship be-
tween dissolved oxygen and hydrological variables dependent on the 
scale and localisation in time. Hence, the results presented in this paper 
may provide an alternative representation to a frequency analysis of time 
series. 

Key words: dissolved oxygen, wavelet analysis, time series, lowland 
river. 
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1. INTRODUCTION 
It is commonly known that a measure of organic waste load in rivers is bio-
chemical oxygen demand BOD, which in general terms indicates the amount 
of oxygen drawn upon in the process of decomposition of the waste. The rate 
at which BOD is exerted combined with the rate at which oxygen is restored 
determines the level of dissolved oxygen (DO). Specific aspects of environ-
mental water resources require the knowledge and understanding of the vari-
ability of oxygen levels in relation with water level fluctuations and river 
discharges. There are a variety of alternative methods to analyse the DO time 
series, including the most common method of Fourier analysis, but they of-
ten fail to show detailed temporal patterns. To avoid such problems, wavelet 
analysis has been frequently proposed to analyse numerous environmental 
signals but not much has been done in this respect for the studies of dis-
solved oxygen. This work is an extension of a recent study of Rajwa-
Kuligiewicz et al. (2015), in which the time series of dissolved oxygen and 
water temperature coupled with meteorological and hydrological data ob-
tained from two lowland rivers having contrasting hydrological settings have 
been examined in detail. It aims to analyse the variability of oxygen regime 
in a lowland, very natural river, and examine the role of the dominant hydro-
logic patterns on the inter-annual variability of rivers’ oxygenation. In par-
ticular, we tried to identify the dominant scales of variation in time series. 
This has been done by the application of the wavelet transform which helps 
to identify the dominant modes of variability and their variation in time. The 
current work outlines the practical aspects of the so-called continuous wave-
let transform (CWT) method, highlighting its relevance in time series analy-
sis of eco-hydrological data. 

The idea of the wavelet transform is to convolve the signal to be ana-
lysed with several oscillatory filter kernels representing different frequency 
bands, respectively (Kumar and Foufoula-Georgiou 1997). One of the most 
important advantages of the wavelet approach is the proportional relation-
ship between bandwidth and frequency. Wavelet analysis has found numer-
ous applications in science and engineering. For example, plenty of studies 
have been investigating the potential of using wavelet transform in the proc-
essing of seismic data (Chakraborty and Okaya 1995, Cheng et al. 2015, 
Zamani et al. 2014) and time series analysis of streamflow and precipitations 
(Carey et al. 2013, Coulibaly and Burn 2004, Kang and Lin 2007, Labat 
2008, Lafrenière and Sharp 2003, Saco and Kumar 2000, Smith et al. 1998, 
Szolgayová et al. 2014, Venugopal et al. 2006, Zolezzi et al. 2009). Scanlon 
and Albertson (2001) applied wavelet transform to describe turbulent trans-
port of carbon dioxide and water vapour within vegetation canopies. More 
recently, Kanani and da Silva (2015) considered the application of wavelets 
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in the visualisation of coherent structures. The above studies are obviously 
not exhaustive and more examples will be presented later, while introducing 
the key components of continuous wavelet transform (CWT) method. 

2. METHODS 
2.1 Data 
Data used in this study was obtained from the Narew River monitoring sta-
tion (see Rajwa-Kuligiewicz et al. (2015) for a detailed description of the 
data). The Narew River is located in north-east Poland (see Fig. 1). Along 
the considered section the river valley is flat and swampy, and has a varying 
width from 250 m do 3.5 km. The majority of its bank retained a natural 
character; the river flows in several channels and meanders, forming a net-
work of streams extending in the whole width of the valley. Data including 
water temperature, dissolved oxygen, and water level were evenly sampled 
at 1-hour time interval using multi-parameter sonde manufactured by Hydro-
lab (Fig. 2A). River discharge was taken from a gauging station in Sura� 
(Fig. 2B), whereas precipitations and short-wave radiation were taken from 
the meteorological station in Kurowo village (Fig. 2C-D). All data covering 
almost 3 years of continuous monitoring were treated collectively at 1-hour 
time interval. Data gaps resulting from occasional failures and maintenance 
of measuring devices were interpolated using linear interpolation. 
 

 

Fig. 1. Study site location. 
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Fig. 2. Time series: (A) dissolved oxygen, water temperature, and water level time 
series (Kruszewo); (B) hydrograph (Sura�); (C) rainfall (Kurowo); and (D) short-
wave radiation (Kurowo). 

2.2  Wavelet data analysis 
Wavelet analysis of time series has been applied in order to identify charac-
teristic scales and its localisation in time. Wavelet transform decomposes the 
entire signal to the components called wavelets having different frequencies 
and analyses each segment of the signal with resolution fitted to its scale. In 
contrast to the windowed Fourier transform, the wavelet transform uses a 
changeable window size that narrows at high frequencies and widens at low 
frequencies. In our study we applied a continuous wavelet scheme as it is 
more robust to noise (Cazelles et al. 2008). Moreover, it is suitable for the 
analysis of geophysical and hydrological time series (Coulibaly and Burn 
2004). Generally, the continuous wavelet transform is determined using dis-
crete time series. However, in contrast to discrete wavelet transform, it can 
be computed for each scale. The CWT is also continuous with respect to dis-
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placement, which means that for a particular scale the wavelet is moved 
smoothly in the whole domain of the analysed function. For the sake of sim-
plicity, only one-dimensional wavelet is considered herein. The continuous 
form of the wavelet transform (CWT) of a time series f(t) can be expressed 
mathematically as: 

 � � � � *
CWT

1, ,t bF a b f t dt
aa

��

��

�� �� 
 �
� 
� �  (1) 

where FCWT (a, b) is a wavelet coefficient, � is a mother wavelet, and * de-
notes the complex conjugate form. Parameter a is a scaling factor reflecting 
the degree of dilatation or compression of the mother wavelet. It ensures that 
energy presented by each wavelet is independent of the scale. Parameter b is 
a translation in time corresponding to the location of the basic function in 
time t in the analysed signal. The mother wavelet has got a defined shape be-
ing compared to the analysed signal f(t) by shifting in position (b – transla-
tion factor) and frequency (a – scale factor). It is also worth noting that each 
wavelet must have zero mean to satisfy the admissibility condition. This 
guarantees that the wavelet transform is invertible (Farge 1992, Farge et al. 
2013, Daubechies 1990). 

The results of the CWT are represented by a set of wavelet coefficients 
in the scale-space plane, which holds all information about the input signal. 
These coefficients are the function of scale and position and are a measure of 
correlation of the signal f with the wavelet. For the narrow wavelets (small 
scale) coefficients represent the content of high-frequency components, 
whereas for the wide wavelets (big scale) they represent the content of low-
frequency components (Lau and Weng 1995, Kumar and Foufoula-Georgiou 
1997). Due to the fact that more stretched wavelet is comparable with a sig-
nal in a wider range of its variability in time, the corresponding coefficients 
– transform values represent global information of the analysed signal. Con-
sequently, the set of these coefficients for the particular scale corresponds to 
the set of approximation coefficients of the highest discrete level of wavelet 
expansion. By contrast, narrow wavelets enable the separation of fast-
changing features in the signal. Given the above, the wavelet transform is a 
convenient method for the analysis of non-stationary time series and transi-
ent signals (Percival and Walden 2000). 

In our studies we used the Morlet wavelet (Fig. 3, Eq. 2) as it is reasona-
bly well localised in time and frequency (Cazelles et al. 2008, Grinsted et al. 
2004, Daubechies 1990). The Morlet wavelet is often used for environmen-
tally oriented signals. It is a complex conjugate (b � R, a > 0) incorporating 
the amplitude and phase of basic function. The phase in the wavelet trans-
form is the same as the phase in the Fourier transform decomposition  
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Fig. 3. The Morelet wavelet with  
0 = 6. 

(Torrence and Compo 1998). Here, the frequency of oscillations and the 
width of the mother wavelet, except of the amplitude of wavelet, refer to the 
scale. The Morelet wavelet is presented in Fig. 3 and is defined by Eq. 2 as 
follows: 

 � �
2

0 2
Mor,0 ,

t
i tM t e e

� �
�
 �
 �
� 
� �  (2) 

where t is time, and 
0 is the non-dimensional frequency which usually falls 
between 5 and 6. The continuous wavelet transform is calculated for a dy-
adic scale meaning that the proceeding values of the scale are the power of 2. 
The scale corresponds to the length of wavelet, i.e., the number of time steps 
used for the CWT calculation. 

Due to the finite-length of time series, errors are observed at the edges of 
the wavelet power spectrum. This happens because the wavelet is translated 
along the signal and the convolution is calculated for each time step and each 
scale. As a consequence, at the edges of the signal the convolution requires 
non-existing values beyond the boundary. This region is called the cone of 
influence. In this region the wavelet power drops to e–2 of the value at the 
edge (Torrence and Compo 1998). There are two approaches to deal with it, 
either accept the loss of data at boundaries of the signal and truncate these 
results, or apply an artificial extension of time series. So far, several methods 
of extension have been developed such as zero padding, periodic extension 
and symmetric extension (Keinert 2004). No matter which extension mode is 
applied, it introduces discontinuities at endpoints and decreases the ampli-
tude in boundaries at larger scales. Therefore, rather than having false infor-
mation, we truncated the results obtained at the edges. 

Once the mother wavelet has been chosen, we calculated spectral charac-
teristics of time series such as the global wavelet power spectrum, cross-
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wavelet transform and wavelet coherence for time series. By analogy with 
the Fourier power spectrum, wavelet power spectrum (WPS) is the wavelet 
transformation of the autocorrelation function. It represents the distribution 
of power not only in scale (frequency) as the Fourier transform does, but al-
so in time. On the other hand, the cross-wavelet transform (WCS) enables 
the examination of the relationship between two signals in the time-scale 
plane. It can be decomposed into cross-wavelet power and phase, which 
shows the delay between two time series at particular time and scale. The 
amplitude of the cross-wavelet transform when normalised to the two single 
wavelet power spectra yields wavelet coherence (WTC), which describes a 
linear dependence of two signals for a given scale (Maraun and Kurths 
2004). Thus, it can be interpreted as a correlation coefficient. The detailed 
description of aforementioned functions is provided in: Torrence and Compo 
(1998), Torrence and Webster (1999), and Grinsted et al. (2004). The calcu-
lations of wavelet functions were performed in Matlab using wavelet coher-
ence script developed by Grinsted et al. (2004). 

3. RESULTS  AND  DISCUSSION 
3.1 Fourier power spectrum 
As reported by Rajwa-Kuligiewicz et al. (2015) Fourier analysis of dissolved 
oxygen and water temperature time series indicated the existence of one 
peak in the power spectrum, which corresponds to the daily cycle. Moreover, 
power spectra of DO, water temperature, and water level time series can be 
roughly approximated by the “–1” slope. The fact that time series power 
spectrum exhibits 1/f scaling suggests the presence of self-similarity phe-
nomenon, which manifests in the same pattern over different timescales. By 
contrast, precipitations time series can be approximated as white noise. Be-
sides, the fact that the scaling may reflect some natural process such as the 
transport and storage of solutes within the catchment (Kirchner et al. 2004, 
Kirchner and Neal 2013), it may also be useful in the assessment of envi-
ronmental variability among different ecosystems (Rajwa-Kuligiewicz et al. 
2016). 

3.2 Wavelet analysis 
Figure 4 presents wavelet transform coefficients of dissolved oxygen time 
series. In here, higher scales represent more stretched wavelets correspond-
ing to the low frequency ranges. Therefore, higher scales provide global in-
formation on a signal. This means also that lesser number of points chara-
cterise the signal. On the other hand, small scales represent more compressed 
wavelets reflecting high frequencies. Hence, small scales provide more de-
tailed information of a hidden pattern in the signal (that lasts relatively short  
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Fig. 4. The CWT coefficients for dissolved oxygen time series. 

time). This means also that more samples corresponding to a smaller time in-
terval characterise the signal. In short, when moving up the scale we stretch 
our wavelet, then we do a correlation of the wavelet with the signal, and ob-
tain the second raw of the scalogram. This procedure is repeated several 
times depending on the number of scales. 

Accordingly, Figs. 5-7 show the wavelet transform coefficients of the 
remaining time series, namely water temperature, water level, and stream-
flow. In Figs. 4-7 the presence of multiscale structures and their temporal lo-
cations are clearly visible. One can also see small-scale features within large-
scale features. The colour indicates the value of the wavelet coefficient, and 
provides a measure of the relative amplitude of each point. The vertical dark 
blue lines represent places of rapid changes of the mean value (local minima 
of coefficients). Therefore, the transform can be used as a detector of sharp 
changes in the signal. 

In the first row, related to the smallest scale, amplitudes are weak indi-
cating that nothing in the signal correlates with the wavelet (Fig. 4). Smaller 
values of coefficient are especially visible in late summer of 2014. In dis-
solved oxygen time series (Fig. 4), the maximum peaks of amplitudes occur 
with periods of 1 month, 4 months, and 1 year. In 2014 the peaks are ob-
served from January to April with a period of 1 month. In 2015 the highest 
peaks occurred in August and September with periods of about 3-4 months. 
The coefficients were higher when compared to previous years. The attenua-
tion of oscillations from 4 to 6 months scale is visible from April 2013 till 
August 2014. It is also visible that DO time series show greater variability in  
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Fig. 5. The CWT coefficients for water temperature time series. 

Fig. 6. The CWT coefficients for water level time series. 

the value of wavelet coefficient at small scales when compared to other time 
series (Figs. 5-7). 

Water temperature and its variability influence significantly water quali-
ty and river ecosystems (see, e.g., Kalinowska and Rowi�ski 2015). It con-
trols solubility of dissolved oxygen, stream metabolism, and toxicity of 
pollutants (Demars et al. 2011). Figure 5 shows that the maximum values of 
wavelet coefficient for water temperature correspond to the period of 1 year. 
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Fig. 7. The CWT coefficients for streamflow time series. 

By contrast, the lowest amplitudes occur for the shorter periods (small 
scales) in winter and spring. 

In water level time series (Fig. 6), higher coefficients are observed at the 
scale of 10 months. Some additional periodicities are visible at the scale of 6 
months from the fall 2012 till April 2013 and at the scale of 2 months in late 
summer 2013. By comparison, in river discharge’ time series (Fig. 7), the 
highest coefficients are observed in 2013 with periods of 1 and 3 months. It 
is also visible that the highest values of coefficients overlap with the dis-
charge peaks. 

3.3 Wavelet power spectrum 

Wavelet power spectrum provides the information on the power density in 
time and scale, and thus enables the identification of dominant and charac-
teristic scales of variations. Figures 8-12 present the global wavelet power 
spectra of time series. The right plot shows the contribution of a particular 
scale to the overall variability of the time series. It is visible that most of the 
power is concentrated within the 0.5-1 year band, although there is some ap-
preciable power at shorter periods. Generally, the wavelet power spectra 
(WPS) of analysed time series have similar structure (the power is higher for 
a greater timescales) but the location of individual regions of high power are 
different for each WPS. The power varies not only across time at a given 
scale, but also among scales at particular time. All analysed time series have 
shown a strong annual temporal pattern. The comparison between the power  
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Fig. 8. Wavelet power spectrum of dissolved oxygen and mean power spectrum for 
each scale. 

Fig. 9. Wavelet power spectrum of water temperature and mean wavelet power spec-
trum for each scale. 

spectra of time series reveals some important discrepancies. For example, 
there is evidence that DO is highly localised at high frequencies (Fig. 8). 
However, the highest powers are observed at greater timescales. In here, the 
contour lines identify peaks of greater than 95% confidence for a red noise 
process with a lag of –1 (Torrence and Compo 1998). The cone of influence 
is presented as a white area located outside the wavelet power spectrum. It 
should also be noted that the area out of the WPS results not only from the 
noise but also, to a lesser extent, from the natural processes. 
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Fig. 10. Wavelet power spectrum of water level and mean wavelet power spectrum 
for each scale. 

Fig. 11. Wavelet power spectrum of river discharge and mean wavelet power spec-
trum for each scale. 

The dominant frequency (~1 day) in dissolved oxygen (Fig. 8) and water 
temperature (Fig. 9) time series is situated along the horizontal axis. As ex-
pected, daily cycle is characterised by relatively high-power content. It is al-
so visible that the mode of variability vanishes during winter (Figs. 8 and 9). 
The daily periodicity in DO time series (Fig. 8) begins in March and prevails 
till November, which is associated with the greatest amplitudes of water 
temperature  and  intensified biological activity.  This  persistent  band  is oc- 
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Fig. 12. Wavelet power spectrum of rainfall and mean wavelet power spectrum for 
each scale. 

casionally interrupted by low powers, resulting from the rapid changes in 
hydro-meteorological conditions. 

Strong daily cycle in water temperature (Fig. 9) is driven by the changes 
of air temperature and insolation. These oscillations are most evident in the 
warmer season of the year. Over the wintertime, no variability is observed. It 
is also visible that the WPS of water temperature exhibits far more inter-
annual variability. A number of short-term temporal patterns can be detected 
at periods ranging from 1 week up to 1 month. These periods overlap with 
the short-term variations in streamflow. 

The WPS of water level is more homogenous and displays low-
frequency variability (Fig. 10). The most prominent periodicity occurs at the 
scale of 1 month and spans up to 1 year with small breaks. This pattern is 
visible for the whole analysed period, except of winter 2014/2015. In con-
trast to the water level WPS, the power distribution in the streamflow WPS 
(Fig. 11) is shifted to the higher frequencies (~3 days). It is also visible that 
river discharge exhibits large variations of wavelet power almost across 
whole timescales and becomes more variable at higher flow rates (Fig. 11). 
In autumn 2014 no significant pattern was displayed in water level and river 
discharge, which can be attributed to the exceptionally low flow and small 
rainfall.  

In the wavelet power spectrum of rainfall, the dominant periodicity is 
observed at the scales of 4 months and 1 year (Fig. 12). The greatest powers 
overlap with periods of the highest rainfall observed in late summer. The ex-
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ception was 2014 with the predominance of rainfall in the spring and early 
summer. These high rainfall periods are reflected by long spikes at that time 
location. A similar pattern can be observed for streamflow peaks (Fig. 11).  

3.4 Cross-wavelet power 
The cross-wavelet power reveals areas in the time-frequency space where the 
time series show a high common power, i.e., they represent the local covar-
iance between the time series at each scale. Figure 13A shows the cross-
wavelet power of water temperature and dissolved oxygen. It is visible that 
water temperature and dissolved oxygen periodicities coincide at the scale of 
1 day and 1 year. Arrows in this plot indicate the local relative phase be-
tween these two time series. The right direction of arrows at a daily scale 
suggests that time series are in phase. Moreover, it is easy to note that the ar- 
 

Fig. 13. Cross wavelet power: (A) of water temperature and dissolved oxygen, and 
(B) water level and dissolved oxygen. 
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rows slightly point downward implying that dissolved oxygen lags water 
temperature. For the higher scales (longer periods) arrows show an opposite 
direction, which means that time series are in anti-phase. It is also visible 
that DO wavelet power converges with water level at higher scales 
(Fig. 13B). It should be stressed, however, that the results obtained in this 
way can lead to the misleading interpretation since the cross-wavelet power 
is the product of two non-normalised spectra (Maraun and Kurths 2004). As 
the result, the estimated wavelet power spectrum will always be non-zero 
even if the true cross spectrum is zero. Moreover, the peaks may appear for 
two independent signals in the situations of covarying power or strong power 
of a single spectrum (Schaefli et al. 2007). 

3.5 Wavelet coherence of dissolved oxygen and water temperature 
Wavelet coherence overcomes the disadvantages of the cross-wavelet power 
spectrum since it shows the normalised dependence of two time series. Fig-
ure 14 displays the wavelet coherence between time series. Highly coherent 
areas indicate high values of the linear correlation. Arrows show the phase 
relationship between DO and water temperature time series. 

Figure 14A shows that water temperature and dissolved oxygen time se-
ries are coherent around 1-day period band. This coherence is observed for a 
larger part of the year. Moreover, there are some red blobs elongated verti-
cally from 3 days up to 1.5 month. The last coherent region occurs at the 
scale of 1 year. Despite the strong coupling at the daily and annual scales, 
there is a weak, or even no, coherency at the period from 1.5 month to 
1 year. For shorter periods, the arrows point right, which means that dis-
solved oxygen is in phase with water temperature. It can be attributed to the 
responsive nature of DO since its solubility essentially depends on water 
temperature. Conversely, for longer periods the arrows point left, which im-
plies that dissolved oxygen is in anti-phase with water temperature. This 
means that two time series are anti-correlated. It is also visible that some ar-
rows slightly point down, indicating that two time series are out of phase and 
thus the correlation between them is non-linear. In this regard, down angle 
arrows indicate that DO lags water temperature by this specific angle which 
represents a fraction of the cycle at that period. From the pragmatic point of 
view, the wavelet coherence provides information on the relationship be-
tween water temperature and dissolved oxygen. Therefore, it might be useful 
in the modelling of time series. Based on the wavelet coherence one may de-
cide whether the dependence can be described using a linear equation with 
lags, or requires the application of non-linear model with lags. 

By comparison, Fig. 14B depicts the coherence between short-wave ra-
diation and dissolved oxygen time series. A strong linear correlation is ob-
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served at periods of 12 hours, 1 day, and 1 year. As noted elsewhere, 
sunlight affects the photosynthesis rate and thus the production of oxygen by 
aquatic plants and algae. However, our results have shown that dissolved 
oxygen is less correlated with short-wave radiation over time than water 
temperature. In contrast to water temperature, short-wave radiation is more 
sensitive to cloud cover and the distance from the measuring point. 

Figure 14C presents wavelet coherence between water level and water 
temperature time series. It is visible that water temperature is less coherent 
with water level than dissolved oxygen. In the coherence spectrum, one can 
distinguish two highly correlated periods. First is a daily period represented 
by red interrupted bulbs along the x-axis, which are followed by low-power 
periods. The second is the annual period. Moreover, several statistically sig- 
 

Fig. 14. Caption on next page. 
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Fig. 14. Wavelet coherence: (A) water temperature and dissolved oxygen, (B) inso-
lation and dissolved oxygen, (C) water level and water temperature, and (D) water 
level and dissolved oxygen time series. 

nificant peaks occur at the period of about 3 days up to 1.5 month. The ar-
rows’ directions seem to be randomly distributed in the coherence spectrum 
among all scales, except the annual scale, where the phase is represented by 
leftward angle arrows. This indicates that water temperature is anti-
correlated with water level. 

Figure 14D displays wavelet coherence between water level and dis-
solved oxygen wavelet power spectra. As visible, those two time series are 
poorly correlated. However, high coherence can be observed in a narrow 
band at a daily timescale. Moreover, small individual peaks are visible at the 
period of one week. In fact, this consistency has not been reported in the ear-
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lier work of Rajwa-Kuligiewicz et al. (2015) since both, the statistical meth-
od and Fourier technique, failed to show that. Interestingly, high coherence 
occurs during flood events, suggesting that extreme events such as floods di-
rectly affect the river ecosystems. As noted by Marion et al. (2014) these 
events may not only disturb the river’ habitats but also introduce changes in 
existing ecological states.  

4. CONCLUSIONS 
In this study we used wavelet analysis to asses dissolved oxygen regime over 
a wide range of temporal scales ranging from sub-daily to annual. Similarly, 
time series of temperature, water level, and discharge were treated. Wavelet 
analysis has shown better performance in detecting detailed temporal pat-
terns in non-stationary time series compared with the conventional Fourier 
analysis. Our results have shown that the wavelet technique helps to eluci-
date a greater number of periodicities in time series. Moreover, it facilitates 
the comparison of two time series and identification of highly correlated pe-
riods in both time series. From a pragmatic point of view, it helps to deter-
mine what kind of factors influences oxygen regime, when the impact is 
significant and how long it lasts. 
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