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Why do something in a simple way,  
while better make it complicated to impress others?! 

(overheard) 

A b s t r a c t  

Changes in river flow regime resulted in a surge in the number of 
methods of non-stationary flood frequency analysis. Common assump-
tion is the time-invariant distribution function with time-dependent loca-
tion and scale parameters while the shape parameters are time-invariant. 
Here, instead of location and scale parameters of the distribution, the 
mean and standard deviation are used. We analyse the accuracy of the 
two methods in respect to estimation of time-dependent first two mo-
ments, time-invariant skewness and time-dependent upper quantiles. The 
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method of maximum likelihood (ML) with time covariate is confronted 
with the Two Stage (TS) one (combining Weighted Least Squares and 
L-moments techniques). Comparison is made by Monte Carlo simula-
tions. Assuming parent distribution which ensures the asymptotic 
superiority of ML method, the Generalized Extreme Value distribution 
with various values of linearly changing in time first two moments, con-
stant skewness, and various time-series lengths are considered. Analysis 
of results indicates the superiority of TS methods in all analyzed aspects. 
Moreover, the estimates from TS method are more resistant to 
probability distribution choice, as demonstrated by Polish rivers’ case 
studies. 

Key words: non-stationary flood frequency analysis, maximum like-
lihood, covariance, two-stage methodology, L-moments. 

1. INTRODUCTION 
Until recently, most tools and techniques used in flood frequency analysis 
(FFA) assumed stationarity of flood processes (e.g., Milly et al. 2008). 
Nowadays, it is understood and accepted that, due to the climate and land 
cover change and rapid development of calculation techniques, the 
incorporation of the “non-stationarity” factor in hydrological parametric and 
non-parametric modelling should be seriously considered (when necessary 
and when the length of the time series allows it) and has become technically 
possible. Thus, hydrologists face the challenge of developing new or 
extending existing methods of FFA by incorporating the non-stationarity of 
extreme hydrological events. 

The research on non-stationarity in hydrology based on the flow or water 
level data can be generally (subjectively) divided into testing the time-series 
for its (non-)stationarity and searching for the non-stationarity in models’ pa-
rameters. The validity of the stationarity and independence assumptions of 
extreme series is assessed by investigating the presence of monotonic trends 
using nonparametric Mann–Kendall (Kendall 1975), Pettitt (1979) and auto-
correlation coefficient tests. The common use of the non-parametric tests is 
mainly due to their robustness to non-normality which usually appears in 
hydrological extreme series. The parametric student’s t-test provides also 
useful information on variation of extreme series in the sense that it evalu-
ates the significance of trend in the mean value. Diagnostic results from 
trend tests substantiate the implementation of the non-stationary flood fre-
quency analysis (NFFA). 

Flood frequency analysis in the presence of covariates has been the sub-
ject of countless publications and each of them contains more or less objec-
tive brief review of the literature. The relatively seldom-cited statistical 
publication of Davison and Smith (1990) is of great value for the develop-
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ment of non-stationary modelling of extreme event time-series, because, 
perhaps for the first time in environmental science, the idea of the maximum 
likelihood (ML) estimation of distribution parameters with covariates was 
presented there. Nowadays, the parameters of great variety of flood frequen-
cy distribution functions with the presence of time covariate can be estimat-
ed, e.g., by the Generalized Additive Models for Location, Scale and Shape 
(GAMLSS) software (Rigby and Stasinopoulos 2005). Unfortunately, the 
effectiveness of the algorithms in the sense of finding the global maximum is 
not known and cannot be easily assessed from GAMLSS R-package. 

However, the main aim of the FFA, regardless of the stationarity matter, 
is the proper estimation of the upper (flood) quantiles. These quantiles are 
particularly sensitive to the value of the shape parameter whose accurate es-
timation, especially by means of the ML for a short sample size, is quite a 
challenge even in the stationary case. The issue of the shape parameter be-
comes even more difficult in the NFFA where the number of parameters 
grows but the dataset size remains the same. Besides, the larger the number 
of the estimated parameters, the more likely are the elementary numerical 
problems with finding a global maximum of likelihood function for every 
time-series. 

As a remedy to uncertainty of trend estimates resulted from hypothetical 
distributional assumption and to optimization problems arising due to large 
number of estimated parameters of the short time-series, the ideas of decom-
position were born where the optimization tasks are carried out through the 
hierarchical solution schemes. 

The Hybrid Two-Stage (TS) method (Kochanek et al. 2013) consists of a 
separate estimation of time-dependent mean and standard deviation, and 
then, on that basis, it estimates the shape parameter and time-dependent 
quantiles. Estimation of time-dependent mean and standard deviation is per-
formed by the Weighted Least Squares (WLS) method (Strupczewski and 
Kaczmarek 1998, 2001) where the assumption of distribution model is not 
required. The only limitation is the existence of location and scale parame-
ters, so the method can be used for both three-parameter distributions with 
lower bound parameter and two-parameter distributions with unlimited range 
on both sides, such as Gumbel or Normal. In the second stage of the TS, af-
ter choosing the flood model (distribution function), the shape parameter is 
estimated by means of the L-moment method and then the time-dependent 
quantiles are determined. 

In this paper, the accuracy of TS method is compared by means of the 
Monte Carlo experiment with the accuracy of ML method with covariates. 
Both NFFA methods were also evaluated within the context of the case 
study of selected gauging stations on Polish rivers where their pros and cons 
are even more visible. In order not to lose the substance of presentation in 
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the description of the NFFA implementations, here we limit ourselves to 
point to our own research which led to the formulation of and justification 
for a two-stage NFFA method. 

2. TOWARDS  SUBSTANTIATION  OF  THE  HYBRID  METHOD   
IN  THE  NFFA 

The problem of changes of natural processes became the subject of many 
publications, especially in the 1980s. The primary sources of information 
about stochastic properties of hydrological processes are the data time series. 
Investigation of trend in hydrological time series was mainly focused on 
detection of a trend in the mean value by means of standard statistical 
techniques, based essentially on the hypothesis testing theory. A trend in the 
variance or in the auto-correlation function has been rarely analysed. In this 
section we present only our research which evolved towards the formulation 
of and justification for the two-stage (TS) method. 

Strupczewski and Mitosek (1991, 1995) proposed the extension of at-site 
flood frequency modelling to non-stationary case. The ML method with the 
presence of time as the covariate was used for estimation. The climatologists 
who investigated non-stationarity issues in datasets concentrated on certain 
norms, and perhaps the deviation from these norms. Let us note that the 
identification of non-stationarity effect caused by changes both in land use 
and cover and by water-engineering activity should be based on the physical 
models of rainfall-runoff type which leads to estimates of changes in the 
mean or also in the dispersion of extreme events. Note that the main interest 
of the FFA is the estimation of upper quantiles of annual maxima 
distribution. As demonstrated in Appendix B for GEV distribution (Fig. B2) 
these quantiles are much more sensitive to a change in standard deviation 
than to a change in the mean value. This is why incorporation of the 
possibility of a trend for the second moment is so important in the FFA. 

Given the above, Strupczewski and Mitosek (1991, 1995) have found it 
convenient to unify various probability distribution functions (PDFs) in 
terms of parameters replacing the original set of parameters of each PDF, 
namely: location, scale, and shape parameter by the mean value, standard 
deviation and possibly also skewness coefficient, respectively. This re-
parameterisation is done by using the relationships between moments and 
parameters available in statistical literature. Consequently, after the re-
parametrisation, the trend would be explicitly introduced to the moments, 
which is conformable to methods of trend analysis. In such a case, a time-
trend is investigated in two first moments only and is assumed to be a con-
tinuous function of time. The skewness coefficient is considered to be time-
invariant. Primarily, Strupczewski and Feluch (1997) and Strupczewski et al. 
(2001a) analysed four classes of time-trend in moments: (A) in the mean 
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value, (B) in the standard deviation, (C) both in the mean value but the 
standard deviation was related to a constant value of the variation coefficient 
(CV), and (D) unrelated trend in the mean value and the standard deviation. 
The basic option was the time-invariable parameters, i.e., the stationary op-
tion (S). If the time-dependent parameters are to be estimated from peak 
flow records, they shall be expressed as functions with the smallest possible 
number of parameters (Strupczewski and Mitosek 1995). Each of the three 
first classes (A-C) increases the number of parameters of the stationary PDF 
by the same number defined by the form of a time-trend function. Regarding 
the problems with solution of maximum likelihood equations, originally the 
two options of the form of trend were included, i.e., the linear and parabolic 
(square trinomial) (Strupczewski and Feluch 1998, Strupczewski and 
Kaczmarek 1998, Strupczewski and Mitosek 1998). The ML estimation pro-
cedures of parameters of various (Distribution and Trend) models are ele-
ments of Identification of Distribution and Trend System (IDT) and the 
number of models had gradually increased. The procedures also covered 
evaluation of the standard error of parameters and time-dependent quantiles. 
The Akaike Information Criterion (AIC) (Akaike 1974, Hurvich and Tsai 
1989) was used for the identification of an optimum model in a class of 
competing models. If for a given time-series the lowest AIC value corre-
sponds to the stationary model (S), the time-series is considered as station-
ary. The IDT System had been extended to cover the procedure of estimation 
of probability distribution together with the standard error not only in respect 
to one year, but to a period of any length, too. 

This idea has been repeatedly and scrupulously examined on simulation 
data and tested and applied to Polish rivers data. It was found (Strupczewski 
1999, Strupczewski and Kaczmarek 2001, Strupczewski et al. 2001a, b) that 
for a hydrological size of time-series (up to max. 100 elements) the differ-
ences in Akaike criterion values of some best fitting models are rather small, 
but at the same time the differences of time-dependent moments and 
quantiles can be considerable. Sometimes the trend got from various distri-
butional assumptions may even differ in sign and, moreover, the best fitting 
model may change from year to year. All these cause substantial differences 
in moments and quantiles when extrapolating such models out of range of 
record (e.g., in the future). This feature is also highly confusing and raises 
doubts as to the reliability of the best fitting model and the utility of this 
methodology for short time-series. 

In the NFFA, usually just one model is adopted as the only truth. This is 
the convenient way to hide the uncertainty of estimates, for instance, by de-
creeing one type of such distributions, e.g., the GEV, as applicable through-
out the country. The applicability of one-model concept in the NFFA 
assumes the knowledge of True probability distribution function. However, 
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the simulation experiments performed for numerous pairs of True and False 
PDFs revealed weak power of various discrimination procedures for hydro-
logical datasets which even drops when the number of competing distribu-
tions rises (e.g., Strupczewski et al. 2006, Mitosek et al. 2006). It means that 
except of the random error, we have to face the model error, too. An analyti-
cal method for evaluating the robustness of the estimates of moments and 
quantiles by various estimation methods, including the maximum likelihood 
method and method of L-moments, with respect to the distribution choice 
has been presented by Strupczewski et al. (2002a, b). It was shown that the 
relative asymptotic bias of the ML-estimate of moments and upper quantiles 
can be considerable and grows rapidly with increasing value of the coeffi-
cient of variation. The relative asymptotic ML bias of the variance is often 
hundreds times larger than the relative asymptotic ML bias of the mean! As 
the number of function parameters approximating increases the accuracy of 
approximation and therefore decreases the model error of upper quantiles re-
production. The research briefly described above can be summarised by stat-
ing that the estimation technique in the NFFA should be relatively robust to 
false distributional assumptions. 

3. REMARKS  ON  APPLICATION  OF  TWO-STAGE  (TS)  METHOD 
Years of development, perfecting and testing on real data of the IDT 
computer package based on ML method in the presence of time as the 
covariance revealed its deficiencies stemming from the over-
parameterization in relation to the length of hydrologic time series. It 
resulted in preliminary ideas of algorithms using of the Two-Stage method 
based on the Weighted Least Squares (WLS) (Strupczewski and Kaczmarek 
1998, 2001) combined with the concept of L-moments (Kochanek et al. 
2013). The L-moments (LM) estimation method (e.g., Hosking et al. 1985, 
Hosking 1990, Hosking and Wallis 1997) requires data to be arranged in 
ascending order. So the procedure of the estimation of non-stationary flood 
quantiles was divided into two stages: 

� First, the time-dependent mean (	t) and standard deviation (�t) of the 
annual flows time-series are estimated using the WLS (Strupczewski and 
Kaczmarek 1998, 2001) of the annual maximum flows time-series (see Ap-
pendix A). The so-obtained time-dependent moment values are then used to 
standardise (deprive of trends) the time series: 

 � � .t t t ty x� � � '  (1) 

� The stationary sample is then used to estimate by the L-moments 
method the parameters and quantiles (stationary!) Y(F) of a chosen distribu-
tion function. Afterwards, the so-calculated quantiles are re-trended:  
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 ( , ) ( ) ,t tX F t Y F� ? �' �  (2) 

where F is the cumulative distribution. 
Of course, in the second stage any parametric or non-parametric method 

of estimation could be used. The use of a non-parametric method, e.g., the 
kernel probability density estimation (e.g., Rosenblatt 1956, Feluch 1994) 
would definitely detach the trends estimation from any distribution function. 
It would result in “purely” data-driven technique. In this paper, due to its ad-
vantages, the L-moments method is used as the second stage of the TS ap-
proach. 

4. TRENDS  IN  MOMENTS 
Analysis of trends in datasets means that the number of parameters to be 
estimated from fixed-length time-series will increase. Due to the principle of 
parsimony, the assumed form of trends in moments or parameters ought to 
be as simple as possible. Therefore, one or two parameter functions, such as 
linear, logarithmic, exponential, trigonometric, parabolic, etc., shall be first 
considered. We adopted here the linear form of trends in the mean (	t) and 
standard deviation (�t): 

 and ,t t	 a t b � c t d� ? � � ? �  (3a, b) 

where  t – time (in the years following the beginning of the flood records), 
a – parameter of the trend in the mean, i.e., parameter of “slope”, b – the 
parameter of mean, i.e., parameter of “intercept”, c – parameter trend in the 
standard deviation, i.e., parameter of “slope”, and d – the standard deviation 
parameter, i.e., parameter of “intercept”. 

As one can see, instead of two parameters in stationary case (	@, �), now 
there are four parameters to be simultaneously estimated in non-stationary 
case: a, b, c, and d. The fifth parameter, the shape, is time-independent and 
is estimated in the second stage of the TS method where the L-moment 
method is used. Note that in ML method all five parameters must be estimat-
ed together. 

In the TS method, the parameters a, b, c, and d are used for the standard-
isation of the time series xt of annual (or seasonal) maximum flows. As a re-
sult a sample, yt, free of trends in the mean and standard deviation is 
obtained: 

 � � � � 1,..., .t ty x a t b c t d t N� � ? � ? � �  (4) 

The elements yt of a random sample have been sorted to form increasing 
series suitable to calculate the L-moments for estimation of the parameters 
and quantiles (stationary!). 
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5. THE  COMPARISON  OF  THE  ML  AND  TS  TECHNIQUES   
BY  NUMERICAL  EXPERIMENT 

The ML estimates of distribution parameters are asymptotically efficient. 
However, this holds if and only if a random sample comes from the same 
distribution, which is not the case in hydrology. When the parent distribution 
is unknown and hypothetical (H) distribution is used instead, ML is losing its 
optimal properties. But even though the true distribution was known, the 
large number of its parameters would be impossible to estimate from short 
time-series. Therefore, doing our best we still deal with false distribution 
function (H = False, the hypothesis is false). 

To compare the accuracy of the ML and TS methods, we assume the 
knowledge of a probability distribution (with time-dependent parameters) 
from which the time-series are generated, i.e., H = True (the hypothesis is 
true); moreover, we consider the length of the time-series compatible with 
hydrological realities. Thus, in this way, we deliberately “give a head start” 
to the ML method. Theoretically, the farther the assumed distribution 
function from the underlying distribution (H = False), the more the 
advantage of the ML method over the TS should fade. Consequently, if the 
TS method proved better for the  H = True  case, it is obvious that it will be 
better for the  H = False  case, too. Taking it for granted, the presentation of 
the results of our simulation experiments is confined to the case when 
H = True. 

Most commonly, the three-parameter distribution functions with the 
lower bound as the parameter are used as models in FFA. In the ML method, 
one parameter more, i.e., the shape parameter, is to be estimated than in the 
WLS method. It just might be a factor to the detriment of the ML method 
even for  H = True  for insufficiently long time-series. Note that for two-
parameter distributions unlimited on both sides (such as Gumbel and 
Normal), the two methods do not differ in the number of estimated 
parameters, so the above argument loses its strength. Furthermore, when 
H = Normal, the two methods are equivalent. 

The Generalised Extreme Values (GEV) distribution (see Appendix B) 
with time-dependent moments serves here as parent distribution in 
simulation experiments, which are performed for various parameters of time-
dependent mean (	t�@and standard deviation (�t), time-invariant coefficient of 
asymmetry CS, and various lengths of time series, i.e., N = 50, 100, and 200. 
Records smaller than 50 elements should not be qualified for NFFA while 
time series larger than 200 elements practically do not exist in hydrology. 
According to our analysis of the 38 annual maxima datasets collected over 
the years in gauging stations located in all bigger Polish rivers, the values of 
the coefficient of variation (CVt=0 = d/b) and coefficient of asymmetry (CS) 
selected for simulation experiments series fits perfectly within the range of 
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values occurring in Polish rivers (compare Kochanek et al. 2012, Table I; 
Markiewicz et al. 2014, diagram 1). For brevity, the results will be presented 
only for: (i) one parent time-dependent mean,  	t = 1?t + 100 (i.e., a = 1, 
b = 100); (ii) three time-dependent standard deviations, i.e., c = 1  and  d = 
25, 50, and 100; and (iii) three values of the coefficient of asymmetry, 
CS = 1.5, 2.0, and 3.0, which correspond to the GEV shape parameter 
(Eq. B4)  k = –0.053, –0.108, and –0.176, respectively. Having three time-
series lengths (N = 50, 100, and 200), the experiment gives altogether 27 
different combinations. 

Using both methods, ML and TS, for a given time-series, the estimates 
of time-dependent mean and standard deviation, as well as a shape parame-
ter, can be estimated. Having all the needed parameters, the selected time-
dependent quantiles  X(F, t) are computed (Eq. B7).  

For each variant (a, b = 1, c, d = 1, CS, N) 1000 series have been gener-
ated. The absolute relative root mean square errors (RRMSE): 

 
1 22ˆ ˆRRMSE ( ) ( )E� �� �# $� � � �  (5) 

of the estimates of parameters of time-dependent moments, shape parameter 
estimators, and the upper quantiles estimators got by the both methods serv 
here as a goodness-of-fit criterion. 

For the sake of clarity, we have decided not to go deeply into details 
concerning the comparison of estimators biases, although this criterion de-
serves a word of comment, too. Note that for our analysis the most beneficial 
was to demonstrate the advantages of ML methods when a true distribution 
function is known. Then, as in the WLS method, the ML parameter estimates 
will be charged only by sampling bias of ML estimation method. The esti-
mation relative biases of both the methods represent small components of the 
RRMSE. Except for the estimate of the shape parameters (see Table 2), the 
values of bias of other estimators vary within the range of a few percent and 
decrease with the length of time-series. Due to the variability of sign, bias 
values are more difficult to interpret than the RRMSE or Standard Error. 
However, in reality the true distribution function is unknown and one deals 
with a hypothetical distribution. In such a case, a model bias can be a signif-
icant part of the overall ML bias serving as yet another argument for com-
paring the competitiveness of both methods. In practice, though, the size of 
the model bias is difficult to assess. Nevertheless, all the effects visible in the 
RRMSE results can be identified also in bias, though because of relatively 
small samples (up to 200) they are not as vivid as in terms of RRMSE. It is 
so because, even though the ML provides lower bias of a particular estima-
tor, it can be marred by the standard error, so the overall RRMSE of this es-
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timator eventually proves better for the TS (WLS) (of course, the reverse 
case is possible). 

The conclusions from the experiment results may be generalised to the 
other cases. As we will show by means of numerical simulations, a simple 
Two-Stage methodology proved better than the ML for hydrological size of 
time-series. 

5.1  The trends in mean and standard deviation 
The RRMSE of the estimated parameters of time-dependent mean and 
standard deviation (a, b, c, and d) of the ML and WLS methods are shown in 
Table 1. The relative accuracy of the estimation of all four parameters 
showed similar values for both methods. The |RRMSE| increases with the 
trend in the relative value of �t, i.e., with  c/d = 1/d  and with decreasing 
length of time-series, while showing low sensitivity to the asymmetry of the 
distribution. The |RRMSE| of the initial mean  0ˆ tb m ��   for both methods is 
considerably lower than |RRMSE| for three other parameters. However, the 
most important in Table 1 is that the position of the figures in bold clearly 
shows the advantage of the accuracy of estimates all four parameters 
obtained from the WLS method for  N = 50. This advantage is decreasing 
gradually with increasing length of time-series. The bias of the trend 
estimators (not shown) allows to draw fairly similar conclusion to the 
|RRMSE|: in general the majority of the WLS estimators reveal lower |RB|, 
too, though the values do not follow such a stable pattern as in the |RRMSE|. 
Because the case considers situation when  H = True  the asymptotic 
advantage of the accuracy of estimates by the ML method is expected. 
Nonetheless, it should not be forgotten that in practice we are dealing with 
the case  H = False  that allows to anticipate that even for a very long time-
series, the WLS method will retain its supremacy. 

5.2  The shape parameter 
The proper estimation of the coefficient of asymmetry (CS) has been the 
subject of countless hydrological discussions (e.g., Matalas and Benson 
1968, Wallis et al. 1974, Yevjevich and Obeysekera 1984). As the GEV 
belongs to the family of heavy tailed distributions, the accuracy of estimate 
of the shape parameter ( k̂ ) will be the subject of comparison (Table 2), not 
the coefficient of asymmetry ĈS  (see Eq. B2). Note that for some specific 
Monte Carlo-generated series the ĈS  may not exist. 

In the non-stationary ML approach, the shape parameter k is estimated 
together with a, b, c, and d parameters by solving the maximum likelihood 
equations, i.e., five parameters are estimated simultaneously. On the contra- 
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Table 1  
The |RRMSE| of estimators of GEV time-dependent parameters  

by the ML and WLS methods 

Parameters  
of the MC generator RRMSE  [%],   H = T = GEV 

 	t = 1?t + 100 ML WLS 

N �t CS â  b̂  ĉ  d̂  â  b̂  ĉ  d̂  

50 

1?t + 25 
1.5 50.48 10.41 68.49 48.32 48.31 10.46 51.43 45.51 
2.0 50.31 10.33 81.61 61.37 46.72 10.32 57.90 52.95 
3.0 49.13 9.99 96.67 67.12 47.51 10.56 69.09 63.69 

1?t + 50 
1.5 76.17 18.34 96.18 43.48 72.82 18.04 82.11 40.87 
2.0 71.41 17.39 81.97 50.03 71.44 17.88 98.14 45.46 
3.0 73.20 17.23 160.11 61.66 74.01 18.26 107.28 56.08 

1?t + 100 
1.5 131.67 37.24 512.81 65.74 119.58 34.36 140.38 37.65 
2.0 129.57 35.51 462.24 70.53 116.22 33.43 158.71 46.11 
3.0 127.63 34.89 204.11 76.02 122.45 34.82 190.48 52.87 

100 

1?t + 25 
1.5 22.97 8.55 23.42 31.87 22.80 8.50 26.69 38.49 
2.0 23.80 8.17 27.27 35.96 24.39 8.64 32.85 48.30 
3.0 22.67 7.75 33.64 41.39 23.75 8.39 39.49 61.95 

1?t + 50 
1.5 33.09 14.09 30.49 30.02 32.48 13.69 37.75 32.56 
2.0 32.39 13.57 34.71 31.45 32.20 13.51 44.09 38.76 
3.0 31.32 13.45 38.23 36.09 32.74 13.80 54.37 45.07 

1?t + 100 
1.5 54.84 31.04 72.20 50.87 50.25 28.72 60.36 31.64 
2.0 55.66 29.10 85.22 57.34 52.96 27.01 72.74 35.36 
3.0 53.08 26.45 94.84 57.29 51.87 26.89 87.21 46.45 

200 

1?t + 25 
1.5 12.80 7.17 13.41 26.82 12.85 7.20 15.36 36.81 
2.0 12.54 7.29 14.68 28.15 12.57 7.35 18.61 41.40 
3.0 12.18 6.69 16.17 29.21 12.67 6.81 15.43 28.47 

1?t + 50 
1.5 17.68 11.59 17.44 26.81 16.25 10.76 18.36 24.74 
2.0 16.42 11.02 17.97 26.26 15.28 9.79 23.58 28.29 
3.0 14.99 10.89 18.86 25.16 15.98 10.59 32.30 37.37 

1?t + 100 
1.5 28.89 26.88 30.27 26.72 26.66 25.34 28.69 24.26 
2.0 27.19 24.66 33.32 29.58 25.78 23.02 34.47 29.86 
3.0 23.97 21.14 33.52 32.58 24.22 21.45 44.28 38.89 
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Table 2 
The |RRMSE| and RB of estimators of GEV shape parameter (k)  

by the ML and TS methods 

Parameters of the MC generator H = T = GEV  [%] 

 	t = 1?t + 100 |RRMSE ( k̂ )| RBias ( k̂ ) 

N 	t k (CS) ML TS ML TS 

50 

1?t + 25 
–0.053 (1.5) 240.9 211.5 2.5 –41.6 
–0.108 (2.0) 122.8 105.6 5.3 –24.4 
–0.176 (3.0) 73.7 64.9 2.3 –19.5 

1?t + 50 
–0.053 (1.5) 249.1 217.5 14.1 –41.2 
–0.108 (2.0) 122.1 106.6 7.2 –26.5 
–0.176 (3.0) 82.4 69.2 48.2 –23.8 

1?t + 100 
–0.053 (1.5) 373.5 215.3 271.4 101.5 
–0.108 (2.0) 161.4 97.5 111.3 24.2 
–0.176 (3.0) 72.7 61.4 1.2 –1.3 

100 

1?t + 25 
–0.053 (1.5) 164.6 162.8 2.3 –21.3 
–0.108 (2.0) 77.6 74.2 0.2 –12.5 
–0.176 (3.0) 48.1 46.0 0.2 –11.1   

1?t + 50 
–0.053 (1.5) 167.3 144.9 59.0 6.5 
–0.108 (2.0) 77.1 72.2 14.6 –9.7 
–0.176 (3.0) 49.6 49.8 1.7 –12.3 

1?t + 100 
–0.053 (1.5) 354.8 183.5 306.6 123.7 
–0.108 (2.0) 157.3 80.3 132.6 43.6 
–0.176 (3.0) 76.6 45.4 58.2 10.1 

200 

1?t + 25 
–0.053 (1.5) 108.4 93.3 46.9 19.7 
–0.108 (2.0) 51.9 52.2 12.0 –1.2 
–0.176 (3.0) 29.8 32.9 –2.7 –5.3 

1?t + 50 
–0.053 (1.5) 158.4 108.9 115.0 50.4 
–0.108 (2.0) 63.5 49.4 37.6 9.9 
–0.176 (3.0) 31.0 33.5 3.4 –3.4 

1?t + 100 
–0.053 (1.5) 323.8 170.6 301.7 142.6 
–0.108 (2.0) 132.9 69.3 122.7 52.3 
–0.176 (3.0) 56.8 35.3 46.5 16.9 
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ry, the TS approach allows to focus on the estimation of just the shape 
parameter k by means of the L-skewness estimator (see Eq. B6), i.e., in the 
second stage of TS algorithm. In the TS method, as a result of the 
transformation (see Eq. 4), one deals with the i.i.d. sample with  my = 0  and  
�y = 1. According to the doctrine of parsimony in parameters, the separation 
of the shape parameter from the a, b, c, and d estimation should positively 
affect its accuracy and thus the competitiveness of the TS method for small 
and moderate-length time-series. 

As one can see from Table 2, the |RRMSE( k̂ )| of both methods does not 
show regular variations with the trend in the standard deviation but strongly 
decreases with increasing skewness (CS). As far as the estimator of k̂  is 
concerned, the advantage of the TS method over the ML method is vivid 
(see figures in bold for the RRMSE) and it extends even to longer series 
(N = 200). The values of bias of the k̂  estimator advocate towards strong 
advantage of the TS method over the ML one, when the series size is big. 

There is another reason why the ML approach to the NFFA should be 
used with special caution. Note that when a false model is assumed, the 
errors of ( k̂ ) by two approaches will definitely rise. However, the rise will 
be more spectacular for the ML method. 

5.3  The upper quantiles 
No doubt, the errors of the parameters influence the values of the |RRMSE| 
of upper quantiles. The vivid differences in the results by two competing 
methods can be observed for flood quantiles in Table 3. As an example, we 
discuss the selected quantile probability of non-exceedance, F = 0.99, which 
corresponds to the maximum flow of a 100-year return period. For brevity, 
as examples we present two moments in time (t) related to the series size 
(N), namely  t = N/2  and  t = N. These moments in time are particularly 
interesting when analysing the parameters of hydrologic structures within the 
context of time. The values of the quantiles’ relative root mean square error 
(|RRMSE( ˆFx )|) and relative bias for the two methods show that the TS 
method seems to be slightly superior, for hydrological size of time series, for 
100-years-flood quantiles (Table 3) regardless the size of the series (N). 

To recapitulate the numerical experiment, first it should be born in mind 
that its design takes into account the condition of asymptotic superiority of 
the ML estimates, as the generated series come from known distribution with 
known form of time-dependent moments, i.e., H = True. Despite this, it ap-
pears that the WLS exceeds the accuracy of estimates of time-dependent 
moments obtained by the ML method for hydrological lengths of time-series. 
Moreover, the TS method proved to be better in terms of stability and accu- 
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Table 3 
The |RRMSE( ˆFx )| and RB( ˆFx )  for  F = 0.99, t = N/2, and t = N  

by the ML and TS methods 

Parameters of the MC generator xF=0.99,   H = T = GEV 

�t = 1?t + 100  RRMSE ( ˆFx )  [%] RB( ˆFx )  [%] 

N 't CS t ML TS ML TS 

50 

1?t + 25 

1.5 
N/2 20.87 16.69 0.94 –0.65 
N 28.04 23.19 1.95 –0.99 

2.0 
N/2 23.17 17.96 1.86 –0.24 
N 30.96 24.86 2.97 –1.01 

3.0 
N/2 24.40 20.52 2.01 –0.56 
N 32.92 29.10 3.26 –2.09 

1?t + 50 

1.5 
N/2 24.34 19.20 1.81 –0.67 
N 31.79 27.06 1.35 –1.03 

2.0 
N/2 25.29 21.72 2.13 –0.59 
N 31.24 31.97 2.65 –0.56 

3.0 
N/2 27.01 23.73 1.69 –1.19 
N 35.34 33.71 2.33 –3.24 

1?t + 100 

1.5 
N/2 41.14 23.47 21.43 6.18 
N 51.27 35.20 22.68 6.90 

2.0 
N/2 38.86 24.49 19.04 4.34 
N 49.21 34.87 20.31 4.10 

3.0 
N/2 33.94 28.52 12.98 2.05 
N 43.56 42.06 13.40 1.23 

100 

1?t + 25 

1.5 
N/2 13.64 12.85 0.61 0.32 
N 16.64 16.52 1.05 0.59 

2.0 
N/2 15.45 13.95 1.18 –0.16 
N 18.75 18.86 1.74 –0.40 

3.0 
N/2 17.46 15.70 1.72 0.01 
N 20.92 21.45 2.52 –0.57 

1?t + 50 
1.5 

N/2 15.90 13.86 3.24 1.27 
N 18.17 18.37 2.07 1.60 

2.0 
N/2 17.02 15.06 3.93 0.52 
N 20.28 20.47 2.77 1.11 

to be continued 
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Table 3 (continuation) 
Parameters of the MC generator xF=0.99,   H = T = GEV 

�t = 1?t + 100  RRMSE ( ˆFx )  [%] RB( ˆFx )  [%] 

N 't CS t ML TS ML TS 

100 

1?t + 50 3.0 
N/2 18.42 17.88 –0.04 0.26 
N 21.46 24.78 –0.45 –0.34 

1?t + 100 

1.5 
N/2 35.20 17.45 23.42 7.03 
N 38.39 23.25 23.73 7.31 

2.0 
N/2 34.91 18.18 22.48 5.89 
N 39.33 26.62 22.90 6.44 

3.0 
N/2 30.21 19.34 16.95 3.23 
N 35.53 27.98 16.98 1.50 

200 

1?t + 25 

1.5 
N/2 10.80 9.97 2.11 1.45 
N 12.21 12.03 2.01 1.56 

2.0 
N/2 11.28 11.22 1.03 0.35 
N 12.71 13.54 0.80 –0.01 

3.0 
N/2 11.37 12.57 –1.11 0.09 
N 12.87 15.21 –1.08 –0.35 

1?t + 50 

1.5 
N/2 13.62 11.10 5.94 2.97 
N 14.47 13.83 4.52 3.24 

2.0 
N/2 12.81 11.82 2.46 1.75 
N 14.06 15.24 2.15 1.95 

3.0 
N/2 12.49 13.81 1.25 0.64 
N 13.90 17.76 1.14 0.78 

1?t + 100 

1.5 
N/2 26.78 13.88 21.01 7.46 
N 28.24 17.06 21.01 7.40 

2.0 
N/2 23.90 14.19 17.88 6.48 
N 25.68 18.55 17.91 6.64 

3.0 
N/2 19.20 14.84 10.26 4.07 
N 20.83 20.20 10.16 3.73 

 
racy of the shape parameter and upper quantiles calculation stemming from 
the ultimate simplicity of the algorithms. In addition, the TS is easier to 
implement in a practical calculation soft-package even for seasonal approach 
(see Kochanek et al. 2012). Therefore, bearing in mind all the drawbacks of 
the ML approach, regardless of its sound theoretical background, in practical 
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situations it is safer to use the TS approach for the presented case of a three 
parameter pdf with trend in the two first moments, because it gives similar 
results but with the lower cost of implementation. This thesis will be 
discussed in detail also in the next section, concerning practical application 
of both approaches. 

6. ESTIMATION  OF  TRENDS  AND  FLOOD  QUANTILES   
FOR  REPRESENTATIVE  POLISH  RIVERS 

Two pieces of software developed by the authors, based on the ML and TS 
methods, were used to estimate trends in moments and quantiles for three 
gauging stations located on three Polish rivers differing with regard to flood 
regime: Warsaw–Nadwilanówka (1921-2010) at the middle course of the 
River Vistula, Pozna� at the River Warta (1822-2010), and Nowy Targ at the 
River Dunajec (1921-2010). The location of the gauging stations is presented 
on the map of Poland in Fig. 1, whereas the values of the annual maxima are 
shown in diagrams in Fig. 2. The annual maxima (AM) flows of the first 
station originate either from summer or winter seasons, of the second station 
– in vast majority from winter seasons, and in the third station (representing 
mountain regime) from the summer seasons. The River Warta daily stage 
records in Pozna� (from the year 1822 till now) is the longest in Poland and 
one of the longest in Europe. The three AM time-series do not reveal 
statistically significant “shifts” due to the construction of upstream 
reservoirs, change of the land cover, water transfers, water intakes, etc. 

Fig. 1. Map of Poland with three selected gauging stations. 



W.G. STRUPCZEWSKI  et al. 
 

222

Fig. 2. Maximum annual peak flows for three selected gauging stations. 

In Table 4, for the three AM time-series, the ML estimates of parameters 
of the non-stationary mean and standard deviation were displayed together 
with respective WLS estimates for the set of alternative distributions: 
3p-Log-Normal, Pearson type 3, Gumbel, Generalised Extreme Value 
(GEV), Generalised Logistic (GLD), and Weibull. Table 4 confirms that the 
ML estimates of time-dependent moments are strongly distribution-
dependent, which leads to the paradox: for the same time series but with dif-
ferent PDFs the trends differ in their values and even in directions. It is, un-
doubtedly, the weakness of this approach, because the model (distribution 
function) is usually fitted to the sample by means of more or less subjective 
methods, whereas the true form of the model remains unknown. Moreover, 
the ML estimates of slopes ( ˆ ˆ,a c ) may even differ in sign. For example, for 
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Table 4 
Estimators of trends in mean and standard deviation  

for three exemplary Polish gauging stations 

River Gauging 
station N PDF 

ML WLS 
a b c d a b c d 

V
is

tu
la

 

W
ar

sa
w

 
N

ad
w

ila
nó

w
ka

 

90

Log-Normal –8.3 3407.8 0.6 1288.7

–8.1 3391.7 3.5 1049.3 

Pearson type 3 –1.7 3022.9 3.7 1014.3
Gumbel* –8.4 3386.6 1.5 1134.0
GEV –8.7 3415.3 0.9 1250.7
GLD –9.8 3585.1 –0.4 1904.7
Weibull –1.0 3156.9 0.3 1343.9

SD 3.87 202.90 1.44 308.63 0.0 0.0 0.0 0.0 

W
ar

ta
 

Po
zn

a�
 

189

Log-Normal –1.5 567.0 –1.5 455.0

–1.8 596.3 –2.0 486.3 

Pearson type 3 0.0 436.4 0.0 313.5
Gumbel –1.6 564.1 –1.4 372.8
GEV –1.5 569.9 –1.8 550.0
GLD –1.5 593.0 –3.0 950.0
Weibull* –0.8 563.1 –0.8 471.1

SD 0.63 56.23 1.01 226.57 0.0 0.0 0.0 0.0 

D
un

aj
ec

 

N
ow

y 
Ta

rg
 

90

Log-Normal* 0.0 172.6 –0.6 176.8

0.0 167.7 –1.2 182.4 

Pearson type 3 0.0 170.0 0.0 122.1
Gumbel 0.0 163.2 -0.4 126.6
GEV 0.1 173.8 –0.5 240.9
GLD 0.1 187.3 –2.3 901.1
Weibull –0.8 230.1 –1.0 194.2

SD 0.33 24.45 0.78 300.88 0.0 0.0 0.0 0.0 

*)Best fitted PDF in terms of the AIC. 

the Warsaw–Nadwilanówka gauge the Generalised Logistic Distribution 
(GLD) gives the negative trend in standard deviation (c = –0.4) while for the 
other models this trend is positive. Similar situation is observed for Nowy 
Targ and Weibull distribution function which is the only one giving a 
negative trend in mean (a = –0.8), and the other models show zero or 
minimal positive trend. Such a qualitative variability of the ML estimators 
undermines the credibility of the results of non-stationary flood frequency 
design and reveals, hidden by distributional assumption uncertainty range of 
the estimators. All these lead to the very dangerous conclusion that by 
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manipulating with a variety of distribution models, one can obtain the 
“desired” results. In addition, there is no guarantee that the calculated trend 
will continue in the future, especially if its sign is negative. 

Obviously, three gauging stations do not constitute a sample representa-
tive enough to draw any general conclusions, but still it is worth noting that 
the trend in mean for the three gauging stations is either negative or close to 
zero. On the other hand, the trends in standard deviation reveal bigger varia-
bility from relatively big negative value for Pozna� and Nowy Targ to a big 
positive value for the Warsaw–Nadwilanówka. 

Table 5 
The coefficient of skewness estimators for three exemplary Polish gauging stations 

Coefficient of skewness (CS) 

River Gauging  
station N PDF ML TS 

Vistula Warsaw 
Nadwilanówka 90 

Log-Normal 1.66 1.20 
Pearson type 3 1.66 1.08 
Gumbel 1.14 1.14 
GEV 1.65 1.22 
GLD 70.71 2.03 
Weibull 1.01 0.99 
CV (GLD excluded) 0.23 0.08 

Warta Pozna� 189

Log-Normal 2.92 2.77 
Pearson type 3 1.49 1.95 
Gumbel 1.14 1.14 
GEV 13.89 4.50 
GLD N.E. 43.78 
Weibull 1.97 1.94 
CV (GLD excluded) 1.26 0.52 

Dunajec Nowy Targ 90 

Log-Normal 3.53 0.00 
Pearson type 3 1.61 0.00 
Gumbel 1.14 1.14 
GEV N.E. –0.02 
GLD N.E. –114.52 
Weibull 1.58 0.02 
CV (GEV and GLD excluded) 0.54 1.96 

Explanation: N.E. – non existing. 
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The issue of significance of the detected trends within the context of cli-
mate change deserves here a few words of comment. A typical hydrological 
sample size implies large uncertainty and that is why the smoking gun proof 
of the climate-change-induced trends based on statistical analysis of floods  
 

Table 6 
The upper quantiles estimators for selected moments in time 

for three exemplary Polish gauging stations 

Quantiles x(F, t)  [m3/s] 
ML TS 

t = N/2 t = N t = N/2 t = N 
Ri-
ver 

Gauging 
station N PDF F=0.9 F=0.99 F=0.9 F=0.99 F=0.9 F=0.99 F=0.9 F=0.99 

V
is

tu
la

 

W
ar

sa
w

 
N

ad
w

ila
nó

w
ka

 

90 

Log-
Normal 4710.2 7485.7 4371.0 7201.1 5390.9 7715.8 5336.3 7966.8 

Pearson 
type 3 4533.3 6666.3 4677.5 7105.4 5397.1 7490.9 5343.2 7712.4 

Gumbel 4573.7 6771.4 4281.5 6599.2 5380.3 7668.2 5324.2 7913.0 
GEV 4647.1 7372.0 4306.7 7114.0 5396.5 7787.3 5342.5 8047.7 
GLD 4847.5 9757.0 4388.5 9249.5 5334.5 8529.2 5272.4 8887.2 

Weibull 4971.3 7178.9 4942.2 7169.2 5391.5 7258.4 5336.9 7449.2 

CV 0.04 0.15 0.06 0.13 0.00 0.06 0.01 0.06 

W
ar

ta
 

Po
zn

a�
 

189 

Log-
Normal 786.2 1604.6 480.7 929.1 1020.3 1912.6 488.4 832.3 

Pearson 
type 3 849.0 1536.7 849.0 1536.7 1034.5 1725.0 493.9 760.0 

Gumbel 726.6 1167.4 402.7 601.2 956.4 1469.7 463.7 661.6 
GEV 774.4 1817.6 478.5 1050.2 1003.9 2034.0 482.0 879.1 
GLD 790.5 2172.3 499.7 1288.8 981.0 2154.1 473.2 925.4 

Weibull 1028.0 1961.3 850.7 1606.1 1034.8 1720.6 494.0 758.3 

SD 0.13 0.21 0.34 0.33 0.03 0.13 0.03 0.12 

D
un

aj
ec

 

N
ow

y 
Ta

rg
 

90 

Log-
Normal 337.7 754.4 309.1 654.4 427.7 770.2 324.8 528.3 

Pearson 
type 3 332.7 579.7 332.7 579.7 431.4 709.1 326.9 492.0 

Gumbel 303.5 498.9 278.5 437.5 406.6 637.2 312.2 449.3 
GEV 335.3 914.0 324.5 848.0 423.8 809.7 322.4 551.8 
GLD 348.4 1096.5 330.9 984.4 414.3 872.0 316.8 588.8 
Weibull 396.4 701.5 305.5 525.3 431.6 697.1 327.1 484.9 

SD 0.09 0.29 0.07 0.31 0.02 0.11 0.02 0.10 
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data does not exist yet (Hattermann et al. 2013, Kundzewicz et al. 2014). 
Since there is a strong pressure to assess expected changes for engineering 
practice with regard to ensuring an adequate safety level of hydraulic 
structures, the climate change is assumed to cause trends in flood regime 
(even weak). To account for trends in the most reasonable way, one should 
find the appropriate time-dependent upper quantiles of peak flows which are 
the base of design procedures. The trends cannot be assessed apart from the 
data; it is important to avoid other sources of uncertainty, i.e., the 
distribution choice and its parameters estimation as long as possible.  

Table 5 provides a comparison of the asymmetry coefficient estimators 
( ĈS ) of both methods for various alternative models of the three analyzed 
time-series. In the case of the ML method, the shape parameter of a distribu-
tion model (but Gumbel) is estimated together with time-dependent mo-
ments’ parameters (a, b, c, d) by solving the ML equations and then ĈS  is 
computed from it. 

In the TS method, after WLS estimation of time-dependent parameters of 
moments and then the estimation of L-moments skewness (
3) from the 
sample given by Eq. 4, the coefficient of asymmetry is computed from the 
functional relationship  CS = �(
3)  for a given distribution. As can be seen 
from a comparison of Table 5, the TS estimates of CS are mostly less 
sensitive to the distribution choice than ML estimates (compare the CS 
values in bold). 

Table 6 shows the values of the upper quantiles estimators for the select-
ed moments in time  t = N/2  and  t = N. As one can see, the TS method pro-
duces in general higher values of quantiles estimators than the ML one. 
Interestingly, the variability of the quantile estimates with regard to model 
choice is by far lower for the TS than for the ML approach (CV values in 
bold). This can be a fundamental fact supporting the use in the NFFA of the 
TS method rather than the ML one when the population model (PDF) of an-
nual flow maxima is unknown. 

7. CONCLUSIONS 
In the FFA as models of probability distributions the three-parameter 
functions containing location, scale, and shape parameter are assumed, when 
the length of the sample permits. In particular, non-stationary approach to 
the FFA (NFFA) makes sense only when appropriately long time-series is 
available. Since the values of upper quantiles are more sensitive to the 
change in standard deviation than to the change in the mean, in the NFFA a 
trend in both the mean and in standard variation is to be assumed. Due to the 
limited length of hydrological time-series, the skewness is usually 
considered to be time-independent. Similarly, the adoption of time-invariant 
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distribution function is indispensable for the NFFA. Keeping in mind the 
doctrine of parsimony in the number of parameters estimated to extend the 
FFA for non-stationarity case, only the two parameters have been added by 
introducing one of the possible options of a linear trend in both the mean and 
standard deviation. 

The purpose of this study was to compare the efficiency of the two 
NFFA methods, namely the two-stage method (TS), and the maximum like-
lihood (ML) with the presence of time as a covariate. The comparison was 
made by means of Monte Carlo (MC) simulation experiments assuming lin-
ear trends in the mean and standard deviation as well as using the data of 
three representative rivers in Poland. The same distribution served in MC 
experiments both as the parent (True) and hypothetical (False) distribution, 
which constitutes the most favourable case for application of ML method. 
The GEV distribution was taken for the purpose and the real hydrological 
conditions were maintained, e.g., parameters’ ranges, length of typical time 
series natural trends in mean, and standard deviation and moderate constant 
skewness. The accuracy of the two methods was analysed in respect to esti-
mates of time-dependent first two moments, time-invariant skewness, and 
time-dependent upper quantiles. The results of the experiment showed that 
the TS method generally proved to perform better than the ML one in terms 
of all three aspects listed above. Note, also, that although the WLS method-
ology (first stage of the TS) aims at samples of moderate value of skewness, 
the numerical experiment revealed its very good performance even for larger 
skewness coefficients (CS checked up to 3). Moreover, the TS is more nu-
merically stable, i.e., gives reliable results for every non-stationary time-
series, while the ML sometimes fails or gives results impossible to verify in 
practice. What is more important, as the TS estimates of time-dependent 
moments do not rely on the distribution function, the estimates of skewness 
and, additionally, of time-dependent upper quantiles are less sensitive to dis-
tributional choice than in the ML method, as demonstrated for the Polish riv-
ers’ case studies. All these, together with the simplicity of algorithm, elevate 
the status of the TS approach above other methods used in the non-stationary 
FFA (NFFA). One can expect to get a similar result of the comparison of 
methods for any other three-parameter distributions with linear trend in first 
two moments. While the increase in the number of estimated parameters en-
larges further the dominance of the TS method in all these respects. And, 
conversely, the reduction of the estimated parameters reduces the competi-
tiveness of the TS method as such. For instance, the Gumbel distribution 
with linear trend in the mean reveals the advantage of the ML method (e.g., 
Clarke 2002a, b). Dominance of the TS is expected to be greater in the natu-
ral conditions when we do not know the true distribution, so the hypothetic 
distribution is false, and asymptotic properties of the ML method do not 
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hold. Then the ML parameter estimates are additionally biased by the model 
error, which may badly affects their accuracy. 

For Polish rivers’ case studies assuming various distributions, similarly 
to the MC experiments, the competition between the two methods was car-
ried out in three criteria: dispersion of results of trends in mean and standard 
deviation, dispersion of the skewness coefficients, and time-dependent 
quantiles. In all three criteria the Polish case study also confirms the predom-
inance of the TS over the ML approach, since the dispersion (CV, SD) of the 
TS results by different assumed PDFs is generally smaller than for the ML 
approach. The annual peak flow series of Polish rivers are mixtures of sum-
mer and winter flows, and for some cases there is no clearly dominant sea-
son. Note that both NFFA methods, i.e., the ML and TS, can be extended in 
the seasonal approach to modelling of annual peak flows. In such cases it is 
advisable to use the seasonal approach to flood frequently modelling 
(Strupczewski et al. 2012, Kochanek et al. 2012), but its detailed description 
exceeds the scope of this paper. 

The Polish case study revealed relatively large values of trends in mean 
and standard deviation. These point out that the use of stationary FFA would 
lead to the evident simplification, erroneous results, and decisions. So, when 
we know that the process is non-stationary, non-stationary methods should 
be also used for the analysis. On the other hand, the non-stationary model-
ling of complex hydrological phenomena is still difficult. Despite the gradual 
progress (e.g., Montanari et al. 2013, Hall et al. 2014, Vogel et al. 2013, 
Machado et al. 2015), this area still involves huge efforts to meet the re-
quirements of flood risk assessment in a non-stationary water regime. 
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A p p e n d i x  A  

The Weighted Least Squares (WLS) method 

The principle of the WLS method is based on the minimisation of sums of 
weighted squared deviations of observed and estimated moments, where the 
weights are reciprocals of their expected values. 

For the first moment we get 
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Applying the WLS method in respect to the second central moment, we 
have: 
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tA  which for the 
distribution with the time invariant skewness takes the form 
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The conditions of minimum of the sum of weighted squares � �(1)� tWS  

with respect to the g vector of parameters are: 
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and of weighted squares � �(2)� tWS  with respect to h are 
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Note that each of two sets of equations contains both time dependent 
mean (mt) and variance  � �2

2 ( ) t	 t �� , i.e., they would be solved jointly un-

less the standard deviation is assumed constant. 
The WLS, being conceptually quite distinct from the ML-method, coin-

cides with the ML method in the case of normally distributed data. In this 
case, a simple presentation of the WLS as a problem of the ML-estimation is 
possible. 

A p p e n d i x  B  

Generalized Extreme Value (GEV) distribution  
and its summary statistics 

The probability density distribution function (e.g., Rao and Hamed 2000): 

 � �
1 11
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and its cumulative distribution function (CDF): 

 � �
1

exp 1 kx uF x k
�

� �
�� �! "� � �� 	


 �! "
# $

 (B2) 

where u, a, k are the parameters of location, scale and shape, respectively. 
The first two conventional moments 
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The coefficient of asymmetry (skewness), see also Fig. B1: 
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Since the trend is introduced to the two first moments (	 and �), the pa-
rameters of the GEV distribution function should be presented as a function 
of those moments and a time-independent shape parameter, k = k(CS): 
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Fig. B1. Relationships of GEV skewness measures. 
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Fig. B2. The GEV quantile sensitivity to parameters regarded to the probability of 
non-exceedance. 

 � � ,� � � k� ?  (B5) 
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The first two L-moments (e.g., Hosking and Wallis 1997): 
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The L-skewness coefficient  
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The quantile function, i.e., the inverted Eq. B2 
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The quantile function in (	, �, k) re-parametrisation: 

 � �x F 	 � �� � ? ? � � �� ,� � k F� ? ?  (B10) 
where 
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The sensitivity of the quantile function to the two first moments: 

 1 ,x
	
2 �
2

    �x � �
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2
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For the parameters used in the Monte Carlo experiment, k = –0.053,  
–0.108, and –0.176 (CS = 1.5, 2.0, 3.0), the relationship of the sensitivity to 
the probability of non-exceedance is presented in Fig. B2. 
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