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A b s t r a c t  

We constructed an aeolian soil database across arid, semi-arid, and 
dry sub-humid regions, China. Soil particle size distribution was meas-
ured with a laser diffraction technique, and fractal dimensions were cal-
culated. The results showed that: (i) the predominant soil particle size 
distributed in fine and medium sand classifications, and fractal dimen-
sions covered a wide range from 2.0810 to 2.6351; (ii) through logarith-
mic transformations, fractal dimensions were significantly positive 
correlated with clay and silt contents (R2 = 0.81  and 0.59,  P < 0.01), and 
significantly negative correlated with sand content (R2 = 0.50,  P < 0.01); 
(3) hierarchical cluster analysis divided the plots into three types which 
were similar to sand dune types indicating desertification degree. In a 
large spatial scale, fractal dimensions are still sensitive to wind-induced 
desertification. Therefore, we highly recommend that fractal dimension 
be used as a reliable and quantitative parameter to monitor soil environ-
ment changes in desertified regions. This improved information provides 
a firm basis for better understanding of desertification processes. 

Key words: desertification, aeolian soil, particle size distribution, 
fractal dimension. 
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1. INTRODUCTION 
Desertification means land degradation in arid, semi-arid, and dry sub-humid 
areas resulting from various factors including climatic variations and human 
activities (UNEP 1994). In China, desertified lands usually lie in the regions 
above 35° N with an annual precipitation < 450 mm (Wang et al. 2008). The 
latest Bulletin by the State Forestry Administration, P.R. China, has declared 
that desertification regions in China cover 2.62 million km2, accounting for 
more than 27% of the total landmass (SFA 2011). Desert expansions and 
remediation strategies have already been studied in China (Chen and Tang 
2005, Wang et al. 2008). However, land desertification does not only cause 
expansions of desert landscape, but also soil structure damage and functional 
losses on a smaller scale (Zha and Gao 1997). Therefore, the recovery of soil 
structures and functions to sustain plant and animal life and desert ecosystem 
development has drawn increasing attention recently (Duan et al. 2004, Li et 
al. 2007, Chen and Duan 2009, Jiao et al. 2011). 

Soil particle size distribution (PSD) is one of the fundamental attributes 
of soil systems (Hillel 1980). Soil PSD affects the movement and retention 
of water, solutes, heat, and air (Su et al. 2004), and is widely used as a basis 
for estimating soil texture, organic carbon, nutrients, and hydraulic proper-
ties (Tyler and Wheatcraft 1990, Skaggs et al. 2001 Arrouays et al. 2006, 
Reynolds et al. 2006). Therefore, characterizing soil PSD with a single index 
that retains more information, as well as changes that occur due to desertifi-
cation, is an approach of great interest when dealing with soil data (Su et al. 
2004).  

Numerous studies have developed mathematical models for estimating 
soil PSD (Buchan 1989, Nemes et al. 1999, Skaggs et al. 2001, Hwang et al. 
2002). However, in these studies, the irregular and nonlinear structures of 
soil systems have been simply ignored as indescribable, although they could 
provide a much better representation of many natural phenomena (Man-
delbrot 1983). In the 1960s, Mandelbrot (1967) created fractal geometry to 
describe the complex natural world, characterized by irregularity, self-
similarity, and nonlinearity, and firstly provided a fractal model to describe 
soil PSD and its variations (Mandelbrot 1983). Following this, fractal arith-
metic was more and more often applied to identify soil PSD and additional 
environmental changes (Turcotte 1986, Tyler and Wheatcraft 1992, Craw-
ford et al. 1993, Wang et al. 2005, Gao et al. 2014a). Among these studies, 
the common feature of fractal measurements is the use of fractal dimensions 
to characterize soil PSD (Gui et al. 2010). The latest studies of soil systems 
on the fractal dimensions of PSD have demonstrated that fractal dimensions 
significantly correlate with the various soil particles contents, and imply the 
variations in soil porosity, organic matter, and nutrient content following a 
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linear trend (Su et al. 2004, Liu et al. 2009, Gui et al. 2010, Jin et al. 2013, 
Gao et al. 2014b). Fractal dimensions are considered to be more sensitive 
than soil texture, organic matter, as well as fertility in reflecting the varia-
tions in soil systems (Su et al. 2004, Fu et al. 2009), and become important 
in understanding and quantifying soil degradation and dynamics on different 
spatial scales (Jin et al. 2013). However, former studies have always focused 
on the variations in fractal dimensions on a smaller spatial scale; the uncer-
tainty of variation on a larger spatial scale creates space for further develop-
ments of the use of fractal dimensions. 

In desertification regions, wind-induced changes in soil PSD are drastic. 
Frequent and intense wind erosion sorts soil fractions, removing fine parti-
cles and leaving coarse-textured soil behind (Lobe et al. 2001). In this paper, 
we analyzed soil PSD and the fractal dimensions of topsoil from the 
desertified regions of northern China. The objectives of this study were: 
(i) to characterize soil PSD using fractal dimensions, (ii) to examine if fractal 
dimensions of soil PSD can represent the variations in soil systems over a 
large spatial scale, and (iii) additionally to assess desertification trends and 
the efforts of anti-desertification solutions in desertified regions of northern 
China. 

2. MATERIAL  AND  METHODS 
2.1  Soil information 
A soil database was established from the field-based investigation of aeolian 
topsoil. It included 39 sampling plots from 7 field stations covering Horqin 
Sandland, Mu Us Sandland, Kubuqi Desert, Tengger Desert, Hexi Desert, 
and Gurbantunggut Desert across arid, semi-arid, and dry sub-humid regions 
of northern China (Table 1). In each sampling field, 3 sub-plots were se-
lected for topsoil sample collection; in each sub-plot, 5 topsoil samples were 
randomly collected at a depth of 0-5 cm. Additionally, the sampling posi-
tions were all on the flat tops of sand dunes to eliminate the effects of micro-
physiognomy. In total, 585 topsoil samples qualified. 

2.2 Soil analysis 
All soil samples were air-dried and passed through a 2 mm sieve prior to 
laboratory analysis. To indentify soil PSD information, the topsoil samples 
were pretreated in an H2O2 solution (30%, w/w) to destroy organic matter. 
Then, soil aggregates were dispersed by adding sodium hexametaphosphate 
(NaHMP) and sonicatied for 30 s (Wang et al. 2006, Gui et al. 2010). Fi-
nally, soil PSD data was obtained with a laser diffraction technique using a 
Malvern Instrument MS 2000 (Malvern, England) with a measurement range 
and error  of 0.02-2000 �m  and < 2%, respectively.  Each sample was meas- 
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Table 1  
General information of the selected plots  

in arid and semi-arid regions of northern China 

Plot 
 

Land use 
 

Sand 
dune 

Vegetation type
 

Planta-
tion 

duration 
[years]

Soil type
 

Altitude 
[m] 

Location 
 

Region 
 

1 Woodland Fixed Pinus sylvestnis 35 Aeolian 
soil 207 N42°41.15�, 

E122°33.1� 
Horqin 

Sandland 

2 Woodland Fixed Pinus densiflora 35 Aeolian 
soil 209 N42°41.03�, 

E122°33.3� 
Horqin 

Sandland 

3 Woodland Fixed Pinus densiflora 
var zhanguensis 22 Aeolian 

soil 203 N42°41.22�, 
E122°33.87�

Horqin 
Sandland 

4 Grassland Semi-
mobile

Caragana 
microphylla – Aeolian 

soil 244 N42°48.10, 
E122°33.10�

Horqin 
Sandland 

5 Farmland – Zea mays 25 Aeolian 
soil 240 N42°48.07�, 

E122°33.17�
Horqin 

Sandland 

6 Grassland Semi-
mobile

Artemisia 
halodendron – Aeolian 

soil 358 N42°56.40�, 
E120°42.97�

Horqin 
Sandland 

7 Woodland Semi-
mobile Populus simonii 14 Aeolian 

soil 435 N42°33.18�, 
E120°27.23�

Horqin 
Sandland 

8 Woodland Semi-
mobile

P. simonii, 
Hedysarum 
fruticosum 

7 Aeolian 
soil 625 N42°23.83�, 

E119°47.30�
Horqin 

Sandland 

9 Shrubland Fixed H. fruticosum 11 Aeolian 
soil 611 N42°23.89�, 

E119°47.64�
Horqin 

Sandland 

10 Shrubland Semi-
mobile C. microphylla 11 Aeolian 

soil 610 N42°23.89�, 
E119°47.64�

Horqin 
Sandland 

11 Shrubland Semi-
mobile C. microphylla 29 Aeolian 

soil 491 N42°59.94�, 
E119°39.75�

Horqin 
Sandland 

12 – Mobile Salix gordejevii,
H. fruticosum 16 Aeolian 

soil 581 N43°04.27�, 
E119°16.81�

Horqin 
Sandland 

13 Woodland Fixed Pinus 
tabuliformis 25 Aeolian 

soil 1396 N39°18.64�, 
E109°49.22�

Mu Us 
Sandland 

14 Shrubland Semi-
mobile

Salix 
psammophila 39 Aeolian 

soil 1340 N39°11.13�, 
E109°46.97�

Mu Us 
Sandland 

15 Shrubland Semi-
mobile H. fruticosum 27 Aeolian 

soil 1323 N39°08.17�, 
E109°44.02�

Mu Us 
Sandland 

16 Shrubland Semi-
mobile

Artemisia 
sieversiana, 
H. fruticosum 

34 Aeolian 
soil 1336 N39°08.09�, 

E109°32.04�
Mu Us 

Sandland 

17 Shrubland Fixed Sabina vulgaris — Aeolian 
soil 1304 N38°58.86�, 

E109°18.16�
Mu Us 

Sandland 

18 Shrubland Semi-
mobile H. fruticosum 10 Aeolian 

soil 1386 N38°54.86�, 
E108°23.71�

Mu Us 
Sandland 

to be continued 



 FRACTAL  FEATURE  OF  SOIL  PSD  IN  DESERTIFIED  CHINA 
 

5 

Table 1 (continuation) 

Plot 
 

Land use 
 

Sand 
dune 

Vegetation type
 

Planta-
tion 

duration 
[years]

Soil type
 

Altitude 
[m] 

Location 
 

Region 
 

19 Shrubland Semi-
mobile Salix cheilophila – Aeolian 

soil 1419 N38°56.67�, 
E108°08.75�

Mu Us 
Sandland 

20 Shrubland Fixed Caragana 
korshinskii 12 Aeolian 

soil 1476 N39°33.79�, 
E108°40.44�

Mu Us 
Sandland 

21 Grassland Fixed Phragmites 
communis – Aeolian 

soil 1522 N37°42.40�, 
E107°14.18�

Mu Us 
Sandland 

22 – Mobile Agriophyllum 
squarrosum – Aeolian 

soil 1545 N37°42.00�, 
E107°13.19�

Mu Us 
Sandland 

23 Woodland Semi-
mobile P. sylvestnis 12 Aeolian 

soil 1520 N37°42.49�, 
E107°13.85�

Mu Us 
Sandland 

24 Shrubland Semi-
mobile Salix mongolica 12 Aeolian 

soil 1519 N37°42.48�, 
E107°13.68�

Mu Us 
Sandland 

25 Shrubland Semi-
mobile

Hedysarum 
mongolicum – Aeolian 

soil 1501 N37°42.88�, 
E107°14.10�

Mu Us 
Sandland 

26 Shrubland Fixed C. korshinskii 27 Aeolian 
soil 1478 N37°43.87�, 

E107°13.12�
Mu Us 

Sandland 

27 Shrubland Fixed C. korshinskii 11 Aeolian 
soil 1463 N37°43.65�, 

E107°14.17�
Mu Us 

Sandland 

28 Shrubland Fixed C. korshinskii 7 Aeolian 
soil 1487 N37°43.23�, 

E107°13.89�
Mu Us 

Sandland 

29 Shrubland Semi-
mobile

H. fruticosum, 
A. sieversiana 14 Aeolian 

soil 1213 N40°16.37�, 
E108°30.64�

Kubuqi 
Desert 

30 – Mobile – – Aeolian 
soil 1075 N40°39.07�, 

E108°25.30�
Kubuqi 
Desert 

31 Shrubland Semi-
mobile

Artemisia 
ordosica 12 Aeolian 

soil 1349 N37°28.28�, 
E105°00.15�

Tengger 
Desert 

32 Shrubland Semi-
mobile

Hedysarum 
scoparium 12 Aeolian 

soil 1337 N37°28.11�, 
E104°59.65�

Tengger 
Desert 

33 Shrubland Semi-
mobile

Haloxylon 
ammodendron 24 Aeolian 

soil 1337 N39°21.09�, 
E100°07.90�

Hexi  
Desert 

34 Shrubland Semi-
mobile

Calligonum 
mongolicunl 22 Aeolian 

soil 1356 N39°21.13�, 
E100°08.17�

Hexi  
Desert 

35 – Mobile – – Aeolian 
soil 1384 N39°21.24�, 

E100°07.80�
Hexi  

Desert 

36 Shrubland Semi-
mobile

Calligonum 
mongolicunl 9 Aeolian 

soil 514 N44°36.31�, 
E088°07.77�

Gurbantu
nggut Ds. 

37 Shrubland Semi-
mobile H. ammodendron 30 Aeolian 

soil 475 N44°22.48�, 
E087°55.39�

Gurbantu
nggut Ds. 

38 Shrubland Semi-
mobile H. ammodendron 18 Aeolian 

soil 653 N44°11.73�, 
E089°32.75�

Gurbantu
nggut Ds. 

39 Shrubland Semi-
mobile H. ammodendron 13 Aeolian 

soil 678 N44°56.90�, 
E088°32.63�

Gurbantu
nggut Ds. 



G.-L. GAO  et al. 
 

6

ured 5 times and the arithmetic mean value was calculated and recorded. The 
analysis results of soil PSD were output with regards to the U.S. Soil Taxon-
omy of soil particle classification: 0-2, 2-50, 50-100, 100-250, 250-500, 500-
1000, and 1000-2000 �m. Further, clay, silt, and sand fractions were defined 
as 0-2, 2-50, and 50-2000 �m, respectively. Additionally, in this study, soil 
PSD refers to volume-base data. 

2.3  Data processing 
Based on the soil PSD data, volume-based fractal dimensions of soil PSD 
were subsequently calculated according to the fractal model of Wang et al. 
(2005) and Gui et al. (2010). The equation is expressed as: 

 
3

max

( )
,

D

i i

T

V r R R
V R

�
� ��

� � 	

 �
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where r is the soil particle size, Ri is the soil particle size of grade i, Rmax is 
the maximum value of soil particle size, V(r < Ri)  is the volume of soil par-
ticle size less than Ri, VT is the total volume of soil particles, D is the vol-
ume-based fractal dimension. 

In this study, the field plot and sub-plot were used as the basic study unit. 
The mean values of soil PSD data and fractal dimensions were identified for 
statistical analysis. Linear regression, hierarchical cluster and correlation 
analysis were performed to identify the relationships between D and soil par-
ticle fractions. Correlation analysis passed a 2-tailed test to distinguish the 
significant difference when evaluated at the level of  P < 0.01. All statistical 
analyses were conducted using the SPSS software (Version 17.0). 

3. RESULTS  AND  DISCUSSIONS 
3.1  Soil PSD and fractal dimension of soil PSD 
Based on the data measured by the Malvern Laser Diffraction Instrument, 39 
groups of soil PSD were classified (Table 2). There were considerable dif-
ferences in soil PSD among the 39 field plots. Furthermore, although there 
was large variability due to the differences in climate, desertification degree, 
as well as vegetation restoration solutions, the dominant soil particle classifi-
cation was the size of sand particles. Among them, fine sand and medium 
sand dominate sand particles, accounting for 39.59 and 22.02% of total frac-
tions, respectively. Accordingly, the content of clay fractions was much 
lower, ranging from 0.00 to 8.18% (mean value of 1.63%). Soils of this na-
ture are classified as aeolian soil, which is commonly found in arid, semi-
arid, and dry sub-humid regions of northern China. This finding resulted 
from long term wind-induced soil erosion and was consistent with the earlier  
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Table 2  
Soil PSD and fractal dimensions of soil PSD of different field station 
Plot Clay  [%] Silt  [%] Sand  [%] D 

1 2.86±0.25 33.91±7.99 59.88±8.24 2.4182±0.0701 
2 3.33±0.36 38.45±0.84 58.22±0.71 2.3606±0.0314 
3 3.11±0.54 37.83±5.10 59.05±5.33 2.3880±0.1572 
4 1.34±0.11 15.49±2.45 83.16±2.40 2.3376±0.0057 
5 1.86±0.62 14.65±6.62 83.49±7.19 2.4007±0.0794 
6 1.51±0.57 15.55±5.86 82.95±6.36 2.3658±0.0105 
7 1.13±0.19 10.66±1.50 88.21±1.69 2.3968±0.0252 
8 1.50±0.50 15.67±5.23 82.84±5.73 2.4414±0.0464 
9 2.90±1.25 24.96±8.95 72.14±10.21 2.5153±0.0468 

10 0.79±0.15 11.32±1.47 87.89±1.57 2.3695±0.0214 
11 0.75±0.16 7.76±0.86 91.48±1.01 2.2655±0.0298 
12 0.08±0.14 0.67±1.15 99.25±1.29 2.1685±0.0855 
13 3.17±0.12 27.65±2.31 69.18±2.23 2.5123±0.0025 
14 1.61±0.23 16.24±2.22 82.15±2.40 2.4062±0.0190 
15 1.06±0.27 9.50±1.51 89.44±1.74 2.3365±0.0386 
16 1.54±0.27 16.43±2.57 82.02±2.81 2.3991±0.0281 
17 3.15±0.41 38.67±4.31 58.18±4.29 2.5253±0.0172 
18 0.71±0.09 6.09±0.66 93.20±0.73 2.2580±0.0182 
19 2.24±0.40 18.97±2.21 78.90±2.51 2.4717±0.0128 
20 2.12±0.40 18.97±2.21 78.90±2.51 2.4480±0.0274 
21 0.77±0.35 6.48±0.10 92.75±0.26 2.2514±0.0745 
22 0.09±0.16 1.46±2.48 98.44±2.64 2.0810±0.0421 
23 0.32±0.37 4.54±4.34 95.14±4.70 2.1742±0.0848 
24 0.24±0.04 5.92±0.05 93.84±0.09 2.1901±0.0684 
25 0.49±0.35 5.76±0.65 93.76±0.92 2.2641±0.0283 
26 6.58±1.49 62.41±10.87 31.01±12.35 2.6351±0.0363 
27 4.08±0.03 30.94±2.92 64.99±2.89 2.5484±0.0027 
28 3.34±0.19 50.06±4.17 46.60±4.36 2.5408±0.0109 
29 2.68±0.06 9.81±0.70 87.51±0.75 2.4503±0.0010 
30 0.00±0.00 0.00±0.00 100.00±0.00 2.1766±0.0217 
31 0.17±0.30 4.21±3.74 95.62±3.95 2.2407±0.0402 
32 0.82±0.12 5.48±0.71 93.70±0.76 2.2672±0.0221 
33 2.81±0.55 10.37±0.94 86.82±1.49 2.4535±0.0297 
34 1.83±0.09 5.96±0.49 92.21±0.57 2.3801±0.0090 
35 0.11±0.18 0.22±0.38 99.67±0.57 2.1678±0.0804 
36 0.61±0.55 3.99±2.87 95.39±3.42 2.2558±0.0551 
37 1.56±0.04 10.84±2.54 87.61±2.54 2.3790±0.0087 
38 0.30±0.41 2.99±2.63 96.72±2.95 2.1525±0.1334 
39 0.00±0.00 0.18±0.26 99.82±0.26 2.2059±0.0607 
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studies on the basic mechanical composition of aeolian soil in China (Su et 
al. 2004, Ding 2010). 

Table 2 shows the calculated D values when Eq. 1 was applied to each 
soil data set. The D values covered a wide range from 2.0810 to 2.6351. Alt-
hough changes in D values varied significantly, there was a clear tendency 
among the different field sampling plots that D values were significantly 
affected by the degree of desertification in the investigated area. Generally, 
wind-induced desertification results in selective removal characterized by 
clay and silt particle loss; during this coarsening process, D values kept de-
creasing with the increasing degree of soil desertification. Accordingly, in 
this study, the fixed sand dunes usually had relatively higher D values (mean 
value of 2.4676), whereas lower D values were always found in the plots of 
mobile sand dunes (mean value of 2.1485). Furthermore, semi-mobile sand 
dunes had medium D values (mean value of 2.3243) between the fixed and 
mobile sand dunes. 

Vegetation solutions, not only natural but also artificial, had considerable 
effects on soil PSD and D values as well. Overall, anti-desertification solu-
tions had considerable increases in the fine fractions, and soil PSD recovered 
more as vegetation ages increased (e.g., Plots 26-28). These functions in soil 
PSD improvement and D value increases are addressed by two activities. On 
one hand, vegetation restoration solutions consumed erosive forces and car-
riage ability by increasing aerodynamic roughness lengths and threshold 
wind velocity, allowing the fine particles to be preserved. Furthermore, bio-
logical and physiological activity by vegetation such as photosynthesis, 
azotification, and litters decomposition also help soil systems to prosper.  

In short, fractal dimensions of soil PSD can provide additional infor-
mation regarding soil degradation among different stages of desertification 
as well as different solutions for anti-desertification efforts. 

3.2  Relationships between fractal dimensions and soil particle contents 
Through a log-log transformation, simple linear regression and correlation 
analyses were performed to identify the strength of correlations between D 
values and the contents of clay, silt, and sand particles (Fig. 1, Table 3). The 
determination coefficients (R2) of the linear regressions were high and 
ranged from 0.50 to 0.81; all the regression analyses passed a two-tailed test 
indicating the significant difference when evaluated at  p < 0.01. Specifically, 
a significant positive correlation occurred between logarithmic D values and 
clay fractions with  R2 = 0.81, P < 0.01 (Fig. 1A). Figure 1B showed a sig-
nificant positive correlation between logarithmic D values and silt fractions 
(R2 = 0.59, P < 0.01). By contrast, a significant negative correlations was ob-
served, with  R2 = 0.50, P < 0.01  between logarithmic D values and sand  
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Fig. 1. Relationships between D values and soil PSD. 
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Table 3  
Correlation coefficients between D values and soil PSD  

through a logarithmic transformation 

Soil properties Clay Silt Sand 

Correlation coefficients 0.900* 0.769* –0.704* 

*)correlation is significant at the 0.01 level (2-tailed) 

Table 4  
Plots division through a hierarchical cluster analysis 

Type Plots 
I 1, 3, 9, 13, 17, 26-28,  
II 2, 4-8, 10, 14, 16, 19-20, 29, 33-34, 37 
III 11-12, 15, 18, 21-25, 30-32, 35-36, 38-39 

 
fractions (Fig. 1C). This finding indicated that the selected removal of clay 
and silt fractions resulted in decreasing D values. For instance, the highest D 
value was found in Plot 26 which had the highest clay and silt contents (6.58 
and 62.41%) and lowest sand content (31.01%); the lowest D value corre-
sponded to Plot 22, which had lower clay and silt contents (0.09 and 1.46%) 
and higher sand content (98.44%). To further identify the relationship be-
tween D values and desertification, we conducted a hierarchical cluster 
analysis. The study plots were divided into three types based on D values 
(Table 4). Combining Table 1, the result indicated that Types I and III 
mainly covered fixed and mobile sand dunes, respectively. Type II was a 
transitional type, which was composed primarily of semi-mobile dunes. This 
tendency was also basically consistent with D value distribution among area 
with different degrees of desertification. 

Studies regarding soil fractal features are numerous and have led to a 
much greater understanding of soil environment changes affected by wind 
erosion in desertified regions. However, although these studies are helpful 
for estimating variations in soil PSD as well as other soil properties, such as 
soil organic carbon, nutrients, moisture characteristics, and hydraulic con-
ductivities, fractal models of soil PSD have not been explored in full. Spatial 
scale effects are one of the most important limitations. In former studies, 
field investigation always covered an independent and limited area, such as a 
plateau area, specific mountain, or and even an administrative region (Wang 
et al. 2006, Fu et al. 2009, Gao et al. 2014a, b). Whereas heterogeneity is a 
ubiquitous feature of ecological systems; soil properties including soil PSD 
usually change spatially and temporally (Millán 2007). Therefore, accurate 
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estimations of soil PSD information with fractal models when scaling up 
from plots to regions, while maintaining meaningful field-scale process de-
tails, remains a challenge. In this study, the sampling plots were all arid, 
semi-arid, and dry sub-humid regions in northern China. From the east to 
west, the straight-line distance is more than 3000 km. In this large spatial 
scale, fractal dimensions still significantly correlated with soil particles, and 
is demonstrated to be sensitive to soil texture and wind-induced desertifica-
tion. Breaking the restriction of fractal behavior, it is possible to make relia-
ble assessment of variations in soil PSD indicating soil environment changes 
at different spatial scales and especially on a large spatial scale. 

4. CONCLUSION 
In desertified regions of northern China, wind-induced land desertification 
and vegetation restoration significantly changed the soil PSD. The predomi-
nant soil particle sizes concentrated in fine and medium sand fraction classi-
fications accounted for more than 50% of total volume. Fractal analysis 
showed D values covered a wide range, from 2.0810 to 2.6351. Based on 
linear regression and correlation analysis, significant positive correlations 
occurred between logarithmic D values and clay and silt particle contents 
(R2 = 0.81  and 0.59, P < 0.01), in addition to significant negative correla-
tions between logarithmic D values and sand particle content (R2 = 0.50, 
P < 0.01). Hierarchical cluster analysis showed that the sorted plots were 
similar to sand dune types indicating desertification degree. On a large spa-
tial scale, D was still sensitive to the desertification processes by characteriz-
ing soil PSD and its variations. It was suggested that D could be used as a 
reliable and quantitative parameter to monitor soil systems, and significantly 
implied land desertification. This improved information contributes to a bet-
ter understanding of desertification processes in China. 
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