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Abstract

The problem of a sinusoidal wave crest striking an adverse slope due
to gradual elevation of the bed is relevant for coastal sea waves. Turbulence
based RANS equations are used here under turbulence closure assumptions.
Depth-averaging the equations of continuity and momentum, yield two dif-
ferential equations for the surface elevation and the average forward veloc-
ity. After nondimensionalization, the two equations are converted in terms
of elevation over the inclined bed and the discharge, where the latter is a
function of the former satisfying a first order differential equation, while
the elevation is given by a first order evolution equation which is treated by
Lax-Wendroff discretization. Starting initially with a single sinusoidal crest,
it is shown that as time progresses, the crest leans forwards, causing a jump
in the crest upfront resulting in its roll over as a jet. Three cases show that
jump becomes more prominent with increasing bed inclination.

Key words: surface waves, shallow water waves, inclined bed, turbulence,
unsteady flow, breaking waves.

1. INTRODUCTION

Free surface waves on a layer of water, incident upon an adverse slope, has
been of theoretical interest for several decades due to recurring occurrence of

Ownership: Institute of Geophysics, Polish Academy of Sciences;

© 2015 Bose. This is an open access article distributed under the Creative Commons Attribution-
NonCommercial-NoDerivs license,

http://creativecommons.org/licenses/by-nc-nd/3.0/.



TURBULENT SURFACE WAVE STRIKING AN ADVERSE SLOPE 1091

tsunamis and other coastal water wave phenomena. Assuming inviscid irrota-
tional motion governed by Laplace’s equation, detailed theoretical analyses are
given in Stoker (1957). Inclusion of viscosity and bed friction using Navier-
Stokes equations together with the laws of Chezy, Manning or Strickler for
bed friction are treated in Mader (2004). Following the devastating Indonesian
tsunami in the year 2004, Kundu (2007), has presented different aspects of wa-
ter wave propagation. Unsteady waves climbing an adveresely sloping bed are
essentially turbulent in nature. In the hydraulic engineering literature, steady
and unsteady open channel flows are extensively studied modelled by an equa-
tion of continuity and a St. Venant momentum equation (Chow 1959). Strelkoff
(1969), Yen (1973), and Basco (1987) also deal with integration of these equa-
tions. Bose and Dey (2007) on the other hand, give a systematic investgation
of the two dimensional unsteady curvilinear free surface flows, based on the
Reynolds Averaged Navier Stokes (RANS) equations, using reasonable turbu-
lence closure assumptions. By this procedure, they obtained explicit equations
for the depth-averaged equation of continuity and a nonlinear PDE for the mo-
mentum equation that generalises the St. Venant equation. Subsequently, Bose
and Dey (2009) generalised the method to treat the case of undulating erodible
bed to provide a theory of dune and antidune propagation.

The shallow water equation and the St. Venant equations require numerical
treatment. Such treatments are described in Abbott (1979), Cunge et al. (1980),
Benque et al. (1982), and Mader (2004). Fennema and Chauhry (1990) adopted
the McCormack scheme for the solution of the two dimensional shallow water
equations. Garcia-Navarro et al. (1992, 1995), on the other hand, developed up-
wind TVD scheme for the one and two dimensional shallow water equations.
Finite difference semi-implicit scheme was developed by Casulli and Cheng
(1992) and Casulli and Stelling (1998), while an implicit scheme was put for-
ward by Namin et al. (2001). Chen (2003) developed a novel free-surface cor-
rection method for two dimensional flows. Xing and Shu (2005) have designed
a new high order finite difference WENO scheme for these equtions. In finite
element methods, Katopodes (1984) developed a dissipative Galerkin scheme,
while Quecedo and Pastor (2003) treated the case of one dimensional equations
over inclined and curved beds.

With the objective of studying the propagation of tidal bores upstream of
esturine rivers, Bose and Dey (2013) presented a theory of a surging flow over
an adverse slope. The theory is based on the RANS equations following Bose
and Dey (2007, 2009) for the predominantly turbulent motion. Integration over
the depth leads to continuity and momentum equations for the surface eleva-
tion 77 and average forward velocity U. The system of differential equations
is numerically solved by replacing the time dervatives by second order finite
difference formulae and integrating the ordinary differential equations in the
forward space variable by the Runge-Kutta method. In this paper, the evolution
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of a travelling sinusoidal wave crest striking an adverse slope is studied by the
same methodology. Here though the full equations can be developed as in Bose
and Dey (2013), for numerical computations of the evolving wave form, the con-
tribution of the instantaneous vertical acceleration is neglected in comparison
to the convective vertical acceleration. This results in reducing the size of the
new momentum equation. The bed friction term is also neglected, because of
its smallness in the problem. A new numerical technique is adopted here. Intro-
ducing the nondimensional elevation of the free surface above the inclined bed
tobe ¢ and q to be the nondimensional discharge, the continuity and the mo-
mentum equations are expressed in terms of ¢ and ¢. It could then be shown
that ¢ is a function of ¢, i.e. ¢ = F({) where F satisfies a first order ODE
obtained from the momentum equation. Solution of this equation coupled with
the continuity equation, which becomes a one dimensional evolution equation
that can be treated by a Lax-Wendroff type scheme. The numerical solution is
graphically presented at certain time steps, which show the crest to be leaning
forward, resulting in sharp rise of the next crest. The rising crest rolls over as a
jet due to forward velocity.

2. BASIC EQUATIONS OF TURBULENT SHALLLOW WATER WAVE
MOTION OVER INCLINED BED

A free sinuoidal wave propagating on a layer of water of uniform depth )
approaches the base of a rising plane bed at an angle [, striking it normally.
In the definition sketch, Fig. 1, the origin of coordinates is taken at the base of
the inclined bed and the x-axis is taken horizontally, while the y-axis is taken
vertically upwards. The equation of the bed is therefore h = xtan 3, x > 0
and h=0, x <0.

The quantities of primary interest in the evolving waves are the surface el-
evation 1 above the x-axis and the depth-averaged streamwise flow velociy U.

Fig. 1. Definition sketch of a wave striking an inclined bed.
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Since the generated wave motion is turbulent, the appropriate procedure is to
base the theory on RANS equations as in Bose and Dey (2009) for flows on
undulating bed. In the treatment of such curvilinear turbulent flow, the normal
acceleration at a point is assumed to be that due to the convective part only, ne-
glecting the contribution from the instantaneous vertical acceleration. Though
the contribution of the term can be retained (Bose and Dey 2013), its negligence
also leads to considerable simplification in the governing momentum equation.
The slopes |0n/0x| and |0h/Ox| are however considered finite, because the
smallness of the former slope is likely to be broken during the heaving motion
and formation of breaking waves as the incident wave encounters the adverse
slope. Thus, if (u,v) be the instantaneous velocity components in the two di-
mensional flow, the two components can be split by Reynods decomposition
into the time-averaged part (@, ) and the fluctuating part (u’,v’) in the forms

u(x7 y’ t) = ﬂ(x7 y’ t) + u/(x7y7 t) ) /U(':l:7 y? t) = /l‘_}('r’y’ t) + U,(x7 y’ t) (1)

where ¢ is the time. The time-averaging of the equation of continuity yields the
equations
ou  0v ou o
while the time-averaging of the two-dimensional Navier-Stokes equations yield
the boundary layer approximated RANS equations
ouw _du _Ou  19p 107 Pu 0 —
E+u£+vaiy77;%+;87y+yaiy27%(u ) (3&)
0v ov  _dv  10p 10t v 0 —

e - -7 TV Y2y b
8t+u6m+vay pOy pox V8y2 8y(v) g (3b)

where p(x,y,t) is the time-averaged hydrostatic pressure, 7(z,y,t) the
Reynolds shear stress, that is —pu/v/, v the kinematic coefficient of vis-
cosity, and g the acceleration due to gravity. Equations (2) and (3a,b) form an
underdetermined system in five variables, namely, u,v,v’,v" and p, even if
we assume that the time averaged Reynolds stress components /2, v'2 and T
can somehow be separately computed. Consequently, additional assumptions
are required, on the basis of the charecteristics of the flow.

Firstly, the free surface flow is of shear type, in which it is assumed that the
streamwise gradients of the Reynolds stress are negligible, that is,

or 9 —= 0 —=
secondly, it is assumed that the contribution of the magnitude of the viscous

stress is much smaller than that of the Reynolds stress in the momentum equa-
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tions (4a,b) in terms of a slowly varying function (y — h)l/ P, p>>1. Con-
sequently from Eq. 4a, it follows that (Bose and Dey 2007)

1/p
_ 1+p y—h

where n(z,t) is the free surface elevation at (z,0) and U(x,t) =
(n—h)~* ["udy = depth-averaged velocity at (z,0). In Eq. 3b, on the other
hand, the turbulent and the viscous shear stress terms drop out on account of
Eq. 4. By a similar argument, an approximate expression for du/dz can be
constructed (Bose and Dey 2013), and Eq. 2 then yields

(1+p)/p
_ oUu (y—h
U:—(Tl—h)% (77—h> (6)

The above equation implies that if U diminishes with x, v becomes positive
(upwards), and if U increases with =, v becomes negative (downwards).
The continuity and the momentum equations 2 and 3a,b with % and ©
given by Eqgs. 5 and 7 are then averaged over the depth from h to 7. The
averaging of Eq. 2 leads to the depth-averaged equation of continuity

L= h)+ U] =0 @

Bose and Dey 2009), and for the depth-average of the forward momentum equa-
tion 4a, it can be shown that (Bose and Dey 2009)

A @; ol +g§) ay= "1 -mU ol -mrt @

where o = (1 + p)2/[p(2 + p)]. The contribution of the forward pressure
gradient term in Eq. 3a is evaluated by considering Eq. 3b. The convective term
in the latter equation yields by using Eq. 2

0%y
_ov . OV a3 _ 297y
U— +7T (usec® )k =1 922 9)
where tanty = v/ is the slope of the streamline of the time-averaged flow
through the point P(z,y) and 9%y/dz? is proportional to the curvature x of
the stream line at this point. Following Boussinesq, it is assumed that the second
derivative varies linearly from the bed level to the free surface, that is

%y _y—hom

0x2  n—h 0x2 " (10)
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Inserting Eqs. 10 with 11 in Eq. 3b and neglecting the instantaneous vertical
acceleration 0v/0t of the curvilinear flow, an integration with respect to y
from 7 to y yields

_ 2(1+p)/p
PP 1+p Pnlfy—nh —
R ) L= [ ) B Rl

where p = pg at the free surface y = 7. It therefore follows that

" op an |, . 2| 1 1+p 0%n dh
; - or dy = g(n— h)8 5, [U (n—h)* a2z | T3l Uln—h) 55~

(12)
where v = (1+p)?/[p(2+3p)]. The contribution of the viscous and Reynolds
shear stresses in Eq. 3a is

=D (13)

as the viscous and the Reynolds shear stresses vanish at the free surface and
the latter vanishes at the bed level as well. 7y in the above equation represents
the bed shear stress. Being an additional unknown parameter, it can only be
represented by a convenient empirical formula, such as that of Manning (Chow
1959). The effect of this stress, however contributes insignificantly to the surface
waves at the top, as was shown by Bose and Dey (2014) in the case of surface
gravity waves. Consequently it is dropped in the present analysis. The depth-
averaged forward momentum equation, under the approximations 4 therefore
becomes

oU oU (O dR\ D[ 0%

(n—nh) 5t —I—(20z—1)(7]—h)Ua +(a—1)U (&r dx)—!—’yax {U (n—h)? 2
L(1+p % dh on _

+2< » ) (_h)82d +9(n h)ax_o' (14)

In the above equation, p is approximately taken as 7 — a value that holds exactly
for flows on plane bed (Schlichting and Gersten 2000). This yields a ~ 1 and

~ 2/5. Also for motion over the inclined bed dh/dx = tan/ for = > 0.
Egs. 8 and 15 constitute the required continuity and momentum equations that
generalise the well known St. Venant equations.

3. WAVE MOTION OVER THE UPWARD INCLINED BED

When a horizontally travelling free surface wave strikes an adversely sloping
bed, a heaving motion with the formation of breaking waves follow as a result
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of tapering of the flow section. In order to numerically study the motion, the
following nondimensional variables are introduced:

LN . x - h A U . g
n= r=—, h= U= , t=t,]=. 15
770 7o 770 v 39"o Mo ( )

It is assumed that initially a sinusoidal wave form with a trough above the origin
of the inclination is incident on the inclined bed:

il =1+ asin k(i — éf) (16)

where @, k, ¢ are, respectively, the nondimensional amplitude, wave num-
ber and velocity of propagation of the wave. For the progress of the wave, the
equation of continuity 8 is then written in the form

¢
ot 896

(17)

where, ( = 0 — h and q=¢C U, respectively, represent the elevation above
the inclined bed and the discharge at the cross-section at . The momentum
equation 15, with o« =1, ~ = 2/5 then becomes

aSg LAp0 9? g

0%¢ 0
FUD (D) o

0&2 0%

aU aU
U=
U5

2
CU2

anf=0. (18)

From the above equation, U can be eliminated by setting U=q /C.

The solution of Egs. 17 and 18 is of the form ¢ = ((&,%), ¢ = ¢(&,1).
Assuming the existence of the inverse of this function pair, & = ((,q), f =
t(¢,q). Hence, q = q[2(¢, q), (¢, q)], whose solution if it exists is of the form

q=F(C) (19)

which means that the discharge at a position & at given time ¢ depends solely
on the elevation at that point and at that time. This physically plausible assump-
tions is sometimes assumed in surface wave propagation theory (Stoker 1957).
Substitution of Eq. 19 in Eq. 17 yields

¢ ¢

P52 =0 (20)
Similarly since
U FF'\ ¢
= —_( = F/2 T 21
(- )% .

aU _ / F\ G



TURBULENT SURFACE WAVE STRIKING AN ADVERSE SLOPE 1097

where the prime denotes differentiation with respect to ¢ and the subscript &
denotes partial differentiation with respect to &, Eq. 18 then becomes

2p 2<(1 . §<¢1) FF + (1 - §<2<z>3 - § tanﬂwz) F?

- <3<1 + tanﬂ) —0 (22
¢

where (; =: ¢, (zz =: ¢1, ¢1/¢ =: ¢2, and (3:4/Cz =: 3. Asin the case

of q, ¢, &1, @2, and ¢3 can be argued to be functions of (. The solution of

the quadratic equation yields the differential equation for F' as

(F' = (1+§C¢1>F+ [4C{(;¢1+; tanﬂqbz) +1% <¢3+§¢?>}F2
1/2
+<3(1+ta;ﬁ)] 23)

where the positive sign of the square root is taken to ensure increasing values
of the discharge ¢ for increasing values of the elevation (. Integration of the
ordinary differential equation 23 yields the discharge function F' for different
elevation profiles ( above the inclined bed. The elevation ¢ in turn is governed
by the evolution equation 20.

The evolution of the wave form 16 with time, as solution of Egs. 20 and 23
is sought numerically for ¢ = 0.2, ¢ = 0.2, and k = 7. The computation is
started at time £ = 0 with the profile 16, discretised by points at subinterval
length h = 0.1 over a wave cycle. The derivative functions ¢, ¢1, ¢2, and ¢3
are computed by second order finite difference formulae. Equation 23 is then
integrated by the fourth order Runge-Kutta formula. The latter procedure re-
quires values of the elevation ( at intermediate points other than the points of
discretization. This is accomplished by spline interpolation (Bose 2009). The
integration is initialised by taking F' = ¢ = 0.2 for ¢ = 1, as required by
Eq. 20. The values of F' are thus computed for the discrete data set of ( at
subintervals of 0.01 to cover all the elevations over the wave cycle. The deriva-
tivesof F, viz. F' and F”, are then computed by second order finite difference
formulae over the discrete values of (.

The temporal development of motion is given by the quasi-linear equa-
tion 20. For this equation, a second order Lax-Wendroff type scheme can be
developed:

n+l __ n r /(N n n T2 /(N 1 (1 n n\2
Cm — Cm - 5 F (Cm) (Cerl - mfl) + 5 F (Cm) § F (Cm)( m+1 Cm)

+F' () (Chr —2Ch + 1) (24
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where (', represents the elevation above the inclined bed at a point © = mh,
(m=0,1,2,3,...) attime ¢t =nk, (n=0,1,2,3,...) suchthat r = k/h.
A value of » = 1/2 is chosen as is the usual case with the Lax-Wendroff
method. Equation 24 yields the elevations at the next time step that requires the
values of F’(¢) and F”((]"). These are obtained by spline interpolation of
the earlier computed values of F’ and F”. The iterations are carried over a
number of cycles until a breakdown is indicated by negative argument of the
square root in Eq. 23.

In the above computation, the values of the bed inclination 3 are typically
taken as 1°, 3°, and 5°. The results are shown in Figs. 2, 3, and 4 as the wave
progresses at different times. In these figures the abscissa represents z and
the ordinate represents 7). Typically the crest of the wave progressively leans
forward, affecting the crest in front by a sharp rise in the elevation. Evidently,
such sharply rising crests — that possesses a forward velocity — leads to breaking
waves. The phenomenon becomes more pronounced as the bed elevation [
increases. The case of 5 = 0° (level bed) was also tried and a trend similar to

N\

B =1 (degree)
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o
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Fig. 2. Surface elevation at times 0.00, 0.05, 0.10, and 0.15.
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Fig. 3. Surface elevation at times 0.00, 0.05, 0.10, 0.15, and 0.20.
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Fig. 4. Surface elevation at times 0.00, 0.05, 0.10, 0.15, and 0.20.

that of 5§ = 1° was noticed. This shows that sinusoidal wave on a horizontal
bed is essentially unstable. This feature is in accordance with the recent finding
of Bose and Dey (2014) that periodic waves have a somewhat different form
that are akin to “waves of permanent shape” (Lamb 1932).

4. CONCLUSIONS

The purpose of this theoretical study is to examine the progression of a sinu-
soidal wave crest on a sheet of water as it meets an adversely inclined bed.
The angle of inclination of the bed is supposed to be small, like that in the
case of sea coasts. The motion in practice is turbulent in such cases, and as
such the theory is based on the two dimensional Reynolds Averaged Navier-
Stokes (RANS) equations. The RANS equations of conservation of mass and
momentum are closed together with some assumptions appropriate for the flow.
The equations thus lead to the 1/pth power law of variation in the vertcal y
direction for the forward time-averaged velocity « and an expression for the
time-averaged pressure p containing the gravitational hydrostatic part and an
additional term due to vertical convective acceleration under the power law.
The instantaneous vertical acceleration is neglected in comparison to the dom-
inant convective acceleration in the progressing heaving motion. This results in
considerable simplification of the final momentum equation as well. The two
conservation equations of mass and forward momentum are depth-averaged to
yield the required two equations in terms of the surface elevation 7 and the
depth-averaged forward velocity U. Converting the two equations in nondi-
mensional form, the equation pair is numerically treated for a sinusoidal wave
crested trough, by eliminating the nondimensional U in fovour of the nondi-
mensional discharge ¢. Arguing that ¢ can be considered a function of the
nondimensional elevation (, viz. ¢ = F((), the nonlinear momentum equa-
tion gets converted into a first order ordinary differential equation for F'(().
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The equation is treated by the fourth order Runge-Kutta method for appropriate
initial conditions of the problem. The mass conservation equation, on the other
hand, gets converted into a first order time evolutionary partial differential equa-
tion that can be treated by a method of Lax-Wendroff type, using the solution
for F'(¢). Using this coupled technique, the numerical solution shows that as
the sinusoidal wave crest advances, it leans forward leading to steep rise of the
crest in front after some time, resulting in its breaking due to the forward mo-
mentum. This feature becomes more prominent as the angle of elevation of the
inclined bed increases. A numerical test for a flat bed was also carried out and
it also exhibited this breaking unstable phenomenon for the sinusoidal wave, in
agreement with the finding of Bose and Dey (2014) that gravity waves on tur-
bulent channels have shape other than pure sinusoids. The numerical treatment
presented in this paper is new, different from the one adopted by Bose and Dey
(2013) for the case of surging flow up an incline as in the case of tidal bores.
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taking this research.
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