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A b s t r a c t  

A two-dimensional problem of quasi static deformation of a me-
dium consisting of an elastic half space in welded contact with thermo-
elastic half space, caused due to seismic sources, is studied. Source is 
considered to be in the elastic half space. The basic equations, governed 
by the coupled theory of thermoelasticity, are used to model for thermo-
elastic half space. The analytical expressions for displacements, strain 
and stresses in the two half spaces are obtained first for line source and 
then for dip slip fault. The results for two particular cases, adiabatic con-
ditions and isothermal conditions, are also obtained. Numerical results 
for displacements, stresses and temperature distribution have also been 
computed and are shown. 
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1. INTRODUCTION 
The elasticity theory of dislocation was developed and applied by Steketee 
(1958), Rongved and Frasier (1958), and Maruyama (1964, 1966). The prob-
lems related to seismic sources in elastic media have been studied exten-
sively by many researchers (Burridge and Knopoff 1964, Singh and Ben-
Menahem 1969, Singh 1970, Sato 1971, Singh et al. 1973, Sato and Ma-
tsu’ura 1973, Jovanovich et al. 1974a, b; Freund and Barnett 1976, etc.). The 
detailed description about seismic sources is given in the classical texts: Aki 
and Richards (1980), Ben-Menahem and Singh (1981), Lay and Wallace 
(1995), and Stein and Wysession (2003). 

Singh and Garg (1985) studied the static deformation of an isotropic 
multilayered half space by a normal line load and a shear line load.

 
Singh 

and Garg (1986) described the representation of two-dimensional seismic 
sources and obtained the integral expressions for the Airy stress function in 
an unbounded medium due to various two-dimensional sources and repre- 
sented the sources in terms of jumps across the plane through the sources. 
Garg and Singh (1987) extended the results of Singh and Garg (1985) by 
considering the multilayered half space as transversely isotropic. Pan 
(1989a, b) provided a unified solution of the static deformation of the trans-
versely isotropic and layered half space by general surface loads. Rani et al. 
(1991) extended the work of Singh and Garg (1986) and obtained closed 
form analytical expressions for the displacements and stresses at any point of 
a uniform half space due to two-dimensional buried sources by applying the 
traction free boundary conditions at the surface of the half space. 

Okada (1985, 1992) provided compact analytical expressions for the sur-
face deformation and internal deformation due to inclined shear and tensile 
faults in a homogeneous isotropic half space. Heaton and Heaton (1989) ob-
tained the deformation field induced by point forces and point force couples 
embedded in two Poissonian half spaces in welded contact. Singh et al. 
(1992) derived closed form expressions for displacements and stresses in 
two welded half spaces caused by two-dimensional sources. Many other re-
searchers discussed source problems for different types of sources viz. 
Kumari et al. (1992), Singh et al. (1993, 2003), Garg et al. (1996, 2003), 
Tomar and Dhiman (2003), Kumar et al. (2005), Singh et al. (2005), and 
Madan et al. (2005). 

Thermoelasticity deals with dynamical systems whose interactions with 
the surroundings include not only mechanical work and external work but al-
so the exchange of heat. Theory of thermoelasticity studies the influence of 
temperature of an elastic medium on the distribution of stress and strain as 
well as the inverse effect of the deformation on the temperature distribution. 
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Attempts have been made to study source problems in thermoelasticity. 
However, most of such studies are attributed to internal and surface heat 
sources, (e.g., Lanzano 1986a, b, Dziewonski and Anderson 1981, Rundle 
1982, Small and Booker 1986, Abd-Alla 1995, Shevchenko and Gol’tsev 
2001, Kit et al. 2001, Youssef 2006, 2009, 2010, Mallik and Kanoria 2008, 
Hou et al. 2008a, b, 2009, 2011, Kumar and Gupta 2009, Attetkov et al. 
2009, etc.). Some authors have considered mechanical sources also; e.g., Pan 
(1990) considered quasi-static governing equations of thermoelasticity and 
discussed the transient thermoelastic deformation in a transversely isotropic 
and layered half space by surface loads and internal sources. Kumar and Ra-
ni (2004) considered a dynamical two-dimensional problem of thermo-
elasticity and studied the deformation due to mechanical and thermal sources 
in generalized thermally conducting orthorhombic material. Ghosh and 
Kanoria (2007) derived analytical expressions for thermoelastic displace-
ments and stresses in composite multi-layered media due to varying temper- 
ature and concentrated loads. Quasi-static deformation of a thermoelastic 
medium due to seismic sources or quasi static mechanical sources has not 
been studied so far. 

For a realistic Earth model, it is appropriate to involve thermoelastic me-
dium in the model. The study of quasi static deformation of a thermo- elastic 
medium, in welded contact with an elastic medium, due to seismic sources is 
important for its geophysical applications. The theory developed in this pa-
per may find its applications in seismic faulting. When the source surface is 
very long in one dimension in comparison with the other, the use of two-
dimensional approximations is justified and consequently calculations are 
simplified to a great extent and one gets a closed form of analytic solution. 
A very long strip source and a very long line source are the examples of such 
two-dimensional sources. 

In this paper, quasi static deformation of a medium consisting of a homo- 
geneous isotropic thermoelastic half space in welded contact with a homo-
geneous elastic half space, due to a line source and dip slip fault in an elastic 
half space, is studied. Numerical results for displacements, stresses and tem-
perature distribution are presented graphically. The present problem is useful 
in the field of geomechanics where the interest is about the various phenom-
ena occurring in the earthquakes and measuring of displacements, stresses, 
and temperature field due to the presence of certain sources. 

2. FORMULATION  OF  THE  PROBLEM 
Consider a medium consisting of thermoelastic half spaces (z � 0) and an 
elastic half space (z � 0) which are in welded contact along the plane  z = 0, 
as shown in Fig. 1. A line source parallel to the x-axis passing through the 
point (0, 0, –h) in the elastic half space is considered. 
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Fig. 1. A line source through the point (0, 0, –h). 

A two-dimensional plane strain problem in yz-plane is considered so that 
the displacement components can be written as: 

 ( , , ) , ( , ) , 0 .i i xu u y z t i y z u� � �  (1) 

3. BASIC  EQUATIONS  AND  THEIR  SOLUTIONS 
3.1  For thermoelastic half space 
The stress strain relations for a thermoelastic medium (Nowacki 1975) are 
given by: 

 2 , , , , , ,ij kk ij ij ij i j k x y z� �� � 	� 
��� �  �  (2) 

where �ji and �ij are components of stress and strain tensor, respectively, �, � 
are Lame’s constants,  
 = (3� + 2	)�t  is the thermoelastic coupling coeffi-
cient, � is the temperature difference, and �t is the coefficient of linear ther-
mal expansion. 

The stress components for a plane strain problem in the yz-plane are  
given by: 
 2 ,yy kk yy� �� 	� 
�� �   (3a) 

 2 ,zz kk zz� �� 	� 
�� �   (3b) 

 2 ,yz yz� 	��  (3c) 
where 

 � �1 2 .
2( )kk yy zz� � � 
�

� 	
� � �

�
 (3d) 

The strain components can be represented as: 
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 02 (1 ) ,yy yy zz	� � � �� � ��   �  (4a) 

 02 (1 ) ,zz zz yy	� � � �� � ��   �  (4b) 

 2 ,yz yz	� ��  (4c) 

where  
2( )

��
� 	

�
�

  is Poisson’s ratio and  �0 = (1 – 2�)
 . 

The equations of equilibrium for thermoelastic medium, in the absence 
of body forces, are 
 , , 0 ,yy y yz z� �� �  (5a) 

 , , 0 ,zy y zz z� �� �  (5b) 

and the compatibility equation is 

 , , ,2 .yy zz zz yy yz yz� � �� �  (6) 

Using Eqs. 4 and 5 in Eq. 6, we get 

 � �2 2 0 ,yy zz� � ��� � � �  (7) 

where 

 
2 2

20
2 2

(1 2 ) , .
2(1 ) 2(1 ) y z

� �� 

� �

 � �
� � � � �

  � �
 

The heat conduction equation can be written as 

 � �0 , 0 0 , , , ,ii e kkC T i k y z� � � � 
 �  � �� �  (8) 

where �0 is the thermal conductivity, Ce is the specific heat, � is the density, 
and T0 is the temperature at natural state. 

The stress function U is defined as: 

 
2 2 2

2 2, , .yy zz yz
U U U

y zz y
� � �� � �

� � � 
� �� �

 (9) 

Using Eqs. 3d and 9 in Eqs. 7 and 8, we get 

 � �2 2 2 0U ��� � � �  (10) 

and 

 � �
2

2 20 0
0 0 .

( ) 2( )e
T T

C U

 


� � � �
� 	 � 	

� �
�  �  � �� �� �� �

� �  (11) 

Equations 10 and 11 imply that 

 2 2 0c
t

��� ��  � �� ��� �
 (12) 
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and 

 2 4 0 ,c U
t
�� ��  � �� ��� �

 (13) 

where 

 
12 2

0 0 0 0
0 .

(1 2 ) 2 (1 )e
T T

c C
� �

� �
	 � 	 �


� �

� � �   ! "
 (14) 

The general solution of Eq. 12 may be written as 

 1 2 ,� � �� �  (15) 
where 

 2 1
1c

t
�

�
�

� �
�

 (16) 

and 
 2

2 0 .�� �  (17) 

Similarly, the general solution of Eq. 13 can be expressed as: 

 1 2 ,U U U� �  (18) 
where 

 2 1
1

Uc U
t

�
� �

�
 (19) 

and 
 4

2 0 .U� �  (20) 

Equations 16, 17, 19, and 20, with the time dependence as e–i#t, can be 
written as 

 2
1 1 0 ,i

c
#� �� � �  (21) 

 2
2 0 ,�� �  (22) 

 2
1 1 0 ,iU U

c
#

� � �  (23) 

 4
2 0 ,U� �  (24) 

where �1, �2, U1, and U2  are functions of y and z only. 
Application of Fourier transform to Eqs. 21-24, solution of the resulting 

differential equations, inversion of Fourier transform and further simplifica-
tion leads to 

 � �1 2
0

sin
,

cos
mz kz ky

A e A e dk
ky

�
$

  � �
� � � �

� �
%  (25) 
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 � �� �1 2 3
0

sin
,

cos
mz kz ky

U B e B B kz e dk
ky

$
  � �

� � � � �
� �

%  (26) 

where 

 
1/ 2

2 , Re( ) 0im k m
c
#� ��  &� �

� �
 

and Ai, Bi  may be functions of k. Equation 9 gives 

 � �� �2 2 2 3
1 2 3 3

0

sin
2 ,

cos
mz kz

yy

ky
m B e B k B k B k z e dk

ky
�

$
  � �

� �  � � �
� �

%  (27) 

 � �� � � �2
1 2 3

0

sin
,

cos
mz kz

zz

ky
B e B B kz e k dk

ky
�

$
  � �

� � � � �
� �

%  (28) 

 � �� �� �2
1 2 3 3

0

cos
.

sin
mz kz

yz

ky
mB e B B k B k z e k dk

ky
�

$
  � �

� �  � � �� �
%  (29) 

Making use of Eqs. 25 and 26 in Eqs. 10 and 11, we get 

 
2 2

1 1 1
( ) ,

2 2
m k iA B B

c
#

� �


�  �  (30) 

 2
2 3

0

2( )
,uA k B� �

�


�  (31) 

where 

 
2

0 0
2

0 0

.
2

(1 2 )

u

e

T
TC

�
� �

�	 �
	 �

� �
� �

�� �� �

 (32) 

The displacement components can now be written as: 

 � �� �1 2 3
0

cos
2 (2 2 )

sin
mz kz

y u

ky
u B e B B kz e k dk

ky
	 �

$
  � �

�  � �  � � �� �
%  (33) 

and 

 � �� �1 2 3
0

sin
2 (1 2 ) .

cos
mz kz

z u

ky
u mB e B B kz ke dk

ky
	 �

$
  � �

� � �  � � �
� �

%  (34) 

The heat flux in z-direction is found as 

 � �0 , 0 1 2
0

sin
.

cos
mz kz

z z

ky
q mA e kA e dk

ky
� � �

$
  � �

�  � � � �
� �

%  (35) 
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3.2  For elastic half space 
A homogeneous isotropic elastic medium can be characterized by the shear 
modulus (��) and the Poisson’s ratio (��). The plane strain problem for an iso-
tropic elastic medium can be solved in terms of the Airy stress function ' 
such that 

 
2 2 2

2 2, , ,yy zz yz y zz y
� � �� ' � ' � '( ( (� � � 

� �� �
 (36) 

where ' satisfies the biharmonic equation 

 2 2 0� � ' �  (37) 

and ij� (  are the components of stress tensor. 
Let there be a line source parallel to the x-axis passing through the point 

(0, 0, h) of the elastic half space (z < 0). The Airy stress function for a line 
source parallel to the x-axis passing through the point (0, 0, h) in an un-
bounded isotropic elastic medium (Singh and Garg 1986), can be expressed 
in the form 

 � �0 1 2
0

sin
.

cos
k z h ky dkS S k z h e

ky k

$
 � � �

' � � � � �
� �

%  (38) 

The source coefficients S1 and S2 are independent of k. 
The source coefficients for different types of sources, as given in Singh 

and Garg (1986), are given in Table 1. In this table, the upper sign is for 
z > h, the lower sign is for  z < h  and 

 1 .
2(1 )

�
�

( �
(

 

The Airy stress function for the elastic half space can now be written as 

 � �0 1 2
0

sin
,

cos
kz ky

C C kz e dk
ky

$ � �
' � ' � � � �

� �
%  (39) 

where the unknowns C1, C2 are to be determined from the boundary condi-
tions. 

Using Eqs. 36, 38, and 39, the stresses are obtained as 

� � � �) *1 2 1 2
0

sin
2 2 ,

cos
k z h kz

yy

ky
S S k z h e C C kz ke kdk

ky
�

$
 � � �� �( � �  � � � � �� � � �! "! " � �

%  (40) 

� � � �1 2 1 2
0

sin
,

cos
k z h kz

zz

ky
S S k z h e C C kz ke kdk

ky
�

$
 � � �� �( �  � � � � � �! " � �

%  (41) 
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Table 1  
Values of coefficients for different types of sources 

Source S1 S2 
Upper or lower 

solution 

Single couple (yz) 
2�

yzF
�  

2�
yzF

�(+  upper 

Single couple (zy) 
2�

zyF
+  

2�
zyF

�(+  upper 

Double couple  (yz) + (zy) 
Fyz = Fzy = Dyz 

0 
�

yzD
� (+  upper 

Centre of rotation 
Fyz = Fzy = Ryz �

yzR
+  0 upper 

Dipole (yy) � �1
2�

yyF
�(

2�
yyF

� (  lower 

Dipole (zz) � �1
2�

zzF
� (

2�
zzF

�(  lower 

Centre of dilatation (yy) + (zz)
(Fyy = Fzz = C0) 

� � 01
�

C
� ( 0 lower 

Double couple (zz) – (yy) 
( )yy zz yzF F D(� �  0 

�
yzD

�
(

(  lower 

 

� � � �) *1 2 1 2
0

cos
1 1 .

sin
k z h kz

yz

ky
S S k z h e C C kz ke kdk

ky
�

$
 � � �� �( � +   �  � �� � � �! "! " � �

%  (42) 

The corresponding displacement components are 

 
� �) *
� �) *

1 2

0 1 2

2 2 cos
2

sin2 2

k z h

y kz

S S k z h e ky
u dk

kyC C kz ke

�
	

�

 �$ � �( �   � � ��  ( ( � � ��  ( � � �  �! "
%  (43)

 
and 

 
� �) *

� �) *
1 2

0 1 2

1 2 sin
2 .

cos1 2

k z h

z kz

S S k z h e ky
u dk

kyC C kz ke

�
	

�

 �$ � �(+ �  � � � ��  ( ( � � ��  ( � ��  �  ! "
%  (44) 

4. BOUNDARY  CONDITIONS 
The boundary conditions at the plane  z = 0  are 

 , , , and .yz yz zz zz y y z zu u u u� � � �( ( ( (� � � �  (45) 
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Further, if the heat flux is not exchanged at the interface, then 

 0 , at 0 .zq z� �  (46) 

It is noticed from Table 1 that the source coefficients S1 and S2 have dif-
ferent values according to  z >  h  and  z <  h. Let S1(and S2( be the values 
of S1 and S2 respectively, for z >  h. The boundary conditions 45 and 46 
yield the system  

 � �1 2 3 1 2 1 2 2 ,khmB kB kB kC kC S S S kh e( ( (�  � � �  �  (47) 

 � �1 2 1 1 2 ,khkB kB kC S S kh e( (�  � �  (48) 

� � � � � �1 2 3 1 2 1 2 2 22 1 2 1 2 2 ,kh
u r r rkB kB k B kC k C S S kh S S e� 	 	 � 	 � ( ( ( ( ( (� �     � �  �

  (49) 

� � � � � �1 2 3 1 2 1 2 2 21 2 1 2 2 ,kh
u r r rmB kB k B kC k C S S kh S S e� 	 	 � 	 � ( ( ( ( ( (� �  �   � � � 

  (50) 

 1 2 0 ,mA kA� �  (51) 

where  �r = �/��. 
 

On solving these equations, we have 

� � � �

1 2 2 1

2 2 2
1 2 2 1 2 3 2

1 2 1
1 1 2 2 2 1 2 2

( ) , ,
2

, 1 , ,
2 2

(1 ) , (2 2 ) ,
2

kh

kh kh kh

kh kh

mA Q k m S e A A
k

P S QS k m QB QS e B S S kh e B S e
k m k k k m k

P S PC S S kh P Q e C S S S kh e
k k k

�


  

 

, (� � � 

� �( ( � �, �� �( ( ( (� �   � �  , ��  � �� � � � � �! "
(� �( ( ( ( (�  � � � � , �  ��  ! "

  (52) 

where 

 
1 2 1 3

2
2

1 3

4 31
, 1 , ,

1 3 4 1
2( )

, , .
( ) ( ) 1

u rr

r r r

u

P P P P

P kQ
P P m m k

� 		
	 	 � 	

� �- -
�

 
� �  �

(�  


� , � �

�, � 

 (53) 

Substituting the values of Ai, Bi, Ci’s from Eqs. 52 in Eqs. 27-29, 33-34, 
40-44, and 25, we get the integral expressions for the stress components and 
displacement components in Medium I and II, and the temperature differ-
ence in Medium I in terms of the source coefficients S1( and S2(. 
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These integrals can be solved numerically for arbitrary values of #. 
However, analytical solutions can be found for two particular cases: 

Case (i)  # . �  which further implies that no net flow of heat takes 
place, i.e., the adiabatic condition. 

Case (ii)  # . 0  which further implies that � . 0, i.e., the isothermal 
condition. 

5. VERTICAL  DIP  SLIP  DISLOCATION 
Following Maruyama (1966), the double couple  (yz) + (zy)  is equivalent to 
a vertical dip slip dislocation so that its moment can be represented as 

 ,yzD b ds	(�  (54) 

where b is the slip and ds is the width of the line dislocation. 
From Table 1, we have 

 1 20 , ,
� 2�(1 )

yz yzD D
S S �

�
( ( (� � �

(
 (55) 

with the stipulation that in the representation of integrals, the upper sign is to 
be selected. 

The results for the two limiting cases, # . $  and  # . 0, are obtained 
in analytical form as follows: 

Case (i)  Adiabatic case 

� � � �1
2 2 2 2 2

1

1 tan ,
� 2

yzD y yU P Q P h Q z
z h R

� � �� �(� � �  ��  � ��� �! "
 (56) 

� � � � � �
2

2 2 2 24 2
1 1

( )3 5 3 8 ,
�

yz
yy

D y z hP z h Q z h Q z P h
R R

�
�

( � ��
� �  � � �  

! "
 (57) 

 

) *
3

2 2
2 2 2 22 2 4

1 1 1

8( )( )1 1 ( )( ) ( 7 ) (7 ) ,
� 2

yz
yz

D Q z P h z hz hQ P P z h Q z h
R R R

�
�

( � � ��
�  � �  � ��  

! "
  (58) 

� �
2

2 2 2 24 2
1 1

( )( 3 ) ( ) 8 ,
�

yz
zz

D y z hP z h Q z h Q z P h
R R

�
�

( � ��
�  �   � �  

! "
 (59) 

 

� �
2

0
2 2 2 24 2

1 1

( )( 3 ) 5 3 4 ( ) 8 ,
2 �

yz
yy

D y z hP z h Q z h z h Q z P h
R R

� � -
� �

	 �

( � �� �� � �
� �  � �  � � �  � �� �

�  � �� �! "
  (60) 
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) *
3

2 2
2 2 2 22 2 4

1 1 1

8( )( )1 1 ( )( ) ( 7 ) (7 ) ,
2 � 2

yz
yz

D Q z P h z hz hQ P P z h Q z h
R R R

�
�

	

( � � ��
�  � �  � ��  

! "
 

  (61) 

� �
2

0
2 2 2 24 2

1 1

( )( 3 ) ( ) 4 ( ) 8 ,
2 �

yz
zz

D y z hP z h Q z h z h Q z P h
R R

� � -
� �

	 �

( � �� �� � �
�  �   �  � � �  � �� �

�  � �� �! "
  (62) 

/ 0 � �
2

2 2 4 2 22 2
1 1

1 1 ( )( 3 ) ( ) 4 ( ) 2 ,
2 � 2

yz
y

D z hu P z h Q h z Q z h Q z P h
R R

�
	

( � ��
�  � �   �  �  

! "
 

  (63) 

� � � �2 2 4 2 22 2
1 1

1 ( )4 2 ,
2 � 2

yz
z

D y z hu P Q Q Q z P h
R R

�
	

( � ��
�  � � �  

! "
 (64) 

2 4
1

( ) ,
�

yzD y z hQ
R

� -�
�

( � � �
�  � �

� �
  (65) 

where  2 2 2
1 ( )R y z h� � � ,  2 2 1 3Q P PP� ,  and  4 2 (1 )uQ Q ��  . 

 

For the above limiting case, the solutions for the elastic half space are 
obtained as follows: 
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where 2 2 2
2 ( )R y z h� �  . 

Case (ii)  Isothermal case 
To obtain the results for this particular case, we define  
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The expressions for stress components and displacement components for the 
present case of isothermal are similar to that for the Case (i) if we replace Q2 
by Q1 and Q4 by Q3. These results coincide with the corresponding expres-
sions for a source in an elastic half space in welded contact with another 
elastic half space (Singh et al. 1992). 

6. NUMERICAL  RESULTS  AND  DISCUSSION 
Equations 57-64 and 67-74 can be used for computing the stresses, strain and 
displacements in the two half spaces under adiabatic (thermal equilibrium) 
conditions. The temperature difference is given by Eq. 65. To obtain the re-
sults for the stresses, strain, and displacements under isothermal conditions, 
Q2 and Q4 are changed to Q1 and Q3 respectively, in Eqs. 57-64 and 67-74. 
Following Aki and Richards (1980) and Ahrens (1995), the parameters for 
thermoelastic medium (Pyrope rich garnet) are taken as 

 
10 1 2 10 1 2 5 1

3 2 1 2
0

8.51514 (10) kg m s , 11.4508 (10) kg m s , 3.11 (10) K ,

3620 kg m , 1000 K , 1076 m K s , (3 2 ) .
t

e tT C

	 � �
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 � 	 �

     

  

� 4 � 4 � 4

� � � � �
 

  (76) 

For the elastic half space, the Poisson ratio (�() is taken as 0.25. To make 
the quantities dimensionless, the followings are defined 
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 (77) 

The displacements, strain and stresses generated by a vertical dip-slip dislo-
cation located at a point  (0, 0, –h)  of the elastic half space are computed. 

For  z = 0, the displacement components for both the limiting cases, adi-
abatic and isothermal, are computed and shown in Fig. 2 for  �r = 0.5. Here 
�r is the ratio of rigidity of thermoelastic and elastic half spaces. For  �r = 2, 
the displacement components are compared in Fig. 3. It is noticed that the 
difference between adiabatic and isothermal deformations is more significant 
when the thermoelastic half space is more rigid than the elastic half space. 
The more rigid the elastic half space, the larger the horizontal and vertical 
displacements are. 

Assuming that  �r = 2, the variation of the dimensionless stresses (6yy, 
6zz, and 6yz) with dimensionless horizontal distance (Y) from the fault is 
shown in Figs. 4a, 5a, and 6a for  z = 0  and that for  z = h  is shown in 
Figs. 4b, 5b, and 6b. At the interface  z = 0, the stresses 6zz and 6yz first de-
crease with Y and then increase steadily when horizontal distance is a little  
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(a)                                                                    (b) 

Fig. 2. Variation of horizontal and vertical displacements at the interface  z = 0  with 
horizontal distance from the fault for  �r = 0.5. 

(a)                                                                    (b) 

Fig. 3. Variation of horizontal and vertical displacements at the interface  z = 0  with 
horizontal distance from the fault for  �r = 2. 

(a)                                                                    (b) 

Fig. 4. Variation in dimensionless stress 6yy in the thermoelastic half space with hor-
izontal distance from the fault  z = 0 (a), and  z = h (b). 
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(a)                                                                    (b) 

Fig. 5. Variation in dimensionless stress 6zz  in the thermoelastic half space with hor-
izontal distance from the fault  z = 0 (a), and  z = h (b). 

(a)                                                                    (b) 

Fig. 6. Variation in dimensionless stress 6yz in the thermoelastic half space with hor-
izontal distance from the fault  z = 0 (a), and  z = h (b). 

less than the depth of the source. As the horizontal distance increases further, 
i.e., more than twice of the source depth, 6zz and 6yz approach to zero. How-
ever, 6yy first increases then decreases and then again increases with Y. The 
variation pattern of 6yy, 6zz, and 6yz gets smoother for  z = h, as evident from 
Figs. 4b-6b. In Figure 7, depth profiles of the stresses 6yy, 6zz, and 6yz are ex-
hibited for  y = h,  �r = 2. The stress 6yy has a maximum value near the plane 
of source, i.e.,  z = h. As it goes away from the plane of source towards the 
interface, it firstly decreases and then increases. It experiences a discontinu-
ity at the interface. Below the plane  z = h  and above the plane  z = 3h, the 
stress 6yy becomes stable and approaches to zero. In the case of 6yz and 6zz, 
the stresses are continuous at the interface, as expected from the boundary 
conditions. As we move away from the interface in the elastic medium, 6zz 
increases up to a little before the source plane  z = h, decreases and 
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(a)                                         (b)                                            (c) 

Fig. 7. Variation in dimensionless stresses 6yy (a), 6zz (b), and 6yz (c)  with distance 
from the interface for  y = h. 

increases rapidly up to  z = 2h, then smoothly decreases and approaches to 
zero. Similarly, in the thermoelastic half space, it increases smoothly and 
approaches to zero. The stress 6yz is greatest on the plane of source, de-
creases up to a distance h and then increases and approach to zero which is a 
physically plausible situation also. It is symmetric about the plane of source. 
No major difference in the variation of the stresses for the two limiting cases 
is noticed. 

From the Eqs. 25, 27-29, 33-34, and 40-44, we get the integral expres-
sions for the temperature, displacements, and stresses at any point in each of 
the two half spaces caused by a vertical dip slip dislocation located at the 
point  (0, 0, h)  of the elastic half space in  k  #  domain. On replacing 
(i#) by s, we get the solutions in Fourier–Laplace transform domain, where 
s is the Laplace transforming variable. Two integrations are required to be 
performed to get the solution in the space time domain. Schapery (1962) 
proposed a very simple and efficient approximate formula for finding La-
place inversion numerically. Accordingly, it can be written as 

 1 (2 )( ) [ ( )] ,s tt s s� � �7  (78) 

where ( )s� is the Laplace transform of �(t).  
Inverse Fourier transform is computed numerically. Due to exponential 

decay, the integrands decrease very rapidly with k. 
Figure 8 demonstrates the variation of temperature with time at different 

depths. It is noticed that the deviation is significant near the interface and the 
temperature difference approaches to zero as time increases at all depth. 
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Fig. 8. Diffusion of the temperature difference 5 with T for  y = h  and  z = 0, h, 2h. 

(a)                                                                    (b) 

Fig. 9. Variation of the temperature difference 5 with the horizontal distance Y from 
the fault for  y = h  at five times T = 0, 0.1, 1, 10, �  for  z = 0 (a), and  z = h (b). 

Temperature difference’s variation with Y for different times  T = 0 (adi-
abatic), 0.1, 1, 10, $ (isothermal), for  z = 0  and  z = h  is shown in Fig. 9. 
As expected, the temperature difference is found zero in the isothermal state. 
The point of maxima of the temperature difference moves away from the 
source with time. The temperature difference at different times is more sig-
nificant on the interface. For all the times, the curves tend to merge for large 
Y. As T increases, maximum value of temperature difference decreases and 
maxima travels rightwards with Y. 

Figure 10 depicts the depth profile of temperature difference at different 
times: T = 0 (adiabatic), 0.1, 1, 10, $ (isothermal). Temperature difference is 
greatest on the interface and strongly depends on time. As the distance from 
the interface increases, the temperature difference diffuses rapidly. 
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Fig. 10. Variation of the temperature difference 5 with the distance from the inter-
face for  y = h  at  T = 0, 0.1, 1, 10, $. 

Figures 11-15 exhibit time history of dimensionless displacements and 
stresses for  y = h: (a) z = 0, and (b)  z = 2h. It is noticed that, at the interface, 
horizontal displacement and 6yz decrease slowly with T and then increase, 
but the vertical displacement and stresses 6yy and 6zz increase with time. At  
z = 2h, the horizontal displacement and 6zz increase with time but the vertical 
displacement, stresses 6yy and 6yz firstly decrease then increase. It is noticed 
that as the distance from the interface increases, the point of minima of the 
displacements and stresses move rightward along the time. Also, the varia-
tion in displacements and stresses is significant in the range  T = 0.01  to 
T = 100. 

The stress 6yy’s variation with temperature and with horizontal distance 
from the fault is shown in Fig. 16. Similarly, the stresses profiles of 6zz and 
6yz are shown in the Figs. 17 and 18. It can be concluded from these graphs 
that temperature distribution does not have a major role in the determination 
of stresses in the thermoelastic half space except in the vicinity of the fault 
plane. In Fig. 19, the stress profiles with temperature and distance from the 
interface are depicted. These graphs also confirm the observations about 
stress variation with Z made earlier. 

Deformation in elastic medium is presented in Figs. 20-23.Variation of 
horizontal and vertical displacements at  z = 1.5h  with horizontal distance 
from the fault are presented in Fig. 20 and that at  z = 5h  are presented in 
Fig. 21. Horizontal displacement first decreases and then increases and ap-
proaches to zero. Vertical displacement first increases, then deceases and 
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(a)                                                              (b)      

Fig. 11. Variation of horizontal displacement with time T: (a) z = 0, and (b) z = 2h. 

(a)                                                              (b)      

Fig. 12. Variation of vertical displacement with time T: (a) z = 0, and (b) z = 2h. 

(a)                                                              (b)      

Fig. 13. Variation of stress 6yy with time T: (a) z = 0, and (b) z = 2h. 



DEFORMATION  DUE  TO  SEISMIC  SOURCES 
 

625 

(a)                                                              (b)     

Fig. 14. Variation of stress 6zz with time T: (a) z = 0, and (b) z = 2h. 

(a)                                                             (b)     

Fig. 15. Variation of stress 6yz with time T: (a) z = 0, and (b) z = 2h.  

(a)                                                                   (b) 

Fig. 16. Variation of stresses 6yy with temperature and distance from fault  z = 0 (a), 
and  z = h (b). 
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(a)                                                                   (b) 

Fig. 17. Variation of stresses 6zz with temperature and distance from fault  z = 0 (a), 
and  z = h (b). 

(a)                                                                 (b) 

Fig. 18. Variation of stresses 6yz with temperature and distance from fault  z = 0 (a), 
and  z = h (b). 

(a)                                         (b)                                            (c) 

Fig. 19. Variation of stresses 6yy (a), 6zz (b), and 6yz (c)  with temperature and dis-
tance from interface for  y = h. 
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(a)                                                               (b)     

Fig. 20. Variation of horizontal and vertical displacements at  z = 1.5h  with hori-
zontal distance from the fault. 

(a)                                                              (b)     

Fig. 21. Variation of horizontal and vertical displacements at  z = 5h  with horizon-
tal distance from the fault. 

approaches to zero. It is noticed that difference in the two extreme cases 
(adiabatic and isothermal) is more significant at  z = 5h  than  z = 1.5h  but 
the displacements are more significant near the plane of source (i.e., 
z = 1.5h). 

Variation of the stresses  6(yy, 6(zz, 6(yz  at  z = 1.5h  with horizontal dis-
tance from the fault are presented in Fig. 22a, b and that at  z = 5h  are pre-
sented in Fig. 23a, b. The difference in the limiting cases is significant at far 
distance from the source. There is a sharp stress drop in elastic half space, 
i.e., the region containing the fault in comparison to the other half space. At 
a sufficient distance from the source, the shear displacement increases 
steadily and the longitudinal displacement decreases steadily. 
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(a)                                          (b)                                          (c) 

Fig. 22. Variation of stresses yy(6  (a), zz(6 (b), and yz(6  (c)  at  z = –1.5h  with hori-
zontal distance from the fault. 

(a)                                          (b)                                          (c) 

Fig. 23. Variation of the stresses yy(6  (a), zz(6 (b), and yz(6  (c)  at  z = –5h  with hori-
zontal distance from the fault. 

The effect of thermoelasticity in the deformation of elastic medium is 
more significant when the source is nearer to the interface  z = 0. If the elas-
tic medium is considered as the crustal layer of the Earth and mantle layer is 
modeled as thermoelastic medium, then due to the fault occurring in the 
crust near the mantle, the effect of thermoelasticity is significant on the 
Earth’s surface. 

 

 

 
 



DEFORMATION  DUE  TO  SEISMIC  SOURCES 
 

629 

List of parameters 

Symbol Description 

x, y, z Cartesian coordinates 
t time 
ui displacement components of thermoelastic medium 
h distance of the source from interface 
�ij stress tensor of thermoelastic medium 
�ij strain tensor of thermoelastic medium 
�ij Kronecker delta 
�, 	 Lame’s constants of thermoelastic medium 
�t coefficient of linear thermal expansion 


 = (3� + 2	)�t thermoelastic coupling coefficient 
� difference between absolute temperature and temperature  

   at the natural state 
� Poisson’s ratio of thermoelastic medium 
�0 thermal conductivity 
Ce specific heat 
� density 
T0 temperature of the medium at natural state 
qi components of heat flux 
# frequency 

iu (  displacement components of elastic medium 

	( shear modulus of elastic medium 
�( Poisson’s ratio of elastic medium 

ij� (  stress tensor of elastic medium 

�r ratio of rigidity of thermoelastic and elastic mediums 
Y, Z dimensionless Cartesian coordinates 

T dimensionless time 

iU (  dimensionless displacement components 

5 dimensionless temperature difference 
6ij dimensionless stress tensor of thermoelastic medium 

ij(6  dimensionless stress tensor of elastic medium 
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