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ABSTRACT

Sleep is an essential ubiquitous biological process, a periodical state of quiescence in which 
there is minimal processing of sensory information and no interaction with conspecifics or the 
environment. Despite relevant research on sleep structure and testing of numerous endogenous 
sleep-affecting chemicals, questions as to the precise mechanisms and functions of sleep remain 
without satisfactory responses. The purpose of this review is to report on current evidence 
as regards the effect of several endogenous and exogenous hormones, hormonal agents, and 
neuropeptides on sleep onset or wake process, when administered in humans in specific doses 
and via different routes. The actions of several peptides are presented in detail. Some of them 
(growth hormone releasing hormone, ghrelin, galanin, neuropeptide Y) seem to promote sleep, 
whereas others (corticotropin, somatostatin) impair its continuity.
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Introduction

Sleep is an essential ubiquitous biological proc-
ess, a periodical state of quiescence in which there 
is minimal processing of sensory information and no 
interaction with conspecifics or the environment.1,2 
However, sleep is more than the absence of being 
awake; it is a homeostatically regulated process, 
without the revitalising force of which survival might 
not be feasible.3,4

One difficulty in understanding sleep is that it is 
not a unitary state but a combination of two substates 
of distinct brain activity actively generated in specific 
brain regions.1,2 Therefore, sleep definition requires 
the combined input from an electroencephalogram 
(EEG), an electrooculogram (EOG), and an elec-
tromyogram (EMG). The resulting polysomnogram 
identifies the sleep state and stages.5 One state is 
characterised in most mammals by Rapid Eye Move-
ments (REM) and is usually termed REM Sleep 
(REMS); the other, in which no rapid eye movements 
occur, is known as non-REM Sleep (NREMS). In 
humans, NREMS is usually subdivided into stages 
1-4, which correspond roughly to increasing depth 
of sleep and decreasing muscle tone.2 Stages 3 and 
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whereas GH declines. This pattern suggests (a) a 
reciprocal interaction of the hypothalamo-pituitary 
somatotrophic (HPS) and the hypothalamopituitary-
adrenocortical (HPA) axes, their peripheral end-
points being GH and cortisol, respectively, and (b) 
the existence of common regulators of sleep EEG and 
sleep-related hormone secretion. A sexual dimorphism 
of sleep-endocrine activity has been found in young 
normal subjects: cortisol levels are higher in females 
than in males and most male subjects show a single 
GH peak around sleep onset, whereas females show a 
pre-sleep GH surge and additional GH peaks during 
the second half of the night.12

Obviously, bidirectional interactions exist between 
sleep and the endocrine system.13 Several hormones 
have the capacity to affect sleep but the physiologi-
cal significance of hormonal modulation of sleep is 
generally unclear. Plasma concentrations of many 
hormones display sleep-related variations, suggesting 
that sleep influences hormone secretion. However, 
sleep and hormone levels may run in parallel without 
a cause-effect relationship. For instance, circadian 
regulation may synchronise these events. Interest-
ingly, even though in the past fifty years much has 
been learned about sleep structure,11 new functional 
pathways of sleep are continuously being uncovered 
and a whole range of novel agents appear linked to 
them. The purpose of the present review is to provide 
an updated overview of literature data regarding the 
effect of several endogenous and exogenous hormones, 
hormonal agents, and neuropeptides on the sleep 
onset or wake process (Figure 1) in humans, as well 
as their relevance to pathological conditions resulting 
in altered sleep patterns.

1. Growth Hormone-releasing hormone 
(GHRH)

The endogenous substance with a well documented 
sleep-promoting activity is GHRH.10 Besides its 
well-known function in stimulating pituitary GH 
release, GHRH may have a direct role in promoting 
NREMS.14,15 The GHRH-induced NREMS is charac-
terised by supranormal EEG slow waves. After central 
and systemic administration of GHRH, duration 
and intensity of SWS increase in humans.16 However, 
negative outcomes have been reported as well.17 In 

4 are often grouped together under the label “Slow 
Wave Sleep” (SWS).5 In NREMS a large increase of 
growth hormone (GH) secretion, together with sup-
pression of cortisol secretion is observed.5,6 REMS 
is a completely different sleep stage, characterized 
by a virtual absence of muscle tone in antigravity 
muscles, a largely awake brain, and dreaming. It is 
of interest also that the metabolic rate in NREMS is 
increased above resting waking levels.5,6 In the nor-
mal sequence (called “sleep architecture”), waking 
is followed by NREMS’s lighter stages (1 and 2) and 
then within 10 to 20 minutes by SWS. These stages 
of deeper sleep are maintained for nearly one hour 
in normal young subjects but are much shorter (5-10 
min), if present at all, in older individuals. Lighter 
stages of NREMS then re-appear and the first REM 
period is initiated.1 This cycle is repeated three to four 
times during the night but with decreasing amounts 
of SWS and increasing amounts of REMS.5 Each 
stage of sleep has a characteristic EEG frequency 
and waveform.5,7

The timing, duration, and depth, or intensity, of 
sleep is regulated by two interacting processes: a 
homeostatic that maintains the duration and intensity 
of sleep within certain boundaries and a circadian 
which determines the timing of sleep and governs 
several physiological variables, including core body 
temperature and the production of hormones such 
as cortisol and melatonin.2 The interaction of the 
homeostatic and circadian facets of sleep regulation 
has been formalised in the two-process model of 
sleep regulation.8,9

The simultaneous application of electrophysiologi-
cal and neuroendocrinological methods in normal 
men and women under baseline conditions and after 
administration of synthetic and active endogenous 
central nervous system (CNS) compounds has shown 
(a) a considerable activity of various endocrine sys-
tems during sleep, and (b) a bidirectional interaction 
between the electrophysiological and neuroendocrine 
components of sleep.10,11

The nocturnal secretion of various hormones shows 
distinct patterns. During the first half of the night a 
surge of growth hormone (GH) predominates, whereas 
adrenocorticotropin (ACTH) and cortisol levels are 
low; during the second half, ACTH and cortisol rise, 
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increases stage 2 NREMS and sleep continuity. 
Steiger et al14 tested the effect of repetitive i.v. boluses 
of GHRH during the first few hours of the night in 
young normal men. After GHRH infusion, SWS and 
GH secretion increased and cortisol decreased. An 
increase in NREMS and a decrease in wakefulness 
were observed during the recovery night in normal, 
sleep-deprived men and women after repetitive ad-
ministration of GHRH.23 On examining the effect 
of intranasal administration of GHRH in young and 
aged humans, Perras et al22 found that intranasal 
GHRH reduced cortisol nadir concentrations at the 
beginning of sleep and reduced the sleep-induced 
elevation in GH concentrations during early sleep. 
SWS increased, with this influence primarily exerted 

addition, no change14 or decrease in REMS during 
the first half of the night18 has been observed.

In humans, the frequency of delta waves during 
the first 100 min of sleep was significantly enhanced 
following bedtime injection of GHRH.15 When the 
injections were given during sleep, stimulatory effects 
on SWS were observed.19 However, no major changes 
of sleep EEG were found after repetitive i.v. GHRH 
during the early morning hours.20

The sleep-promoting activity of GHRH varies with 
age and gender in humans.21 Strong responses have 
been observed in young subjects, with sleep promotion 
after i.v.15 and intranasal22 administration of GHRH. 
In the elderly, instead of enhancing SWS, GHRH 

Figure 1. The effect of hormones and hormonal agents on the sleep-wake cycle in humans [pts: patients; sbjs: subjects; m: male; f: 
female; ↑: increase; ↓: decrease; ?: inconsistent effect].
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during the second half of sleep time.

In a study by Guldner et al,24 the effects of GHRH 
on sleep were examined in three states with a change 
of the GHRH/CRH ratio in favour of CRH. It was 
concluded that only a weak sleep-promoting effect of 
GHRH was found in the elderly.24 GHRH does not 
seem to promote sleep in females. A sexual dimor-
phism in response to GHRH was also found in drug-
free patients with depression and in controls.25

If endogenous GHRH is a physiological NREMS-
regulatory substance, then its suppression should be 
associated with decreases in NREMS.13 This point of 
view has been widely studied. A competitive GHRH 
antagonist26 elicited dose-dependent decreases in the 
duration and intensity of NREMS and increases in 
sleep latency. Moreover, injection of a GHRH peptide 
antagonist into the same area where GHRH is injected 
inhibits NREMS and attenuates sleep rebound after 
sleep deprivation.27 Furthermore, intracerebroven-
tricular (i.c.v.) administration of antibodies to GHRH 
decreases NREMS in patients with depression.23 
Affinity-purified antibodies to GHRH significantly 
suppress both NREMS and REMS for at least 12 
hours during the light (rest) period and prevent the 
sleep rebound that normally occurs after 3 h of sleep 
deprivation.28 While GH deficiency (GHD) often 
reflects hypothalamic GHRH deficiency in aged 
subjects, so far GHRH replacement therapy has not 
yielded consistent improvements in sleep, possibly due 
to lack of sustained activity throughout the night.29 
On the other hand, various types of benign tumours 
may lead to ectopic, peripheral GHRH hypersecre-
tion, causing GHRH-associated acromegaly.30 In 
these patients, feedback inhibition of GHRH may 
contribute to the decrease of SWS.

2. GHRELIN & ANALOGUES

Ghrelin is the recently isolated endogenous ligand 
of the orphan GH secretagogue (GHS) receptor type 
1a (GHS-R1a).31,32 Like synthetic GHS, ghrelin pos-
sesses a strong GH-releasing effect in humans.33,34 
Furthermore, ghrelin enhances HPA hormones and 
prolactin when given during the daytime.35

Ghrelin itself has recently been reported to be 
a sleep-promoting factor in humans. Similarly to 
GHRH, repetitive i.v. ghrelin administration en-

hanced SWS, Slow Wave Activity (SWA), and GH 
in young normal males.36 In a recent study,37 sleep 
EEG and the nocturnal levels of ghrelin were exam-
ined simultaneously. A trend was found suggesting 
a lower time spent in stage I sleep in subjects with 
high nocturnal ghrelin levels. However, the authors 
suggested that under normal conditions plasma gh-
relin levels show no distinct interaction with sleep.37 
Other studies have demonstrated that when ghrelin 
was administered in early morning, it did not affect 
sleep in 12 healthy males.38

On the other hand, in two studies acute admin-
istration of the synthetic peptidyl GHS, MK-0677, 
modified the sleep pattern in normal subjects.39,40 In 
fact, prolonged treatment with oral MK-0677 (25 mg 
once daily) in elderly subjects increases the length 
of REM sleep phases, meanwhile decreasing rapid 
eye movement latency.41 Hexarelin, another synthetic 
GHS, exerts similar actions by decreasing stage 4 
sleep during the first half of the night and EEG delta 
power during the entire night.42

3. SOMATOSTATIN (SRIH) & ANALOGUES

SRIH inhibits hypothalamic GHRHergic neurons 
(thus, GHRH release) and, after being released into 
the pituitary circulation, leads to inhibition of GH 
secretion directly in the pituitary.13 SRIH has five 
receptors named sst1 to sst5. Inhibition of the soma-
totropic axis is mediated by the sst2 receptors. An 
unbalanced gain on chromosome 17q and promoter 
polymorphisms have been shown to play a role in the 
regulation of sst2 receptor expression, increasing 
overall and event-free survival in pediatric patients 
with neuroblastoma.43

SRIH inhibits NREMS, presumably via its effects 
on GHRH secretion and stimulates REMS.4 Inter-
estingly, SRIH’s action shows an age-dependence. 
Repetitive i.v. administration impaired sleep in healthy 
elderly subjects,44 whereas the same substance had no 
effect on young normal men.14 These data suggest a 
reciprocal interaction of GHRH and SRIH in sleep 
regulation similar to their action on GH release. This 
theory is further supported by the fact that arginine, 
a SRIH antagonist, given as an infusion, increased 
SWS in elderly men, probably through enhancement 
of endogenous GHRH secretion.45
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with CRH is more pronounced in middle-aged men 
compared to young men.53 In young men, sleep EEG 
remained unchanged; in middle-aged subjects, how-
ever, wakefulness increased and SWS decreased. 
CRH antagonists have also been used to study the 
impact of CRH on sleep-EEG, but the results are 
conflicting.10 CRH can contribute to both stressed 
and non-stressed waking. This waking effect is con-
sistent with an increase in light sleep in humans given 
exogenous CRH.50 More importantly, CRH has an 
arousing and waking effect even in the absence of 
stress.54 The hypothesis that CRH promotes REMS 
is also supported.50 However, it is claimed that the 
influence of endogenous CRH on REMS is uncer-
tain as the amount of REMS decreases after CRH. 
Similarly, in a study of depressed patients, a CRH 
antagonist decreased REM latency after short-term 
but not long-term administration.55

Furthermore, it has been proposed7 that MR and 
GR receptors (see §6) can modify CRH levels by be-
ing either activated or suppressed via their feedback 
relationships with CRH. CRH suppression is enhanced 
by MR mediated inhibition at the paraventricular 
nucleus (PVN). This would augment CRH suppres-
sion in the early sleep period and at the time of the 
nocturnal nadir, when SWS is expected to occur. On 
the other hand, excessive GR activation at the level of 
the amygdala (as opposed to inhibition at the PVN) 
may activate CRH and decrease SWS. A HPA axis 
overdrive, due to enhanced secretion of CRH com-
bined with an impaired negative feedback via GR, 
seems to be most consistently observed in patients 
with depressive features56 and has been suggested 
as a potential biomarker for depression. Depressed 
patients show clear sleep-EEG alterations, including 
disrupted sleep, low amounts of SWS, a short REM 
latency, and a high REM frequency.

It has been proposed that the downregulation of 
CRH activity is a final and common step of antidepres-
sant treatment. In a recent study, three polymorphisms 
in the CRH receptor 1 (CRHR1) gene were tested in 
conjunction with six weeks of antidepressant treatment 
in patients suffering from major depressive disorder 
(MDD). The polymorphisms were associated with 
differential therapeutic response to antidepressants 
in patients with high-anxiety, supporting the idea 
that the CRHR1 gene is likely to be related to the 
antidepressant response in MDD.57

The half-life of SRIH within tissues is only a few 
minutes. Therefore, instead of SRIH, hydrolysis-re-
sistant analogues, such as octreotide, are often used 
experimentally. Octreotide stimulates sst2 and 
sst5 receptors and is more potent than exogenous 
SRIH.13 Octreotide-induced impairment of NREMS 
has been verified in humans after subcutaneous 
infusion.46 After 1-3 h postinjection, when intensity 
of NREMS increases, the accumulated GHRH is 
gradually released from the hypothalamus. Therefore, 
a possible explanation for the biphasic sleep response 
to octreotide is that octreotide suppresses sleep via 
inhibiting GHRH release, and this period is followed 
by excessive GHRH release and deep NREMS.13

Recently, two novel neuropeptides have been 
discovered (Urotensin II, Cortistatin). Interestingly, 
despite structural similarity of these peptides to SRIH, 
their sleep-related actions differ widely. Urotensin II 
is considered to be involved in REMS regulation,47 
while cortistatin has been shown to induce SWS.48 
SRIH analogue treatment is usually prescribed in 
acromegaly patients, in whom increased daytime 
sleepiness as well as delayed sleep onset have been 
reported.49

4. Corticotropin-releasing hormone 
(CRH)

Various human studies have shown that adminis-
tration of HPA hormones or their antagonists affect 
sleep. The common denominator of the effect of the 
HPA axis on sleep EEG is CRH, which decreases 
SWS and increases wakefulness.5

Pulsatile i.v. boluses of human CRH (4Χ50 μg) 
in young normal male subjects led to a decrease in 
SWS with an increase in light sleep and awakenings.50 
The time interval, the dosage, and the protocol of the 
administration appear to be crucial methodological 
issues. As a matter of fact, whereas after continuous 
nocturnal infusion of CRH the sleep EEG remained 
unchanged,51 EEG spectral variables were altered 
after a single i.v. bolus of CRH in young healthy 
men.52 Conversely, in sleep-deprived healthy humans, 
CRH induces higher increases in NREMS if given 
during the recovery night compared to placebo.23 

The responsiveness of sleep EEG to CRH appears 
to increase during ageing, since sleep disruption 
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5. adrenocorticotropin (ACTH)

In clinical studies, nocturnal infusions of ACTH 
suppress REMS in normal subjects,58 while cortisol 
and GH stimulates REMS.51 An experiment in healthy 
volunteers showed that the expectation of waking up 
at a certain time induces a marked increase in ACTH 
before the end of sleep.59 The researchers studied the 
levels of ACTH in association with sleep termina-
tion under three experimental conditions: an early 
planned awakening, a late planned awakening, and 
a surprise condition in which sleep was terminated 
earlier than expected by the subjects. Arousal from 
sleep in each of the three conditions prompted an 
increase in ACTH and cortisol. The most interesting 
finding was that the early planned awakening was 
preceded by a distinct increase of ACTH within the 
last hour before waking, while ACTH secretion surge 
occurred only after sleep termination in the surprise 
condition, in which the subjects did not expect to be 
awakened at this particular time.5 This change was 
interpreted as an adaptive response to the stress of 
waking. The anticipatory increase in ACTH may 
facilitate spontaneous waking.5 It remains unclear 
whether or not ACTH participates in sleep regula-
tion60 or the observed changes represent an associated 
phenomenon.

6. CORTISOL, GLUCOCORTICOID, AND 
MINERALOCORTICOID RECEPTOR LIGANDS

The human endogenous cortisol rhythm is charac-
terised by a nadir that takes place at about midnight,7 
followed by a rise at about 2-3 hours after sleep onset 
that continues into the early waking hours. A cortisol 
peak occurs at about 09:00. As the day continues, a 
gradual decline in cortisol levels occurs leading to 
the nadir at about midnight.

In brain, cortisol preferentially binds to high af-
finity mineralocorticoid receptors (MR, type I) in 
the hippocampus and to low affinity glucocorticoid 
receptors (GR, type II) in the hypothalamus, pituitary, 
cortex, and elsewhere61 and modulates the underlying 
circadian rhythm. The effect of MR predominates 
in the early nocturnal period and is most prominent 
at the time of the nocturnal nadir. In contrast, the 
effect of GR dominates in the morning when cortisol 
levels are highest.7

Studies exploring the effects of the HPA axis on 
sleep initially focused on the direct effects of gluco-
corticoids on sleep rather than the effects of CRH, 
but these results can now be reconciled given the 
known effects of CRH on sleep EEG and the indirect 
effects of glucocorticoids through CRH regulation. 
It is proposed that the effect of both exogenous and 
endogenous cortisol on SWS depends on cortisol 
levels capable of achieving maximal nocturnal CRH 
suppression.7 In addition, both the type of receptor 
activated by cortisol (MR or GR) and the location of 
the activated receptor influences CRH (see §4) and, 
consequently, EEG pattern. Since the MR antagonist 
canrenoate reduces SWS, whereas the mixed MR 
and GR agonist cortisol enhances SWS and inhibits 
REMS, it was postulated that the MR regulates SWS, 
whereas the GR regulates REMS. However, in another 
study it was shown that MR agonists and antagonists 
did not alter sleep EEG.62 Interestingly, in elderly 
controls, SWS increased after cortisol, although the 
number of MRs is known to decrease dramatically 
during ageing,63 suggesting that the effects of MRs 
on sleep are indirect.

It has been shown that continuous nocturnal in-
fusion of cortisol64 and pulsatile i.v.65 administration 
increase SWS and reduce REMS in young normal 
subjects and in healthy elderly subjects.63 Recently, 
several studies suggested that the effect of cortisol 
on sleep EEG depends on GR mediated feedback 
on CRH, with elevated cortisol leading to suppres-
sion of CRH, resulting in an increase in SWS.66 The 
effect of exogenous cortisol in decreasing SWS at 
high doses has not yet been explained. Since CRH 
and cortisol exert opposite effects on SWS and on 
GH, it is more likely that these changes are mediated 
by negative feedback inhibition of endogenous CRH 
rather than by stimulation by cortisol.10 In patients 
with major depression, hourly injected cortisol (1mg/kg 
BW) increased duration and intensity of NREMS, 
particularly in male patients, and stimulated GH re-
lease, while REMS parameters were not affected by 
the infusion.67 Nevertheless, another study reported 
that glucocorticoids acutely decreased REM sleep 
and increased time spent awake.68

In Addison’s disease, where production of cor-
ticosteroids is severely reduced, no major EEG dis-
turbances of sleep have been reported.69 In contrast, 
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hypercortisolism and disturbed sleep are frequent 
symptoms in Cushing’s disease and in depression. 
In Cushing’s disease, SWS is decreased70,71 with in-
creased sleep latency, enhanced waketime, and REMS 
disturbances. In depressed patients in whom both 
cortisol and ACTH were elevated throughout the 
night an increased number of awakenings, early morn-
ing awakenings, decrease of NREMS, and REMS 
disinhibition72 were observed.

Dexamethasone which activates GR has been 
shown to increase awakening.64 Administration of 
dexamethasone is thought to be equivalent to the 
administration of a high dose of cortisol. The mecha-
nism for the effect of GC on sleep EEG is attributed 
to direct GR activation.

Consistent with the dose-related effect of glu-
cocorticoids on MR versus GR activation, the ad-
ministration of hydrocortisone to healthy males can 
at times increase SWS and at other times increase 
wakefulness and stage 1 sleep, the latter occurring at 
higher doses.64 Regarding GR activation in humans, in 
a study where methylprednisolone was administered 
to multiple sclerosis patients for ten days, a major por-
tion of SWS was shifted from the first to the second 
sleep cycle, REMS latency was shortened, and REM 
frequency increased.73 Lately, the GR antagonist, 
mifepristone, was found to improve sleep and reduce 
HPA axis activity during acute administration and 
post-discontinuation in non depressed patients with 
chronic insomnia.74

7. GALANIN

Galanin is a peptide with widespread distribution 
in the mammalian brain and coexists in neurones with 
various neurotransmitters participating in sleep regu-
lation.10 It is also known to stimulate GH via GHRH 
in man. Existing data support galanin’s role in sleep 
regulation. Murck et al75 found that during pulsatile 
i.v. administration of galanin to young normal men, 
SWS and the duration of REMS periods increased, 
whereas the secretion of GH and cortisol remained 
unchanged.76 As this effect could imply an antidepres-
sive action, i.v. administration of galanin in patients 
with depression was studied, revealing significant 
changes in sleep-EEG parameters, mainly due to an 
increase in REM latency. This might imply an acute 

antidepressive effect of galanin, probably via a mecha-
nism related to therapeutic sleep deprivation.

Recent studies on the possible role of galanin in 
the pathogenesis of panic disorder in females have 
focused on six single nucleotide polymorphisms (SNPs) 
within the gene coding for galanin, which are associ-
ated with either increased vulnerability or resistance. 
Since panic attacks can occur at any time, even dur-
ing sleep, galanin and its receptors appear to be a 
promising target for the pharmacological therapy of 
these affective disorders.77

8. ADENOSINE (ADE)

ADE is an endogenous sleep-promoting substance 
which exerts its somnogenic action via activation of 
brain A(2A) receptors in the ventrolateral preoptic 
nucleus.78 The hypnogenic properties of ADE were 
first recognised in cats and rodents. In supporting the 
aforementioned, the most widely used psychoactive 
stimulant, caffeine, well known for its wake-promoting 
activity, is an ADE receptor antagonist.

A functional polymorphism of the ADE deami-
nase gene has been associated with interindividual 
variability in sleep architecture and the sleep EEG 
in humans.79 SWS is longer and sleep is deeper in 
the heterozygous carriers than in the homozygous. 
Heterozygous carriers of the polymorphism exhibit 
20%-30% lower enzymatic activity in erythrocytes 
and leucocytes than homozygous individuals and 
may be at increased risk for developing autism. In 
contrast, the presence of a distinct polymorphism 
in the adenosine A2A receptor gene was shown to 
affect the EEG during sleep and wakefulness in a 
non-state-specific manner after caffeine intake by 
healthy volunteers.

9. ARGININE VASOPRESSIN (AVP)

The neuropeptide AVP is a major cofactor of CRH 
in the activation of the stress reaction. Chronic intra-
nasal AVP improved sleep in normal elderly subjects 
as total sleep time, SWS, and REMS increased.80 
Genetic variations in the AVP receptor 1b gene 
(AVPR1b), via which AVP exerts its regulating effects 
on RMES, have been associated with a protective 
effect for recurrent major depression.81
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Nocturia is a prevalent symptom that can adversely 
affect the quality of sleep. Low nocturnal AVP and 
urine osmolality may play a role in the pathophysiol-
ogy of enuresis and nocturnal polyuria (NP).82 The 
AVP analogue desmopressin has consistently shown 
nocturia and sleep quality improvement in patients 
with proven NP.83,84

10. NEUROPEPTIDE Y (NPY)

Besides GHRH, NPY is thought to act as a physi-
ological antagonist of CRH.10 A variety of sleep-EEG 
effects of NPY have been reported. In humans, when 
NPY was repetitively administered i.v. in 20 young 
normal male subjects, it led to decreases in sleep 
latency and in the first REMS period as well as in 
increases in stage 2 sleep and sleep period.85 Cortisol 
and ACTH secretion were blunted. In patients with 
depression of both sexes and in age-matched controls 
sleep latency was shortened after NPY while cortisol 
and ACTH levels and the first REMS period remained 
unchanged.86

11. VASOACTIVE INTESTINAL POLYPEPTIDE 
(VIP)

As a member of the secretin-glucagon peptide 
family, VIP displays structural homology to GHRH, 
binding to the same receptors.13 This close relation-
ship is particularly interesting since, in the mid 80s, 
VIP emerged as a peptide for which consistent sleep 
promoting activity (enhancement of both NREMS and 
REMS) was observed initially in rats.87 After pulsatile 
i.v. administration of 4Χ50 μg VIP, NREMS-REMS 
cycles were decelerated in young normal males. Each 
cycle was prolonged, the cortisol nadir appeared ear-
lier, and the GH acrophase was blunted.88 These data 
suggest that VIP affects the circadian clock, resulting 
in prolonged sleep cycles and an earlier occurrence 
of the cortisol nadir.

12. PROLACTIN (PRL)

Prolactin modulates REMS possibly through a 
central action. Thus, intracerebral injection of PRL 
or anti-PRL antibodies stimulates or inhibits REMS, 
respectively.89 It is likely that intracerebral PRL 
modulates REMS under physiological conditions, 

whereas pituitary PRL provides additional stimu-
lating influence when PRL secretion is high, e.g., 
in stress.4,16 Human studies examining the effects of 
PRL on sleep are scarce; however, in patients with 
prolactinoma, SWS is increased selectively when 
compared to normal controls.90

13. ESTROGENS – PROGESTERONE

An abrupt decline in the sigma frequency range has 
been reported in women after the onset of menopause, 
whereas in men these changes develop more gradu-
ally.10 In postmenopausal women sleep-endocrine 
alterations associated with depression are accentuated. 
In a study of pre- and postmenopausal women with 
depression and matched controls,91 a decrease in SWS 
and an increase in REMS frequency was observed in 
post- but not in premenopausal women. An inverse 
correlation was found between the decrease in SWS 
as well as sleep continuity, and follicle stimulating 
hormone (FSH) secretion in patients with depression. 
These observations suggest a role of menopause in 
these sleep-EEG changes.

Much of the research on hormone replacement 
therapy (HRT) focuses on the role of estrogens and 
its positive effects on sleep in women after menopause. 
Compared to placebo, estrogen replacement therapy 
(ERT) has been shown to reduce insomnia.92 Other 
reported benefits of ERT include improvement in 
falling asleep, diminished nocturnal restlessness, 
and fewer awakenings.93 One possible explanation 
for these actions is that ERT relieves climacteric 
symptoms (e.g. hot flashes), leading to remarkable 
improvements in sleep.94 Another hypothesis is that 
ERT directly affects the circadian rhythm, or acts 
on sleep architecture, thus “normalising” the dis-
tribution of SWS in menopausal women, leading to 
a pattern resembling that of younger subjects.95 An 
additional effect of estrogens on sleep architecture is 
their effect on REMS, the increase in REMS being a 
consistent finding.94 In postmenopausal women ERT 
given for four weeks by skin patch enhanced REMS 
and reduced intermittent wakefulness during the 
first two sleep cycles compared to baseline values. 
A normal decrease in SWS and SWA from the first 
to the second cycle was observed.

Despite the above data showing effects of estrogens 
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on sleep in postmenopausal women, the estrogen 
receptor-alpha (ER-alpha) genotypes (PvuII and 
XbaI polymorphisms) have been associated with 
vaginal dryness and hot flashes but not with sleep 
alterations.96 On the other hand, both case-control 
and prospective cohort studies have consistently 
linked night shift work with breast cancer risk and, 
more recently, endometrial cancer, both of which are 
highly sensitive to estrogens.97

Despite the proven effects of estrogens on sleep 
regulation, women starting HRT often also take pro-
gesterone to protect themselves against the harmful 
endometrial effects of estrogens. Studies of progester-
one’s effects on sleep have yielded variable results.94 
There is some evidence that when progesterone is 
added to the HRT regimen, there is no improve-
ment in sleep.98 However, there is a possibility that 
various types of progesterone can affect sleep differ-
ently. Montplaisir et al99 tested the sedating effects of 
progesterone by comparing HRT with two different 
progestogens: medroxyprogesterone acetate and 
micronized progesterone. They found that women 
treated with micronized progesterone had improve-
ment in sleep efficiency. On the other hand, a Finnish 
study investigating the effects of estrogen-progestin 
treatment (EPT) on sleep in pre- and postmenopausal 
women, found that both groups receiving EPT had a 
significantly greater number of awakenings than the 
corresponding placebo group. Although, researchers 
could not conclude if EPT actually deteriorates sleep, 
available evidence indicates that no benefit from EPT 
in terms of sleep quality100 is achieved.

14. DEHYDROEPIANDROSTERONE (DHEA)

After a single oral dose of DHEA, REMS in-
creased selectively in young normal men.101 After 
intraperitoneal (i.p.) infusion of DHEA sulphate 
(DHEAS) a dose-dependent effect on EEG potency 
was found. Interestingly, a DHEAS dosage of 50 mg/kg 
augmented EEG potency in the spindle-frequency 
range, whereas a dosage of 100 mg/kg had the op-
posite effect. Sleep architecture remained unchanged 
after either dosage of DHEAS.102 However, Dayal 
et al103 concluded that, compared with no hormone 
therapy, none of the supplemental hormone regimens 
(receiving DHEA daily over a period of 12 weeks) 

was associated with significant changes in sleep in 50 
postmenopausal women.

15. MELATONIN

After almost 50 years of research the physiological 
role of melatonin still remains unclear.104 Nevertheless, 
the endogenous melatonin rhythm exhibits a close as-
sociation with the endogenous circadian component 
of the sleep propensity rhythm. This may imply that 
melatonin is an internal sleep ‘facilitator’ in humans 
and therefore possibly useful in the treatment of 
insomnia and readjustment of circadian rhythms. 
There is evidence that administration of melatonin: (i) 
induces sleep when the homeostatic drive to sleep is 
insufficient and (ii) inhibits the drive for wakefulness 
emanating from the circadian pacemaker. Therefore, 
exogenous melatonin can act as a soporific agent, a 
chronohypnotic, and/or a chronobiotic.105

However, whether melatonin is causally involved 
in sleep mechanisms is shrouded in ambiguity. The 
ability to sleep is retained in the absence of detect-
able endogenous melatonin during the day and in 
tetraplegic patients.106 Melatonin production varies 
enormously between individuals and does not correlate 
with sleep quality or sleep-maintenance in elderly 
subjects without107 or with insomnia.108 By contrast, 
numerous laboratory studies have clearly demonstrated 
that administration of melatonin acutely affects sleep 
in humans. Exogenous melatonin elicits all the physi-
ological effects which occur in the evening during 
endogenous melatonin secretion. Indeed, exogenous 
melatonin is most effective when endogenous levels are 
low during the biological day. It elicits time-dependent 
soporific effects, which have been corroborated with 
electrophysiological measures of sleepiness such as 
EEG theta activity during wakefulness.105 The most 
consistent effect found in those studies was that sleep 
latency was shorter after melatonin, even at rather 
low doses.109 On the other hand, sleep consolidation 
or sleep efficiency was not affected by night-time 
melatonin administration, whereas during daytime 
an improvement in sleep efficiency could be found.

Zhdanova110 mentions that, in general, melatonin 
can promote sleep in healthy humans if administered 
during habitual hours of wakefulness; it can be help-
ful in patients with insomnia and it can facilitate the 
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effects of common hypnotics, thus reducing their 
effective dose and facilitating their withdrawal. Me-
latonin can acutely increase the homeostatic drive for 
sleep and ease the transition between wakefulness and 
sleep as well. On the other hand, Van den Heuvel et 
al111 claim that melatonin acts as a hypnotic only in 
those individuals for whom endogenous melatonin 
increases sleep propensity and its action is an ap-
propriate consequence of environmental darkness. 
Under this perspective, melatonin can exert hypnotic-
like effects but only under limited circumstances, 
depending on dose, time of administration, age, and 
other factors.112

Altered melatonin secretion has been found in 
Alzheimer’s disease and in Parkinson’s disease. At-
tempts to compensate for melatonin deficiency have 
shown that administration of this compound can im-
prove sleep efficiency in both diseases.113 Despite these 
findings there are still discrepancies regarding its use 
in patients with Parkinson’s disease.114 Melatonin also 
decreases sleep latency and number of awakenings per 
night and increases total sleep time in individuals with 
intellectual disabilities.115 Various lines of evidence 
show that depressed patients exhibit disturbances 
in both the amplitude and shape of the melatonin 
secretion rhythm and that exogenous melatonin can 
improve their quality of sleep. Moreover, a growing 
number of epidemiologic studies have evaluated the 
relationship between night shift work, as well as the 
effect of varying duration of sleep on peak melatonin 
secretion at night. Specifically, lower nightly melatonin 
levels have been shown in night workers. Although 
the evidence for an association between sleep dura-
tion and breast cancer risk is unclear, overall there 
is increasing support for a potentially important link 
between melatonin and breast cancer risk.97 A possible 
link between diminished secretion of melatonin and 
increased exposure to light during night-time has been 
suggested.116 Ultimately, genome-wide association 
studies117-119 have shown that variation in the melatonin 
receptor 1B (MTNR1B)—a receptor known to be 
linked to the circadian rhythm of sleep—is associated 
with insulin and glucose concentrations as well as 
with the risk of type 2 diabetes (T2D). Blocking the 
melatonin ligand-receptor system has been suggested 
as a therapeutic avenue in T2D.117

A new treatment option in primary insomnia has 

been introduced with PR (prolonged-release) mela-
tonin, which significantly improves morning alert-
ness and quality of sleep compared with placebo in 
patients over the age of 55.120 Several clinical data are 
available for the melatonin agonists ramelteon, ago-
melatine, beta-methyl-6-chloromelatonin (TIK-301), 
and tasimelteon (VEC-162) in humans with regard 
to their contribution in the treatment of sleep-wake 
disorders.121 Ramelteon, the first to be approved for 
the treatment of chronic insomnia, has been shown 
to enhance subjective sleep quality in some, but not 
all, studies,122 especially in adults with generalized 
anxiety disorder,123 and in menopausal women.124 
Agomelatine, which combines the properties of a 5-
HT(2C) antagonist and a melatonergic MT(1)/MT(2) 
receptor agonist, has been found to be very effective 
in re-setting the disturbed sleep/wake cycle and in 
improving the clinical status of major depressive 
disorder (MDD).125

16. thyrotropin-releasing hormone (TRH)

Clinical data suggest that sleep can be modulated 
by TRH,126 but the role of TRH in the regulation of 
sleep in humans has not yet been clarified. Hemmeter 
et al127 examined the effects of pulsatile administration 
of TRH on the sleep EEG pattern and the nocturnal 
secretions of cortisol and GH in healthy male subjects. 
In contrast to the well-known effects of CRH on the 
sleep pattern, TRH seems to exert only a weak ef-
fect on the sleep EEG, which is reflected in a slight 
decrease in sleep efficiency associated with a trend to 
wakefulness during the night. The activating, albeit 
weak, effect of TRH on the sleep EEG and nocturnal 
cortisol secretion in healthy volunteers confirms and 
adds to the results previously observed in animals. On 
the basis of these findings, it is likely that TRH may 
contribute to the disturbed sleep continuity seen in 
depressed patients, probably acting in a synergistic 
manner with CRH. In patients with hyperthyroidism, 
SWS is reduced,72 whereas in MDD, TRH adminis-
tration may lead to slight sleep EEG alteration128 or 
no alteration at all.129

17. HYPOCRETIN/OREXIN

The hypothalamic neuropeptides hypocretin-1 
and 2 (also known as orexin A and B) have attracted 
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tremendous interest since their discovery. In 2000, 
Nishino et al130 published the first report on hypocretin 
deficiency in human narcoleptics. Since then, several 
studies on the association between hypocretin and 
sleep-regulation have been published.131-135 Hypocre-
tin signaling is crucial for maintaining wakefulness 
and regulating REMS. However, it is not required to 
generate (REM) sleep or wakefulness, as narcoleptic 
patients still show these vigilance states. The hypo-
cretin/orexin system stabilises rather than generates 
vigilance states. As narcolepsy is characterised by 
sudden, inappropriate vigilance state transitions, 
hypocretin is needed to suppress such switches: it is 
necessary to keep the inherently unstable “sleep-wake 
switch” in the wake position.136

In humans, narcolepsy is associated with a specific 
variant of the human leukocyte antigen (HLA) com-
plex.137 Genome-wide analysis shows that narcoleptic 
humans also exhibit a specific genetic mutation in the 
T-cell receptor alpha locus.138 These genetic anomalies 
may underlie the attack of the autoimmune system 
and the killing of the critical hypocretin neurons. 
Hence, the absence of hypocretin-producing neu-
rons in narcoleptic humans may be the result of an 
autoimmune disorder.139 Cerebrospinal fluid (CSF) 
histamine levels are also reduced in human narcolepsy. 
As histamine is a wake-promoting amine known to 
decrease during sleep, decreased histamine could 
either reflect or mediate daytime sleepiness in these 
pathologies.140 Hypocretin deficiency is also found 
in symptomatic cases of narcolepsy and excessive 
daytime sleepiness with various neurological condi-
tions such as Guillain-Barre syndrome, MA2-positive 
paraneoplastic syndrome, and neuromyelitis optica 
related disorder.141 These findings in humans have 
led to the establishment of a new diagnostic test of 
narcolepsy based on CSF hypocretin-1 levels.

Dysfunction of the hypocretin system has been 
reported in multiple sclerosis with hypothalamic le-
sions and hypersomnia.142 In patients with obstructive 
sleep apnea (OSA), lower levels of plasma orexin A 
have been found, especially in those who are ex- or 
current smokers. These results indicate that smok-
ing may affect orexin levels in OSA patients with 
potential effect on their altered sleep patterns.143 In 
Parkinson’s disease, orexin is most likely involved in 
clinically significant sleep attacks (SAs)144 and restless 

legs syndrome.145 Abrogation of D3 receptor stimula-
tion may increase orexin and thereby inhibit SAs.144 
A -909T/C gene polymorphism may explain in part 
the sudden onset of sleep in Parkinson’s disease.146 
A role for the orexin/hypocretin system in alertness 
and abnormal feeding behaviours in patients with 
attention-deficit/hyperactivity disorder (ADHD) 
has also been suggested; however, this hypothesis 
of over-activation of orexin neurons remains to be 
confirmed.147 Furthermore, in anorexia nervosa, ab-
normal activity of orexin (along with leptin) or their 
receptors may constitute one of the mechanisms of 
hyperactivity in these patients.148 Regarding obesity, 
multiple epidemiologic studies have shown an asso-
ciation between short sleep and higher body mass.149 
Sleep disturbances are linked to a dysregulation of 
the neuroendocrine control of appetite.148

SYNopSIS

The reported data have shown that various hor-
mones (peptides and steroids) exert specific effects 
on the sleep EEG. Some peptides promote sleep 
while others increase wakefulness (Figure 1). Hor-
mones that induce sleep (at least in males) include: 
GHRH, galanin, vasopressin, prolactin, estrogens 
and melatonin.

GHRH may have a direct role in promoting 
NREMS (especially duration and intensity of SWS) 
and REMS in humans with, however, diverse effects 
depending on gender and age. Interestingly, a syn-
ergism of GHRH and CRH is suggested in women, 
which may contribute to the increased prevalence of 
depression among females. Similarly, ghrelin lowers 
the time spent in stage 1 sleep, especially in young 
normal males.

Regarding cortisol, its effect on SWS depends on 
optimal cortisol levels to achieve maximal nocturnal 
CRH suppression. It is believed that the miner-
alocorticoid receptors regulate SWS, whereas the 
glucocorticoid receptors regulate REMS, although 
inconsistencies still exist. Several sleep alterations have 
been observed in diseases where cortisol production 
is altered (such as Addison’s and Cushing’s).

Galanin’s enhancement of SWS and REMS both 
in young normal men and in patients with depression 
has indicated a possible acute antidepressive effect in 
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the latter. In patients of both sexes with depression 
sleep latency is shortened after NPY. Data on the 
effect of VIP on sleep pattern in humans are incon-
sistent; VIP affects the circadian clock, resulting in 
prolonged sleep cycles and an earlier occurrence of the 
cortisol nadir. Although prolactin modulates REMS, 
human studies examining the effects of PRL on sleep 
are scarce; however, in patients with prolactinoma 
increases in SWS have been observed.

A role for menopause has been suggested for 
several sleep disruptions. In postmenopausal women 
with depression decreases in SWS and an increase in 
REMS frequency is observed. Compared to placebo, 
estrogen replacement therapy has been shown to 
reduce insomnia, relieve climacteric symptoms, and 
possibly act directly on the circadian rhythm or sleep 
architecture (via REMS modulation).

Melatonin secretion has been found to be altered 
in Alzheimer’s and Parkinson’s diseases and in MDD. 
Melatonin induces sleep when the homeostatic drive 
to sleep is insufficient, while it inhibits the drive for 
wakefulness emanating from the circadian pacemaker. 
However, the question as to whether melatonin is 
involved in sleep mechanisms has not been answered. 
Despite ambiguity, there is increasing support for a 
potentially important link between night shift work, 
melatonin secretion, and risk for breast cancer. In 
addition, genome-wide association studies show that 
variation in the melatonin receptor 1B, apart from its 
links with the circadian rhythm of sleep, is associated 
with a higher risk for type 2 diabetes.

Several hormones lead to sleep disruptions or 
produce only weak effects on sleep architecture, some 
of the effect showing gender and/or age dependence. 
SRIH impairs sleep in healthy elderly subjects, whereas 
it has no effect on young normal men, probably due 
to a decline of endogenous GHRH in the elderly. In 
contrast, the SRIH analogue, octreotide, immediately 
elicits suppression of NREMS and may be the culprit 
for sleep disruptions (increased daytime sleepiness, 
delayed sleep onset) in acromegalic patients. Similarly, 
CRH decreases SWS and increases wakefulness in 
young normal male subjects, with an increase in light 
sleep and awakenings, while it promotes REMS. How-
ever, findings are still inconsistent. DHEA increases 
REMS selectively in young normal men. Conversely, 

ACTH suppresses REMS in normal controls, while 
an anticipatory increase in ACTH in the morning 
may facilitate spontaneous waking. The role of TRH 
in the regulation of sleep has not yet been clarified. 
Studies of progesterone’s effects on sleep have yielded 
variable results. In contrast to progesterone, which 
when in the hormone replacement therapy regimen 
does not alter sleep, micronized progesterone itself 
leads to enhancement in sleep efficiency.

Hypocretin/orexin signalling is crucial for main-
taining wakefulness and regulating REMS, as deduced 
from studies in narcoleptics.

All in all, the aforementioned evidence suggests 
that several hormones and hormonal agents may be 
involved in the regulation of sleep mechanisms in a 
manner proportional to the changes in their metabolic 
rhythm imposed by sleep. Given their interactions 
with the body’s circadian clock, these molecules 
could be used in the future to treat sleep disorders. 
The present review has demonstrated that current 
evidence points to highly promising utilization of these 
molecules for treating sleep disorders, though more 
research is required before they are full introduced 
into clinical practice.
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