Skip to main content
Log in

Adding the Topographical Information from Tau-PET to the A/T/(N) Framework: Steps Towards Staging AD in Vivo

  • Special Article
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Biomarkers have revolutionized the study and clinical diagnosis of Alzheimer’s disease (AD). While amyloid-β accumulation begins decades before the onset of clinical dementia in AD, tau pathology is more closely associated in both space and time to neurodegeneration and to clinical dysfunction. Correspondingly, tau-PET may prove useful in determining the severity of AD. Building on the biological research framework for AD, we review here methods and rationale to stage the severity of AD in vivo using the topographical distribution of tau-PET. We discuss how tau-PET can be used to detect early and subthreshold tau accumulation in medial temporal cortices prior to the onset of cognitive symptoms. Furthermore, tau-PET can be used to monitor the severity of AD as tau-PET spreads to association cortices and finally primary sensory cortices. We discuss the utility of tau-PET to monitor the progression of AD, the flexibility of potential approaches, and applications for clinical trials. In this regard, topographical information from tau-PET is a useful addition to the A/T/(N) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 2012;8:1–13.

    Article  Google Scholar 

  2. Montine TJ, Phelps CH, Beach TG, et al. National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol. 2012;123(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  3. McKhann G, Drachman D, Folstein M, Katzman R. Clinical diagnosis of Alzheimer’s disease. Neurology 1984;34(7):939.

    Article  CAS  PubMed  Google Scholar 

  4. Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 2016;139(5):1551–1567.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Petersen C, Nolan AL, de Paula França Resende E, et al. Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation [Internet]. Acta Neuropathol. 2019;138(4):597–612. Available from: https://doi.org/10.1007/s00401-019-02036-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Townley RA, Graff-Radford J, Mantyh WG, et al. Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes. Brain Commun. 2020;1–19.

  7. Ossenkoppele R, Singleton EH, Groot C, et al. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurol. 2022;79(1):48–60.

    Article  PubMed  Google Scholar 

  8. Therriault J, Pascoal TA, Savard M, et al. Intrinsic connectivity of the human brain provides scaffold for tau aggregation in clinical variants of Alzheimer’s disease. Sci. Transl. Med. 2022;14(S1)

  9. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer’s disease. Brain 2007;130(10):2636–2645.

    Article  CAS  PubMed  Google Scholar 

  10. Jack CR, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016;87(July):539–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease [Internet]. Alzheimer’s Dement. 2018;14(4):535–562. Available from: https://doi.org/10.1016/j.jalz.2018.02.018

    Article  Google Scholar 

  12. Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease [Internet]. N. Engl. J. Med. 2012;367(9):795–804. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krishnadas N, Doré V, Robertson JS, et al. Rates of regional tau accumulation in ageing and across the Alzheimer’s disease continuum: an AIBL 18F-MK6240 PET study [Internet]. eBioMedicine 2023;88:104450. Available from: https://doi.org/10.1016/j.ebiom.2023.104450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid-β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013;12(4):357–367.

    Article  CAS  PubMed  Google Scholar 

  16. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials [Internet]. Neuron 2014;84(3):608–622. Available from: https://doi.org/10.1016/j.neuron.2014.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):280–292.

    Article  Google Scholar 

  18. Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. 2016.

  19. Therriault J, Pascoal TA, Benedet AL, et al. Frequency of biologically-defined AD in relation to age, sex, APOEε4 and cognitive impairment. Neurology 2021

  20. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 2012;71(4):266–73.

    Article  PubMed  Google Scholar 

  21. Therriault J, Zimmer ER, Benedet AL, et al. Staging of Alzheimer’s disease: past, present, and future perspectives [Internet]. Trends Mol. Med. 2022;1–16. Available from: https://doi.org/10.1016/j.molmed.2022.05.008

  22. Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA - J. Am. Med. Assoc. 2018;320(11):1151–1162.

    Article  CAS  Google Scholar 

  23. Groot C, Villeneuve S, Smith R, et al. Tau PET Imaging in Neurodegenerative Disorders. J. Nucl. Med. 2022;63(6):20S–26S.

    Article  CAS  PubMed  Google Scholar 

  24. Cano SJ, Posner HB, Moline ML, et al. The ADAS-cog in Alzheimer’s disease clinical trials: Psychometric evaluation of the sum and its parts. J. Neurol. Neurosurg. Psychiatry 2010;81(12):1363–1368.

    Article  PubMed  Google Scholar 

  25. Coley N, Andrieu S, Jaros M, et al. Suitability of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for Alzheimer’s disease trials. Alzheimer’s Dement. 2011;7(6):602–610.e2.

    Article  Google Scholar 

  26. Ossenkoppele R, Lyoo CH, Jester-Broms J, et al. Assessment of Demographic, Genetic, and Imaging Variables Associated with Brain Resilience and Cognitive Resilience to Pathological Tau in Patients with Alzheimer Disease. JAMA Neurol. 2020;1–11.

  27. Power MC, Mormino E, Soldan A, et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 2018;84(1):10–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007;69(24):2197–2204.

    Article  PubMed  Google Scholar 

  29. Spina S, La Joie R, Petersen C, et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 2021;144(7):2186–2198.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goedert M. Tau filaments in neurodegenerative diseases. FEBS Lett. 2018;592(14):2383–2391.

    Article  CAS  PubMed  Google Scholar 

  31. Therriault J, Pascoal TA, Lussier FZ, et al. Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nat. Aging 2022

  32. Soleimani-Meigooni DN, Iaccarino L, Joie R La, et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer’s disease and other neurodegenerative diseases. Brain 2020;143(11):3477–3494.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Malarte ML, Nordberg A, Lemoine L. Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur. J. Nucl. Med. Mol. Imaging 2021;48(4):1093–1102.

    Article  CAS  PubMed  Google Scholar 

  34. Lowe VJ, Lundt ES, Albertson SM, et al. Tau-positron emission tomography correlates with neuropathology findings. Alzheimer’s Dement. 2020;16(3):561–571.

    Article  Google Scholar 

  35. Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia [Internet]. Acta Neuropathol. Commun. 2016;4(1):1–19. Available from: https://doi.org/10.1186/s40478-016-0315-6

    Article  Google Scholar 

  36. Malpetti M, Joie R La, Rabinovici GD. Tau Beats Amyloid in Predicting Brain Atrophy in Alzheimer Disease: Implications for Prognosis and Clinical Trials. J. Nucl. Med. 2022;63(6):830–832.

    Article  PubMed  PubMed Central  Google Scholar 

  37. La Joie R, Visani A V, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. [Internet]. Sci. Transl. Med. 2020;12(524):1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31894103

    Article  Google Scholar 

  38. Therriault J, Gauthier S, Rosa-Neto P. In vivo tau staging in Alzheimer’s disease. Aging (Albany. NY). 2022;14(17):6842–6843.

    Article  PubMed  Google Scholar 

  39. Jack CR, Therneau TM, Weigand SD, et al. Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging-Alzheimer’s Association Research Framework. JAMA Neurol. 2019;76(10):1174–1183.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schöll M, Lockhart SN, Schonhaut DR, et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 2016;89(5):971–982.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lowe VJ, Wiste HJ, Senjem ML, et al. Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain 2018;141(1):271–287.

    Article  PubMed  Google Scholar 

  43. Pascoal TA, Therriault J, Benedet AL, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 2020;143(9):2818–2830.

    Article  PubMed  Google Scholar 

  44. Pascoal TA, Benedet AL, Tudorascu D, et al. Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages. Brain 2021;144(11):3517–3528.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schwarz AJ, Yu P, Miller BB, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 2016;139(5):1539–1550.

    Article  PubMed  Google Scholar 

  46. Rullmann M, Brendel M, Schroeter M, et al. Multicenter F-18-PI-2620 PET for in vivo Braak staging of tau pathology in Alzheimer’s disease. 59. Jahrestagung der Dtsch. Gesellschaft für Nukl. 2021;60

  47. Cho H, Choi JY, Lee HS, et al. Progressive tau accumulation in Alzheimer disease: 2-year follow-up study. J. Nucl. Med. 2019;60(11):1611–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leuzy A, Smith R, Ossenkoppele R, et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of alzheimer disease from other neurodegenerative disorders. JAMA Neurol. 2020;77(8):955–965.

    Article  PubMed  Google Scholar 

  49. Leuzy A, Smith R, Cullen NC, et al. Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurol. 2022;79(2):149–158.

    Article  PubMed  Google Scholar 

  50. Young CB, Winer JR, Younes K, et al. Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease. JAMA Neurol. 2022;1–12.

  51. Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021;27(5):871–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Therriault J, Pascoal TA, Savard M, et al. Topographical distribution of amyloid-β, tau and atrophy in behavioral/dysexecutive AD patients. Neurology 2020;96(1):e81–e92.

    Article  PubMed  Google Scholar 

  53. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. 8th Editon. Springer; 2017.

  54. Kovic B, Jin X, Kennedy SA, et al. Evaluating Progression-Free Survival as a Surrogate Outcome for Health-Related Quality of Life in Oncology: A Systematic Review and Quantitative Analysis. JAMA Intern. Med. 2018;178(12):1586–1596.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mesulam M, Wicklund A, Johnson N, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann. Neurol. 2008;63(6):709–719.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ossenkoppele R, Pichet Binette A, Groot C, et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 2022

  57. Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials [Internet]. Lancet Neurol. 2022;21(8):726–734. Available from: https://doi.org/10.1016/S1474-4422(22)00168-5

    Article  CAS  PubMed  Google Scholar 

  58. Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: A clinicopathologic perspective for biomarker research. Alzheimer’s Dement. 2021;17(9):1554–1574.

    Article  CAS  Google Scholar 

  59. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies [Internet]. Cell 2019;179(2):312–339. Available from: https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jack CR, Wiste HJ, Botha H, et al. The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes. Brain 2019;142(1):3230–3242.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fantoni E, Collij L, Alves IL, et al. The Spatial-Temporal Ordering of Amyloid Pathology and Opportunities for PET Imaging. J. Nucl. Med. 2020;61(2):166–171.

    Article  CAS  PubMed  Google Scholar 

  62. Collij LE, Heeman F, Salvadó G, et al. Multitracer model for staging cortical amyloid deposition using PET imaging. Neurology 2020;95(11):e1538–e1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mattsson N, Palmqvist S, Stomrud E, et al. Staging β-Amyloid Pathology with Amyloid Positron Emission Tomography. JAMA Neurol. 2019;76(11):1319–1329.

    Article  PubMed  Google Scholar 

  64. Jack CR, Wiste HJ, Lesnick TG, et al. Brain β-amyloid load approaches a plateau. Neurology 2013;80(10):890–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Therriault J, Lussier FZ, Tissot C, et al. Amyloid-beta plaque accumulation with longitudinal [18F]AZD4694. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 2023;In press

  66. Gyawali B, Hey SP, Kesselheim AS. Assessment of the Clinical Benefit of Cancer Drugs Receiving Accelerated Approval. JAMA Intern. Med. 2019;179(7):906–913.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Krishnadas N, Huang K, Schultz SA, et al. Visually Identified Tau 18F-MK6240 PET Patterns in Symptomatic Alzheimer’s Disease. J. Alzheimer’s Dis. 2022;88(4):1627–1637.

    Article  CAS  Google Scholar 

  68. Shuping JL, Rowe CC, Johnson KA, et al. Development, initial validation, and application of a visual read method for [18 F] MK-6240 tau PET. 2023;(July 2022):1–14.

Download references

Funding

Funding: This research is supported by the Weston Brain Institute, Canadian Institutes of Health Research (CIHR) [MOP-11-51-31; RFN 152985, 159815, 162303], Canadian Consortium of Neurodegeneration and Aging (CCNA; MOP-11-51-31 -team 1), the Alzheimer’s Association [NIRG-12-92090, NIRP-12-259245], Brain Canada Foundation (CFI Project 34874; 33397), the Fonds de Recherche du Québec - Santé (FRQS; Chercheur Boursier, 2020-VICO-279314). TAP, P.R-N and SG are members of the CIHR-CCNA Canadian Consortium of Neurodegeneration in Aging. Colin J. Adair Charitable Foundation.JT is funded by the Canadian Institutes of Health Research doctoral award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Rosa-Neto.

Ethics declarations

Conflict of interest: No conflicts of interest for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Therriault, J., Gauthier, S. & Rosa-Neto, P. Adding the Topographical Information from Tau-PET to the A/T/(N) Framework: Steps Towards Staging AD in Vivo. J Prev Alzheimers Dis 10, 381–386 (2023). https://doi.org/10.14283/jpad.2023.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.52

Key words

Navigation