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Abstract
BACKGROUND: Alzheimer’s disease (AD) is the leading cause 
of dementia in older adults, but most people are not diagnosed 
until significant neuronal loss has likely occurred along 
with a decline in cognition. Non-invasive and cost-effective 
digital biomarkers for AD have the potential to improve early 
detection.
OBJECTIVE: We examined the validity of DCTclockTM (a 
digitized clock drawing task) as an AD susceptibility biomarker.
DESIGN: We used two primary independent variables, 
Apolipoprotein E (APOE) ε4 allele carrier status and polygenic 
risk score (PRS). We examined APOE and PRS associations with 
DCTclockTM composite scores as dependent measures. 
SETTING: We used existing data from the Framingham Heart 
Study (FHS), a community-based study with the largest dataset 
of digital clock drawing data to date. 
PARTICIPANTS: The sample consisted of 2,398 older adults 
ages 60-94 with DCTclockTM data (mean age of 72.3, 55% female 
and 92% White). 
MEASUREMENTS: PRS was calculated using 38 variants 
identified in a recent large genome-wide association study 
(GWAS) and meta-analysis of late-onset AD (LOAD). 
RESULTS: Results showed that DCTclockTM performance 
decreased with advancing age, lower education, and the 
presence of one or more copies of APOE ε4. Lower DCTclockTM

Total Score as well as lower composite scores for Information 
Processing Speed (both command & copy conditions) and 
Drawing Efficiency (command condition) were significantly 
associated with higher PRS levels and more copies of APOE 
ε4. APOE and PRS associations displayed similar effect sizes in 
both men and women.  
CONCLUSIONS: Our results indicate that higher AD genetic 
risk is associated with poorer DCTclockTM performance in older 
adults without dementia. This is the first study to demonstrate 
significant differences in clock drawing performance on the 
basis of APOE status or PRS. 

Key words: Genetics, polygenic risk score, APOE, cognitive screening, 
clock drawing test, digital biomarkers. 

Introduction

Alzheimer’s disease (AD) is a neurodegenerative 
disease projected to affect 12.7 million adults 
age 65 and older by 2050 (1). Despite this 

growing prevalence, AD pathophysiology remains 
difficult to detect for clinical diagnostic purposes. 
Biomarkers from cerebrospinal fluid (CSF) and advanced 
neuroimaging technology, such as amyloid beta (Aβ) 
positron emission tomography (PET) scans, are invasive 
and costly to obtain and are currently accessible in a 
limited capacity (e.g., in research trials or specialty 
clinics). Recent research and development suggests that 
several novel, minimally invasive digital and biological 
biomarkers (e.g., genetic and blood-based) have the 
potential to yield diagnostic value similar to PET and 
CSF measures, especially when combined (2, 3). Surrogate 
neuropsychological biomarkers may be particularly 
beneficial for identifying individuals at risk for emergent 
AD in primary care and for secondary prevention AD 
clinical drug trials while significantly reducing patient 
burden (4-6).   

In older adults with superficially intact cognition, 
digital neuropsychological biomarkers gleaned using 
automated and advanced analytics may provide 
information about subtle variations in cognition (e.g., 
response latency, decision making, graphomotor output) 
associated with AD neuropathology and brain function 
in areas implicated in AD pathogenesis (7, 8). Many 
of these nuanced behaviors cannot be easily captured 
using traditional pencil-paper tests or are infeasible for 
clinicians to record and interpret reliably (9, 10). 

DCTclockTM is one of a growing number of digitally 
administered neuropsychological tests that may be 
useful for obtaining digital cognitive biomarkers for AD 
and related dementias. Based on the traditional clock 
drawing task commonly used for dementia screening (11, 
12) DCTclockTM uses a digital pen to capture a person’s 
drawings of a clock to command (drawing a de novo 
clock) and copy (copying a model clock) using standard 
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clock drawing instructions. Over the past several decades, 
digital clock drawing test (dCDT) research using raw 
digital pen-generated data has demonstrated that 
machine-learning algorithms using features extracted 
from the dCDT can predict neuroimaging biomarkers of 
AD and can distinguish between normal cognition, mild 
cognitive impairment, and dementia (13-18). Building 
on this prior work, DCTclockTM utilizes a machine 
learning-derived scoring algorithm, provides a cloud-
based scoring platform, and generates four age-adjusted 
composite scores for both command and copy test 
conditions, as well as a composite total command/copy 
score designed to aid clinical interpretation. DCTclockTM 
is FDA approved for clinical use and is commercially 
available as part of the Linus Health platform.

The extant literature on DCTclockTM has reported 
associations between DCTclockTM performance and Aβ 
burden in the frontoparietal region and default mode 
networks in normal individuals (16). DCTclockTM 
summary score and spatial reasoning composite scores 
were associated with greater Aβ and tau burden (16). The 
composite scores have also been shown to distinguish 
accurately between normal cognition and mild cognitive 
impairment (MCI), including amnestic and dysexecutive 
MCI profiles (19). DCTclockTM may therefore be a 
potential tool that could efficiently address the need 
for surrogate biomarkers detecting early AD processes. 
However, DCTclockTM composite measures have yet to be 
independently validated in a community-based sample of 
older adults. 

In addition to digital biomarkers, genetic biomarkers 
are another important indicator of risk for AD. The 
heritability of late onset Alzheimer’s disease (LOAD) is 
estimated to be 60-80%, with Apolipoprotein E (APOE) 
ε4 allelic variants contributing the largest effect (20-22). 
APOE ε4 carriers are at higher risk for AD and tend 
to accumulate Aβ at an earlier age and have greater 
tau accumulation in the medial temporal lobe (22, 23). 
APOE ε4 confers a stronger dementia risk in women 
compared to men, and is associated with earlier dementia 
onset in women (22). AD risk factors are also discovered 
through polygenic risk score (PRS) analysis using effect 
size estimates attained from established genomic-wide 
association studies (GWAS) (24). PRS has been shown 
to discriminate between controls and confirmed cases 
with AD at up to 84% accuracy and can be calculated 
at any point in an individual’s life (25). Further, PRS 
predicts longitudinal cognitive decline in cognitively 
normal individuals with and without high tau and Aβ 
burden at autopsy, and among APOE ε4 non-carriers (26, 
27). PRS is associated with cognitive decline in areas of 
processing speed and working memory in cognitively 
normal individuals (26), and episodic verbal memory in 
pre-clinical AD (28). There also appears to be considerable 
sex-dependent differences in the genetic architecture and 
therefore, polygenic risk in AD (29-31). Comparatively, a 
large study sample of twins found that genetic etiology of 

AD may be similar between women and men (32). Results 
regarding non-APOE ε4 genetic risk across sexes remains 
inconclusive, and may be modulated by sex-specific 
biological factors (e.g. hormones) and psychosocial risk.  

The current study seeks to contribute to the 
validation of DCTclockTM performance as a potential 
AD susceptibility biomarker for use in AD clinical trials 
and other AD risk screening efforts (e.g., primary care). 
We examined DCTclockTM composite and total scores 
generated from dCDT collected in the Framingham 
Heart Study (FHS), a community-based study with 
largest dataset of raw dCDT data to date. Using a GWAS 
available for FHS participants, we examined associations 
between DCTclockTM performance and the genetic 
biomarkers of APOE ε4 alone and a PRS containing APOE 
ε4. In order to validate our potential digital biomarkers 
against known genetic biomarkers.

Methods

Study population

This study consisted of multiple generations of 
participants in the Framingham Heart Study (FHS). 
The original cohort (GEN 1) recruited 5,209 residents of 
Framingham, Massachusetts to investigate cardiovascular 
disease (CVD) epidemiology and risk factors (33). In 
1971, the FHS recruited 5,214 new participants, who 
were biological children of the original cohort and the 
spouses of those children, in the Offspring (GEN 2) 
cohort (34, 35). Beginning in 2002, a third generation of 
4,095 participants (GEN 3), who were grandchildren 
of Gen 1, was recruited for continued study of CVD. 
Also in 2002, the New Offspring Spouse (NOS) 
cohort of 103 individuals was enrolled. NOS included 
parents of GEN 3 participants who had not yet been 
enrolled in FHS (36). In 1994, reflecting the growing 
ethnic diversity of Framingham and the surrounding 
area, the FHS enrolled 506 individuals of Hispanic, non-
Hispanic black, Asian, and Native-American descent 
as the Omni 1 cohort. In 2003, the Omni 2 cohort of 410 
ethnically diverse participants was enrolled, some of 
whom were family members of the Omni 1 participants 
(37, 38). The FHS has collected longitudinal measures 
such as demographics, cardiovascular risk factors, 
biomarker data, co-morbidities and incident disease 
including CVD and AD, through regular health exams 
and ancillary studies (38, 39). Dementia diagnosis is 
made via diagnostic case conference. The methods of 
FHS dementia surveillance and diagnosis have been 
previously described (40). The Boston University Medical 
Campus Institutional Review Board approved protocols 
for participant examinations and collection of genetic 
materials were approved. Written informed consent for 
genetic studies was obtained for all participants.
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Digital clock measurements

Traditional (paper and pencil) clock drawing 
assessments are well established in neuropsychological 
re s e a rc h  t o  c h a r a c t e r i z e  p a r t i c i p a n t s  w i t h 
neurodegenerative disorders including AD (41-43). The 
digital clock drawing test (dCDT) has been integrated 
into the FHS neuropsychological testing protocol since 
2011 using an algorithm created by the MIT/Lahey lab. 
In addition to continuing collection with that algorithm, 
the use of the DCTclockTM algorithm, created and owned 
by Linus Health, began in 2018 (16). The baseline dCDT 
results that were first collected for each participant are 
being used. Participants are presented with a paper 
test form containing a faint dot pattern and handed a 
digital pen that looks and functions like a normal pen 
but contains a camera sensor that captures pen position 
every 12ms by tracking the pen’s position relative to 
the dots on the paper. The instructions of the dCDT 
are consistent with traditional CDT administration 
and include both command and copy test conditions. 
In the command condition, participants are asked to 
“draw the face of a clock, put in all numbers, and set the 
hands to 10 after 11.” Upon completion of the command 
test condition, the copy test condition is administered 
whereby participants are asked to copy a model of a 
clock with hands set to ‘10 after 11’. The digital pen 
allows for the capture of thousands of clock drawing 
features to be analyzed as a series of time-stamped (x,y) 
coordinates. DCTclockTM machine learning algorithms 
were developed to calculate meaningful clock scores 
based on their ability to discriminate performance 
between thousands of healthy controls and participants 
from different diagnostic groups, including amnestic 
MCI, AD dementia, Parkinson’s disease, and other 
neurodegenerative disorders (14, 44). Details on the 
DCTclockTM algorithm and scoring process have been 
described in detail elsewhere (16). Supplemental Table 
1 contains a description of the nine DCTclockTM indices 
used for this analysis, which include a total composite 
score and command (COM) and copy (COP) condition 
composite scores for Information Processing, Drawing 
Efficiency, Spatial Reasoning, and Simple/Complex 
Motor Operations. These domain-specific composite 
scores are constructed by DCTclockTM by combining 
machine learning calculations of variables that are related 
to each domain (16).

Genotyping and imputation

Genotyping was performed using Affymetrix 
500 K and MIPS 50 K platforms (45, 46) in the FHS. 
The quality control procedures on the genotyping 
data were previously described in detail (47). In 
brief, single nucleotide polymorphisms (SNPs) were 
removed if Hardy–Weinberg Equilibrium (HWE) P 
values were below 1E-6. SNPs were also removed 

for call rates below 96.9%, minor allele frequencies 
(MAF) below 0.01, map mismatches between Build 36 
and Build 37, and not having a physical location 
or duplication or having Mendelian error number 
below 1000 (47). MaCH software (48) was used for 
imputation in conjunction with the 1000G phase 3 version 
5 to generate an imputed set of ~30 million variants 
(49). Single nucleotide polymorphisms (SNPs) with 
imputation quality ratio R-squared <0.5 or MAFs <0.01 
were removed.

APOE genotype and polygenic risk score 
construction

We used two primary independent variables of interest 
in association analyses with the DCTclockTM composite 
measures: APOE carrier status and polygenic risk score 
(PRS). The APOE genotype manifests as three major 
alleles, ε2, ε3 and ε4 and the presence of APOE ε4 is the 
strongest genetic risk factor for AD (50, 51). Therefore, we 
classified the participants into two groups by the presence 
(ε3/ε4 and ε4/ε4) or absence (ε2/ε3, ε2/ε2 and ε3/ε3) 
of the ε4 allele. To avoid a mixed allele effect, we also 
excluded participants with ε2/ε4  (n = 203) despite the 
presence of the ε4 allele because APOE ε2 has a protective 
effect against developing AD (52). The APOE genotype 
was determined directly as reported previously (53).

A recent large genome-wide association study 
(GWAS) and meta-analysis was conducted on late-onset 
Alzheimer’s disease (LOAD) in participants 65 years 
and above (54). This study analyzed 90,338 cases with 
LOAD and 1,036,225 controls and identified 38 variants, 
seven of which were novel. Thus, these 38 variants were 
used to develop the PRS for this investigation. We firstly 
harmonized the effect (or coded) alleles between this 
study and the FHS imputation data so that the effect size 
(β_i) reflected the effect of a risk allele of a SNP for higher 
odds for LOAD. We then multiplied the effect size of an 
individual variant and allele dosages of this variant for 
all FHS participants. The weighted genetic risk score for a 
participant was then constructed by the summation of the 
weighted dosage across the 38 variants. This process is 
summarized in the formula below:

Covariates

Covariates included self-reported sex, a continuous 
variable of age at the time of DCTclockTM completion, and 
categorical level of education grouped (i.e., less than high 
school completion, high school graduate, some college, 
and college graduate).
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Association analysis between PRS/APOE and 
composite digital clock markers

We first performed univariate analyses to quantify the 
relationships of composite digital clock markers with 
age, sex, and education. We then applied linear mixed 
models to investigate associations of APOE or PRS as 
the predictor variable with each of the composite digital 
clock markers as an outcome variable. In addition, family 
structure was adjusted in linear mixed models (55). The 
association analyses were performed in all participants, 
in men-only and women-only samples. All statistical 
analyses were performed using R software (version 4.2.2). 
The “nlme” library was used for linear mixed modeling 
(56). We used two-sided p ≤ 0.05 for significance.

Results

Participant characteristics

The source data for this study consisted of 2,398 FHS 
participants and their DCTclockTM results. Although our 
analyses originally were performed on a larger sample 
of 3,908 participants ranging from ages 27-99, we 
learned that this sample exceeded the lower and upper 
age limits for which the DCTclockTM scoring algorithm 
was developed. Subsequently, the sample was restricted 
to individuals who were ages 60-94 at the time they 
completed the clock drawing task (Supplemental Table 
2), consistent with the age range of validated use for 
the DCTclockTM. This dataset included more women (n 
= 1327, 55.3%) than men (n = 1071, 44.7%) (Table 1). 
Women were slightly older than men, with a mean age 
72.4 (range 60 to 94) in women versus 72.1 in men (range 
60 to 94). The majority of the participants were of White 
European descent, with 79 men (7.38%) and 119 women 
(8.97%) identifying as non-White. In general, men had 
more education than women: 58.8% of men and 43.4% of 
women were college graduates, while 38.3% of men and 
54.5% of women had only high school or some college 
education. In total, 63 participants (2.63%) had been 
diagnosed with prevalent dementia, consisting of 32 men 
(2.99%) and 31 women (2.34%). We removed participants 
who had missing values in any of the covariates or in 
outcome variables. The association analyses were 
performed in up to 2,235 participants with APOE ε4 
carrier status as the predictor variable and in up to 2,033 
participants with PRS as the predictor variable.

Association analyses of DCTclockTM with 
APOE and PRS  

Demographics

We investigated the association of age, sex, and 
education with performance in DCTclockTM composite 

measures. We found that performance in all composite 
DCTclockTM measures decreased with advancing age and 
increased with higher education levels (Supplemental 
Tables 3-5). For example, for each year of increase in age, 
on average, DCTclockTM Total Score was 1.16 units lower 
(p < 0.001). A higher education level, on average, was 
associated with 5.37 units higher score in the DCTclockTM

Total Score (p < 0.001). Women performed better than 
men across most composite measures, with significant 
differences seen for Total Score, Information Processing, 
and Simple Motor scores. For example, women, on 
average, had about 2.39 units higher DCTclockTM Total 
Score than men (p = 0.014). 

Table 1. Characteristics of the Framingham Heart Study 
sample 
Participant characteristics: Total Sample 

(N = 2398)
Men

(n =1071, 
46.0%)

Women
(n = 1327, 

54.0%)

Non-White n (%) 198 (8.26%) 79 (7.38%) 119 (8.97%)

Age, mean (sd) 72.3 (7.86) 72.1 (7.88) 72.4 (7.84)

Dementia, n (%) 63 (2.63%) 32 (2.99%) 31 (2.34%)

APOE, n (%)* 482 (20.1%) 224 (20.9%) 258 (19.4%)

PRS, mean (sd) 0.298 (0.0338) 0.297 (0.0341) 0.299 (0.0335)

Education, n (%)

   No high school 58 (2.46%) 31 (2.96%) 27 (20.7%)

   High school 451 (19.2%) 160 (15.3%) 291 (22.2%)

   Some college 662 (28.1%) 241 (23.0%) 421 (32.3%)

   College graduate 1183 (50.3%) 617 (58.8%) 566 (43.4%)

DCTclockTM Scores: median (interquartile range)

DCT Total Score 79.0 (30.5) 77.1 (30.8) 81.0 (31.3)

COM Drawing Efficiency 63.3 (12.6) 63.0 (12.6) 63.6 (12.5)

COM Simple Motor 63.6 (11.3) 62.7 (12.3) 64.6 (10.1)

COM Information Processing 61.7 (13.4) 61.9 (13.2) 61.5 (13.7)

COM Spatial Reasoning 69.2 (23.9) 68.9 (23.4) 69.4 (24.2)

COP Drawing Efficiency 62.4 (9.96) 62.0 (9.56) 62.7 (10.4)

COP Simple Motor 60.8 (8.81) 60.3 (9.71) 61.1 (7.92)

COP Information Processing 62.2 (15.5) 61.5 (15.0) 63.1 (15.5)

COP Spatial Reasoning 70.9 (26.3) 70.9 (26.6) 71.0 (25.4)

*Individuals with APOE ε3ε4 or  ε4ε4  genotypes
   
Associations with APOE ε4 status

As expected, on average, carrying at least one APOE 
ε4 allele was associated with lower composite scores 
after adjusting for age, sex, and education level (Table 2). 
APOE carrier status was significantly associated with the 
DCTclockTM Total Score (a single score between 0 and 100 
that captures overall performance across command and 
copy conditions). Specifically, participants with at least 
one APOE ε4 allele had a 2.59-unit lower DCTclockTM

Total Score (p = 0.023) compared to those without 
an APOE ε4 allele. Participants carrying at least one 
APOE ε4 allele also displayed lower COP Information 
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Processing scores (efficiency the participant demonstrated 
during the process of drawing the copy clock) (beta = 
0.61, p = 0.020) and a trend of lower COP Spatial 
Reasoning scores (spatial abilities demonstrated during 
the process of drawing the copy clock) (beta = 0.99, p = 
0.064). 

Associations with Polygenic Risk Score

The PRS was significantly associated with the 
DCTclockTM Total Score (beta = -28.9, p = 0.040). One unit 
increase in PRS was significantly associated with a 28.9 
unit decrease in DCTclockTM Total Score. A higher level 
of PRS was also significantly associated with poorer 
performance in COM Drawing Efficiency (The efficiency 
the participant demonstrated during the process of 
drawing the command clock) (beta = -24.9, p < 0.001), 
COM Information Processing (beta = -18.3, p = 0.007), and 
a trend of lower COP Information Processing (efficiency 

the participant demonstrated during the process of 
drawing the copy clock) (beta = -14.8, p = 0.051).

Sex-stratified associations

Sex is an important biological variable. As secondary 
analyses, we performed sex-specific analyses to 
investigate whether the associations of DCTclockTM

measures with APOE/PRS were different in men and 
women. (Table 3 and Table 4). As noted above, women 
appear to have better performance on DCTclockTM

measures compared to men. We found significant 
associations in men between APOE carrier status and 
both COM Spatial Reasoning (beta = -3.29, p = 0.028) 
and COP Information Processing (beta = -1.68, p = 0.050). 
We also found significant associations in men between 
the PRS and COM Drawing Efficiency (beta = -30.0, p = 
0.008) and COM Information Processing (beta = -26.7, p 
= 0.008). We observed significant associations in women 

Table 2. Association analyses of APOE/PRS with nine DCTclockTM composite scores  
Full association

APOE PRS

Variable n Beta SE p-value n Beta SE p-value

DCT Total Score 2208 -2.59 1.14 0.023 2011 -28.9 14 0.040
COM Drawing Efficiency 2235 -0.97 0.6 0.107 2033 -24.9 7.32 < 0.001
COM Simple Motor 2219 -0.21 0.46 0.645 2020 -9.41 5.74 0.101
COM Information Processing 2235 -0.55 0.54 0.314 2033 -18.3 6.79 0.007
COM Spatial Reasoning 2224 -1.68 1.01 0.097 2025 -3.25 12.4 0.792
COP Drawing Efficiency 2230 -0.6 0.49 0.219 2030 -10.4 5.99 0.084
COP Simple Motor 2224 -0.15 0.36 0.689 2026 -0.9 4.58 0.843
COP Information Processing 2230 -1.42 0.61 0.020 2030 -14.8 7.57 0.051
COP Spatial Reasoning 2224 -1.83 0.99 0.064 2026 -10.3 12.5 0.407
Linear Mixed Model; (DCT marker) ~ APOE/PRS + age + sex + education

Table 3. Association analyses of APOE/PRS with nine DCTclockTM composite scores, men only
Men

APOE PRS

Variable n Beta SE p-value n Beta SE p-value

DCT Total Score 988 -2.62 1.7 0.123 902 -30.3 21.9 0.167
COM Drawing Efficiency 1001 -1.5 0.9 0.095 913 -30 11.3 0.008
COM Simple Motor 992 -0.1 0.73 0.887 905 0.16 9.46 0.987
COM Information Processing 1001 -0.76 0.78 0.336 913 -26.7 10 0.008
COM Spatial Reasoning 995 -3.29 1.5 0.028 908 -1.37 18.9 0.942
COP Drawing Efficiency 1001 -0.27 0.68 0.691 914 -3.63 8.63 0.674
COP Simple Motor 997 0.15 0.58 0.803 910 8.13 7.65 0.289
COP Information Processing 1001 -1.68 0.86 0.050 914 -11.7 10.8 0.279
COP Spatial Reasoning 997 -0.39 1.49 0.792 910 -18.1 19.4 0.352
Linear Mixed Model; (DCT marker) ~ APOE/PRS + age + sex + education
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between APOE carrier status and both DCTclockTM

Total Score (beta = -3.31, p = 0.033) and COP Spatial 
Reasoning (beta = -3.07, p = 0.021). We also observed 
significant associations in women between the PRS 
and COM Drawing Efficiency (beta = -21.9, p = 0.024), 
COM Simple Motor (beta = -18.7, p = 0.008), and COP 
Drawing Efficiency (beta = -19.9, p = 0.018). However, the 
difference in association effects between dCDT measures 
and APOE carrier status or PRS were not statistically 
significant, with all p-values above 0.1. 

Association analyses in participants without 
dementia

Some FHS participants had been diagnosed with 
dementia when DCTclockTM measures were conducted, 
which might have had an effect on the results by skewing 
the results towards worse DCTclockTM performance. 

In order to examine the potential of DCTclockTM

performance as a digital biomarker of AD susceptibility, 
we performed analyses where prevalent cases of 
dementia were removed (n = 63; Table 5). Results in 
participants without dementia were similar to those 
in the full sample. However, the association strength 
was attenuated. The associations between PRS and both 
COM Drawing Efficiency (beta = -24.2, p < 0.001) and 
COM Information Processing (beta = -24.2, p = 0.010) 
persisted. However, there were no longer any significant 
associations with APOE carrier status.

Discussion

The objective of this study was to examine DCTclockTM

performance as a potential AD susceptibility biomarker 
in a large adult sample using the FHS. We performed 
association analyses of DCTclockTM composite scores 

Table 4. Association analyses of APOE/PRS with nine DCTclockTM composite scores, women only
Women

APOE PRS

Variable n Beta SE p-value n Beta SE p-value

DCT Total Score 1220 -3.31 1.54 0.033 1109 -32.9 18.5 0.076
COM Drawing Efficiency 1234 -0.66 0.81 0.413 1120 -21.9 9.65 0.024
COM Simple Motor 1227 -0.34 0.58 0.559 1115 -18.7 7.07 0.008
COM Information Processing 1234 -0.59 0.75 0.437 1120 -11.7 9.31 0.210
COM Spatial Reasoning 1229 -0.69 1.36 0.612 1117 -3.68 16.3 0.821
COP Drawing Efficiency 1229 -1.1 0.69 0.110 1116 -19.9 8.35 0.018
COP Simple Motor 1227 -0.36 0.45 0.422 1116 -8.5 5.52 0.124
COP Information Processing 1229 -1.49 0.86 0.085 1116 -19.4 10.6 0.066
COP Spatial Reasoning 1227 -3.07 1.33 0.021 1116 -1.94 16.6 0.907
Linear Mixed Model; (DCT marker) ~ APOE/PRS + age + sex + education

Table 5. Association analyses of APOE/PRS with nine digital cognition component scores, with 63 individuals with 
diagnosed dementia removed
 Dementia removed

APOE PRS

Variable n Beta SE p-value n Beta SE p-value

DCT Total Score 2159 -1.78 1.12 0.113 1964 -23.2 13.6 0.089
COM Drawing Efficiency 2177 -0.84 0.58 0.148 1979 -24.2 7.06 < 0.001
COM Simple Motor 2167 -0.09 0.46 0.846 1970 -8.32 5.66 0.142
COM Information Processing 2177 -0.24 0.53 0.654 1979 -17 6.62 0.010
COM Spatial Reasoning 2171 -1.16 1 0.246 1974 4.51 12.1 0.709
COP Drawing Efficiency 2172 -0.15 0.46 0.738 1976 -8.52 5.59 0.128
COP Simple Motor 2169 0.08 0.36 0.832 1973 0.52 4.56 0.909
COP Information Processing 2172 -0.9 0.59 0.125 1976 -12.2 7.19 0.089
COP Spatial Reasoning 2169 -1.15 0.97 0.237 1973 -4.12 12.2 0.734
Linear Mixed Model; (DCT marker) ~ APOE/PRS + age + sex + education
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with APOE ε4 status and our constructed AD polygenic 
risk score. The directionality of the effect sizes measures 
better or worse performance on the DCTclockTM, where 
each numerical decrease in the effect size represents 
an equivalent decrease in the digital marker. Our 
results indicate that AD genetic risk is linked to poorer 
DCTclockTM performance in adults, including older adults 
without dementia. 

DCTclockTM performance decreased with advancing 
age, lower education, and the presence of one or more 
copies of APOE ε4. To our knowledge, ours is the first 
study to demonstrate significant differences in clock 
drawing performance on the basis of APOE status or 
PRS. Interestingly, women tended to perform better than 
men across most composite scores. Studies examining 
traditional clock drawing performance have generally 
found significant effects of age and education, but not 
sex, on performance (57). However, we recently reported 
better performance on DCTclockTM composite scores in 
women compared to men in a different sample (19). 
It should therefore be considered possible that the 
more in-depth capture of neuropsychological behavior 
with DCTclockTM may improve sensitivity to detect sex 
differences in clock drawing performance. 

In our main analysis, we found that the DCTclockTM 
Total Score and composite scores Information Processing 
Speed (both command and copy conditions) and 
Drawing Efficiency (command condition) were most 
strongly associated with PRS and APOE. This finding is 
consistent with previous literature show that DCTclockTM 
Total Score is sensitive to AD-related neuropathology 
and neurodegeneration (58). The Information Processing 
Speed and Drawing Efficiency composites are closely 
related, together capturing latencies or pauses, time spent 
‘thinking’ (i.e., not producing ink on the test page) versus 
‘drawing’, and total drawing time adjusted for drawing 
size, ink use, and number of pen strokes.  Andersen and 
colleagues have recently shown that non-motor ‘think’ 
time is associated with worse performance on episodic 
memory tests (59). We have recently found Information 
Processing Speed and Drawing Efficiency composite 
scores, in addition to the DCTclockTM Total Score, to be 
useful in differentiating MCI from normal cognition 
(19). Our findings suggest that these processing speed-
related markers could reveal some of the earliest aspects 
of cognitive performance affected by early-stage AD 
(“prodromal hypothesis”), or alternatively represent 
points of cognitive variation that exist on the basis of 
genetic risk factors for AD across the adult lifespan 
(“phenotype hypothesis”) (60). Repeating our analysis in 
a younger cohort or obtaining other AD biomarker data 
for the sample could potentially help with making this 
distinction in future research (61). 

Prior studies examining differences in cognitive 
performance on the basis of APOE status in healthy 
adults have shown that APOE carriers may show 
subtle differences in memory performance relative 
to non-carriers; however, relatively few studies have 

examined differences in other cognitive domains, such 
as processing speed, and results have been mixed (61, 
62). More recently, studies have examined associations 
between PRS and cognitive trajectories in cognitively 
unimpaired and preclinical AD samples, with results 
showing that while PRS predicts cognitive decline, these 
effects are often primarily driven by APOE genotype 
(63, 64). We have found a similar pattern in this large-
sample cross sectional analysis, and our findings further 
contribute to the literature by showing that the use of 
digital clock drawing and machine learning-derived 
scoring algorithms can identify nuanced performance 
inefficiencies to provide a novel susceptibility marker of 
AD. A future direction for this research will be to examine 
APOE and PRS in association with cognitive change in 
longitudinal dCDT data from the FHS, when available. 

There were a number of sex-specific findings in our 
results. As mentioned above, women tended to perform 
better across most DCTclockTM composite scores. 
However, our sex-stratified APOE and PRS associations 
revealed similarly strong associations between APOE or 
PRS and DCTclockTM performance in men and women. 
Previous studies generally show that APOE is more 
likely to modulate risk for neurodegeneration in women 
resulting in faster cognitive decline in the presence of 
amyloidosis (65-67). However, the higher risk for Aβ 
deposition and cognitive decline in female APOE ε4 
carriers also appears to be attenuated with advancing 
age (66). Therefore, it may be the case that the mean age 
(M=72.4) of women in our sample is above the age range 
where APOE ε4 potentially exerts the most effect on 
cognition. 

Strengths and limitations

The present study contributes to the extant literature 
validating the DCTclockTM as a cognitive screening tool 
that is not only sensitive to MCI subtypes and AD- related  
neuropathology, but is also useful as a digital biomarker 
of AD susceptibility due to its associations with AD PRS 
in older adults without dementia (19, 58). A strength 
of this study is its use of a large sample of community-
dwelling older adults from the FHS, which represents the 
largest dCDT dataset available to date, and improves the 
strength and generalizability of our findings.

The clock drawing task is a longstanding and widely 
used neuropsychological tool that has become an essential 
part of dementia screening in Western countries (68, 
69).The DCTclockTM measures aspects of clock drawing 
performance not captured with standard paper-pencil 
administration and utilizes automated scoring to 
improve the accuracy and reliability of measurement (70). 
Validation of the digitized version of the clock drawing 
task can therefore facilitate the transition from paper-and-
pencil based administration to a more comprehensive, 
efficient, and sensitive screening tool. 
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Limitations of the clock drawing task include its 
inapplicability in some non-Western countries and 
potentially limited appropriateness for future generations 
of older adults who may be less familiar with analog 
clocks (71). A possible limitation of our study method 
itself is the use of composite measures. We decided to 
use the nine DCTclockTM generated composite measures, 
given that these summary-level scores are the most likely 
to be used clinically. We did not deviate from this plan, 
other than adding more runs with variant inputs. It is 
possible that if we worked with the broader array of 
process-related sub-scores generated by DCTclockTM we 
may have obtained different results. There could also 
have been an alternative way to construct the PRS, as 
there are multiple ways of doing so and continued active 
research in that area (72). Also in this study, race and 
ethnicity were not analyzed as a covariate; this was due 
to the low percentage of non-white individuals in FHS 
datasets who underwent DCTclockTM testing. A future 
study of FHS data could incorporate race and ethnicity 
once more digital clock drawing data has been collected 
from the younger and more racially and ethnically 
diverse generations of the cohort. 

Finally, our findings were attenuated after excluding 
a small subset of participants with dementia, suggesting 
that this group contributed significantly to the cognitive 
phenotypic variability and may have driven some of the 
moderate effects that we initially observed. Although no 
significant associations remained between APOE and 
DCTclockTM variables after individual with dementia 
were excluded, two of the three significant associations 
between PRS and DCTclockTM performance persisted. This 
suggests that PRS uniquely identifies aspects of cognitive 
performance measured by DCTclockTM (information 
processing and drawing efficiency) that may have 
prognostic utility even among cognitively healthy older 
adults. This is a completely novel and important finding, 
particularly as the field of AD research seeks to identify 
screening tools that are scalable, efficient to administer, 
and sensitive to preclinical and prodromal AD.

Future Directions

Although the findings of this paper provide support 
for the continued neuropsychological use of DCTclockTM, 
more work must be done before DCTclockTM can be fully 
integrated as a screening tool in clinical settings, such 
as primary care. Findings from additional aspects of a 
large-scale DCTclockTM validation study using the FHS 
are forthcoming. Further research is needed to validate 
DCTclockTM in a diverse, real-world clinical setting and 
ultimately integrate DCTclockTM into electronic medical 
record (EMR) systems.

Additional future research is needed on genetic risk, 
both related to APOE (e.g., two APOE ε4 alleles [ε4/ε4] 
compared to [ε3/ε4]) and additional AD genetic markers. 
More research is also warranted to better understand sex-

specific associations between cognitive performance on 
DCTclockTM and AD genetic risk. Future research should 
consider examining polymorphisms in the serpin family 
B member 1 (SERPINB1), which have been closely linked 
with AD-specific neuropathology in women only (73). 
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