Skip to main content
Log in

The Impact of Testosterone on Alzheimer’s Disease Are Mediated by Lipid Metabolism and Obesity: A Mendelian Randomization Study

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

To investigate the causal relationship between testosterone (BT) levels and Alzheimer’s disease (AD) risk and to quantify the role of obesity and lipid metabolism as potential mediators.

Methods

We used a two-sample, two-step MR to determine:1) the causal effect of BT levels on AD; 2) the causal effect of two lipid metabolites, obesity and LDLc on AD; and 3) the mediating effects of these metabolites. Pooled data for BT levels and lipid metabolism were obtained from the UK Biobank. AD data were obtained from the Alzheimer’s Disease Project International Genomics Consortium, FinnGen Consortium, and UK Biobank study. Effect estimates from external genome-wide association study (GWAS) pooled statistics were obtained using inverse variance-weighted (IVW) MR analysis.

Results

Higher levels of BT were associated with a reduced risk of AD (odds ratio [OR] 0.9992, 95% CI 0.9985–0.9998, P = 0.019), and there was a negative correlation with LDLc (OR 0.9208, 95% CI 0.8569–0.9895, P = 0.024) and obesity class 2 (OC2) (OR 0.7445, 95% CI 0.5873–0.9437, P = 0.014). Conversely, there was a positive correlation between LDLc (OR 1.0014, 95% CI 1.0000–1.0029, P = 0.043) and OC2 (OR 1.0005, 95% CI 1.0001–1.0009, P = 0.003) and AD. Mediation analysis showed that the indirect effect of BT levels on AD was achieved through LDLc and OC2, which accounted for 17% and 17% of the total effect, respectively.

Conclusion

Our study identified a causal role of BT levels in LDLc and OC2. BT levels may affect AD through LDLc and OC2 metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Availability of data and materials: Data from the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/) are available for researchers to apply to individual cohorts through their website. All other data used are publicly available and cited according in the text.

Abbreviations

AD:

Alzheimer’s disease

BT:

Bioavailable testosterone

MR:

Mendelian randomization

GWAS:

Genome-wide association study

IVW:

Inverse variance-weighted

OR:

Odds ratio

LDLc:

LDL cholesterol

OC2:

Obesity class 2

Aβ:

β-amyloid

NHANES data:

National Health and Nutrition Examination Survey data

SNPs:

Single Nucleotide Polymorphisms

STROBE-MR:

Strengthening the Reporting of Observational Studies in Epidemiology-Mendelian Randomization

MVMR:

Multivariable Mendelian randomiza-tion

FTS:

F-statistic

References

  1. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primer. 2021;7: 33. DOI: https://doi.org/10.1038/s41572-021-00269-y

    Article  Google Scholar 

  2. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16: 391–460. DOI: https://doi.org/10.1002/alz.12068

  3. Pike CJ. Sex and the development of Alzheimer’s disease: Sex Differences in AD. J Neurosci Res. 2017;95: 671–680. DOI: https://doi.org/10.1002/jnr.23827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Camacho EM, Huhtaniemi IT, O’Neill TW, Finn JD, Pye SR, Lee DM, et al. Age-associated changes in hypothalamic–pituitary–testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol. 2013;168: 445–455. DOI: https://doi.org/10.1530/EJE-12-0890

    Article  PubMed  CAS  Google Scholar 

  5. Shi Z, Araujo AB, Martin S, O’Loughlin P, Wittert GA. Longitudinal Changes in Testosterone Over Five Years in Community-Dwelling Men. J Clin Endocrinol Metab. 2013;98: 3289–3297. DOI: https://doi.org/10.1210/jc.2012-3842

    Article  PubMed  CAS  Google Scholar 

  6. Marriott RJ, Murray K, Flicker L, Hankey GJ, Matsumoto AM, Dwivedi G, et al. Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: The UK Biobank prospective cohort study. Alzheimers Dement. 2022;18: 1907–1918. DOI: https://doi.org/10.1002/alz.12529

    Article  PubMed  CAS  Google Scholar 

  7. LeBlanc ES, Wang PY, Janowsky JS, Neiss MB, Fink HA, Yaffe K, et al. Association between sex steroids and cognition in elderly men. Clin Endocrinol (Oxf). 2010;72: 393–403. DOI: https://doi.org/10.1111/j.1365-2265.2009.03692.x

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Pei J-H, Jia J-X, Wang J, Song W, Fang X, et al. Inhibition of oxidative stress by testosterone improves synaptic plasticity in senescence accelerated mice. J Toxicol Environ Health A. 2019;82: 1061–1068. DOI: https://doi.org/10.1080/15287394.2019.1683988

    Article  PubMed  CAS  Google Scholar 

  9. Grimm A, Biliouris EE, Lang UE, Götz J, Mensah-Nyagan AG, Eckert A. Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein. Cell Mol Life Sci. 2016;73: 201–215. DOI: https://doi.org/10.1007/s00018-015-1988-x

    Article  PubMed  CAS  Google Scholar 

  10. Giannos P, Prokopidis K, Church DD, Kirk B, Morgan PT, Lochlainn MN, et al. Associations of Bioavailable Serum Testosterone With Cognitive Function in Older Men: Results From the National Health and Nutrition Examination Survey. Lipsitz LA, editor. J Gerontol Ser A. 2023;78: 151–157. DOI: https://doi.org/10.1093/gerona/glac162

  11. Sundermann EE, Panizzon MS, Chen X, Andrews M, Galasko D, Banks SJ, et al. Sex differences in Alzheimer’s-related Tau biomarkers and a mediating effect of testosterone. Biol Sex Differ. 2020;11: 33. DOI: https://doi.org/10.1186/s13293-020-00310-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol. 2004;39: 1633–1639. DOI: https://doi.org/10.1016/j.exger.2004.06.019

    Article  PubMed  CAS  Google Scholar 

  13. Rosario ER. Age-Related Testosterone Depletion and the Development of Alzheimer Disease. JAMA J Am Med Assoc. 2004;292: 1431–1432. DOI: https://doi.org/10.1001/jama.292.12.1431-b

    Article  CAS  Google Scholar 

  14. Burkhardt MS, Foster JK, Clarnette RM, Chubb SAP, Bruce DG, Drummond PD, et al. Interaction between Testosterone and Apolipoprotein E ε4 Status on Cognition in Healthy Older Men. J Clin Endocrinol Metab. 2006;91: 1168–1172. DOI: https://doi.org/10.1210/jc.2005-1072

    Article  PubMed  CAS  Google Scholar 

  15. Tan S, Sohrabi HR, Weinborn M, Tegg M, Bucks RS, Taddei K, et al. Effects of Testosterone Supplementation on Separate Cognitive Domains in Cognitively Healthy Older Men: A Meta-analysis of Current Randomized Clinical Trials. Am J Geriatr Psychiatry. 2019;27: 1232–1246. DOI: https://doi.org/10.1016/j.jagp.2019.05.008

    Article  PubMed  Google Scholar 

  16. Huang G, Wharton W, Bhasin S, Harman SM, Pencina KM, Tsitouras P, et al. Effects of long-term testosterone administration on cognition in older men with low or low-to-normal testosterone concentrations: a prespecified secondary analysis of data from the randomised, double-blind, placebo-controlled TEAAM trial. Lancet Diabetes Endocrinol. 2016;4: 657–665. DOI: https://doi.org/10.1016/S2213-8587(16)30102-4

    Article  PubMed  CAS  Google Scholar 

  17. Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev. 2004;5: 197–216. DOI: https://doi.org/10.1111/j.1467-789X.2004.00152.x

    Article  PubMed  CAS  Google Scholar 

  18. Bornstein SR, Voit-Bak K, Rosenthal P, Tselmin S, Julius U, Schatz U, et al. Extracorporeal apheresis therapy for Alzheimer disease—targeting lipids, stress, and inflammation. Mol Psychiatry. 2020;25: 275–282. DOI: https://doi.org/10.1038/s41380-019-0542-x

    Article  PubMed  Google Scholar 

  19. Smith GD. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33: 30–42. DOI: https://doi.org/10.1093/ije/dyh132

    Article  PubMed  Google Scholar 

  20. Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021; n2233. DOI: https://doi.org/10.1136/bmj.n2233

  21. The Endometrial Cancer Association Consortium, Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26: 252–258. DOI: https://doi.org/10.1038/s41591-020-0751-5

    Article  PubMed Central  Google Scholar 

  22. Larsson SC, Woolf B, Gill D. Plasma Caffeine Levels and Risk of Alzheimer’s Disease and Parkinson’s Disease: Mendelian Randomization Study. Nutrients. 2022;14: 1697. DOI: https://doi.org/10.3390/nu14091697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45: 501–512. DOI: https://doi.org/10.1038/ng.2606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. Am J Epidemiol. 2015;181: 251–260. DOI: https://doi.org/10.1093/aje/kwu283

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanderson E, Smith GD, Windmeijer F, Bowden J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol. 2018;0.

  26. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7: e34408. DOI: https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27: R195–R208. DOI: https://doi.org/10.1093/hmg/ddy163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36: 4705–4718. DOI: https://doi.org/10.1002/sim.7492

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  29. Sanderson E, Spiller W, Bowden J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat Med. 2021;40: 5434–5452. DOI: https://doi.org/10.1002/sim.9133

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  30. Dong X, Jiang H, Li S, Zhang D. Low Serum Testosterone Concentrations Are Associated With Poor Cognitive Performance in Older Men but Not Women. Front Aging Neurosci. 2021;13: 712237. DOI: https://doi.org/10.3389/fnagi.2021.712237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020;140: 104814. DOI: https://doi.org/10.1016/j.nbd.2020.104814

    Article  PubMed  CAS  Google Scholar 

  32. Quaye E, Galecki AT, Tilton N, Whitney R, Briceño EM, Elkind MSV, et al. Association of Obesity With Cognitive Decline in Black and White Americans. Neurology. 2023;100: e220–e231. DOI: https://doi.org/10.1212/WNL.0000000000201367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dake MD, De Marco M, Blackburn DJ, Wilkinson ID, Remes A, Liu Y, et al. Obesity and Brain Vulnerability in Normal and Abnormal Aging: A Multimodal MRI Study. J Alzheimers Dis Rep. 2021;5: 65–77. DOI: https://doi.org/10.3233/ADR-200267

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wingo AP, Vattathil SM, Liu J, Fan W, Cutler DJ, Levey AI, et al. LDL cholesterol is associated with higher AD neuropathology burden independent of APOE. J Neurol Neurosurg Psychiatry. 2022;93: 930–938. DOI: https://doi.org/10.1136/jnnp-2021-328164

    Article  PubMed  Google Scholar 

  35. Wingo TS, Cutler DJ, Wingo AP, Le N-A, Rabinovici GD, Miller BL, et al. Association of Early-Onset Alzheimer Disease With Elevated Low-Density Lipoprotein Cholesterol Levels and Rare Genetic Coding Variants of APOB. JAMA Neurol. 2019;76: 809. DOI: https://doi.org/10.1001/jamaneurol.2019.0648

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gagliano-Jucá T, Alvarez M, Basaria S. The medicalization of testosterone: reinventing the elixir of life. Rev Endocr Metab Disord. 2022;23: 1275–1284. DOI: https://doi.org/10.1007/s11154-022-09751-8

    Article  PubMed  Google Scholar 

  37. Wittert G, Grossmann M. Obesity, type 2 diabetes, and testosterone in ageing men. Rev Endocr Metab Disord. 2022;23: 1233–1242. DOI: https://doi.org/10.1007/s11154-022-09746-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mangolim AS, Brito LDAR, Nunes-Nogueira VDS. Effectiveness of testosterone replacement in men with obesity: a systematic review and meta-analysis. Eur J Endocrinol. 2022;186: 123–135. DOI: https://doi.org/10.1530/EJE-21-0473

    Article  CAS  Google Scholar 

  39. Lapauw B, Kaufman J-M. MANAGEMENT OF ENDOCRINE DISEASE: Rationale and current evidence for testosterone therapy in the management of obesity and its complications. Eur J Endocrinol. 2020;183: R167–R183. DOI: https://doi.org/10.1530/EJE-20-0394

    Article  PubMed  CAS  Google Scholar 

  40. Zhang N, Zhang H, Zhang X, Zhang B, Wang F, Wang C, et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur J Endocrinol. 2014;170: 487–494. DOI: https://doi.org/10.1530/EJE-13-0802

    Article  PubMed  CAS  Google Scholar 

  41. Chuang Y-F, An Y, Bilgel M, Wong DF, Troncoso JC, O’Brien RJ, et al. Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol Psychiatry. 2016;21: 910–915. DOI: https://doi.org/10.1038/mp.2015.129

    Article  PubMed  CAS  Google Scholar 

  42. Matsuzaki T, Sasaki K, Hata J, Hirakawa Y, Fujimi K, Ninomiya T, et al. Association of Alzheimer disease pathology with abnormal lipid metabolism. Cerebrovasc Dis. 2011.

  43. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse Events Associated with Testosterone Administration. N Engl J Med. 2010;363: 109–122. DOI: https://doi.org/10.1056/NEJMoa1000485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sanderson E, Davey Smith G, Bowden J, Munafò MR. Mendelian randomisation analysis of the effect of educational attainment and cognitive ability on smoking behaviour. Nat Commun. 2019;10: 2949. DOI: https://doi.org/10.1038/s41467-019-10679-y

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36: 465–478. DOI: https://doi.org/10.1007/s10654-021-00757-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Funding: None.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions: LLZ and LY initiated the study. LLZ undertook all statistical analysis. FY, JYM, and LY drafted the manuscript. XC, YXH, CW, and ML participated in the analysis. contributed to the interpretation of the analysis results and critical revision of the manuscript. LY managed the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lin Yang.

Ethics declarations

Ethics approval and consent to participate: All data used in this study were obtained from published GWAS studies. And all participants in each study provided informed consent, and all studies were approved by the relevant institutional review boards. Therefore, ethical approval was not required for this study because no unauthorized data at the individual level were used.

Consent for publication: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, F., Ma, J. et al. The Impact of Testosterone on Alzheimer’s Disease Are Mediated by Lipid Metabolism and Obesity: A Mendelian Randomization Study. J Prev Alzheimers Dis 11, 507–513 (2024). https://doi.org/10.14283/jpad.2023.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.116

Key words

Navigation