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REVIEW

Abstract
Meningococcal disease remains a major cause of childhood morbidity and mortality world wide and no

comprehensive vaccine is available against the causative organism, Neisseria meningitidis. Molecular stud-
ies of the diversity of this bacterium have provided a number of key insights into its biology, which have
implications for control of meningococcal disease. These have included the identification of hyperinvasive
lineages and the correlation of genetic type with antigenic type and disease epidemiology. In practical terms,
such studies have enabled the application of DNA-based technologies in the development of improved meth-
ods for diagnosis and epidemiological monitoring. These data are of especial importance with the current,
and ongoing, development and introduction of new meningococcal vaccines.

Index Entries: Neisseria meningitidis; meningococcal disease; molecular diagnosis; molecular epidemi-
ology; population biology.

1. Introduction

Neisseria meningitidis, the meningococcus, is
primarily a harmless commensal bacterium that
colonizes the naso- and oropharynx of adult
humans. However, this gram-negative diplococ-
cus has the potential to cause two devastating
disease syndromes, meningitis and fulminant
septicemia, that can occur either separately or in
combination (1,2). Once they have successfully
invaded in the bloodstream from their primary
colonization site, meningococci have the capacity
to grow rapidly (3) and also to cross the blood-
brain barrier (4), both features being of central
importance in pathogenesis. Disseminated menin-
gococcal infection is frequently accompanied by
the release of highly toxic lipooligosaccharides
which cause extensive tissue damage and severe
toxic shock (5). The progress of the disease is
swift and death often occurs within hours of the
onset of symptoms (6). Meningococcal disease is
well known as a major cause of morbidity and
mortality among small children, even in those

countries where it is relatively rare in absolute
terms, and remains a high priority for public health
services world wide due to the high mortality rates
of fulminant septicemic disease (which can be up
to 40% even when intensive supportive therapy is
available), the high proportion of sequela in
patients who have recovered (including brain
damage and digit or limb loss), and the age groups
most susceptible (young children and to a lesser
extent young adults) (7,8).

The severity of meningococcal disease is
often exacerbated by the notorious difficulties
in its diagnosis (9). The initial stages of both
syndromes are nonspecific and, in the case of
fulminant disease, the early signs of the purpu-
ric rash can be small and easily overlooked or
misinterpreted. The rapid progress of the infec-
tion makes these difficulties in diagnosis poten-
tially fatal as it is vital for successful management
that parenteral antibiotics are administered as
early as possible in the course of the disease (9).
The emphasis on early treatment, preferably
before hospitalization (10), and the maintenance
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of antibiotic therapy on admission to hospital,
reduces the likelihood of isolating a meningococ-
cus from clinical samples from approx 50% to
less than 5% (11) and has resulted in an increas-
ing proportion of cases that cannot be confirmed
by laboratory culture of the organism (12,13).
This decrease in laboratory confirmed cases,
and the accompanying loss of epidemiological
information, is occurring at a time when such
data are particularly important due to the testing
and introduction of novel vaccines (14). It has
been suggested that for certain patient groups
an improved diagnosis system could increase
the number of confirmed cases by as much as
60% (15).

Meningococcal disease is associated with
four distinct patterns of epidemiological spread
(16,17): endemic; hyperendemic; localized epi-
demic; and large-scale epidemic/pandemic. In
Europe and the Americas, endemic disease with
annual attack rates of 1–5 cases per 100,000 popu-
lation is prevalent, with occasional hyperendemic
outbreaks (10–15 cases per 100,000, over periods
of months or years), or localized disease outbreaks
(20–30 cases per 100,000, the outbreaks persist-
ing for a number of weeks). By contrast, large
scale epidemic/pandemic outbreaks of meningo-
coccal disease (up to 1000 cases per 100,000) occur
periodically in Africa and Asia: these represent
the most serious manifestation of infection by
Neisseria meningitidis and can cause tens of thou-
sands of cases and thousands of deaths during the
course of an outbreak (18,19).

Currently, there are no effective childhood
vaccines that protect against all meningococci,
although serogroup A and C polysaccharide-based
vaccines that can interrupt outbreaks caused by
organisms expressing these serogroups in older
children and adults have been available since the
late 1960s (20). New protein-conjugate A and C
polysaccharide vaccines provide the prospect of
acceptable infant vaccines against meningococci
that express capsules of these serogroups (21).
Unfortunately, despite intensive research interest
in this area (22), there is little prospect of an effec-
tive vaccine against serogroup B meningococci in
the immediate future.

The application of molecular techniques to
study the epidemiology and population biology of
N. meningitidis has provided important insights
that have begun to elucidate some of the reasons
for the difficulties experienced in the development
of antimeningococcal vaccines. Further, there
have been many attempts to improve the techniques
and reagents available for diagnosis and epidemio-
logical monitoring by the exploitation of molecular
approaches. Finally, in addition to its intrinsic
importance, the study of meningococci has pro-
vided a number of paradigms and techniques
which have more general application. Here we shall
review the principal molecular techniques used to
study meningococcal epidemiology and discuss
the insights obtained from their application.

2. Analysis of Meningococcal Diversity
The study of meningococcal diversity has

proved to be of the utmost importance in under-
standing the spread of meningococcal disease
and has recently relied on molecular techniques,
especially the application of high-throughput
nucleotide sequence determination for isolate
characterization. Some of the aspects of meningo-
coccal diversity which have been well studied
from the point of view of epidemiology and popu-
lation biology are discussed here.

2.1. The Meningococcal Serological
Typing Scheme

In common with other bacterial pathogens, the
characterization for N. meningitidis relied for
many years on the serological reactivity of cell
surface components (23). The primary level of
serological characterization for this organism is
the serogroup, which is based on the differential
immunological reactivity of the various polysac-
charides which meningococci can express to form
a capsule. There are 13 meningococcal serogroups
(24), but of these only organisms expressing the
capsules that define serogroups A, B, and C com-
monly cause disease, with serogroup Y and W135
organisms causing most of the remaining cases
(2). This feature makes the meningococcal cap-
sule a principal, and arguably the only clearly
defined, meningococcal virulence factor. Expres-
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sion of a capsule is essential for survival in the
host blood stream although, apparently paradoxi-
cally, expression of the capsule must be switched
off before invasion of host tissue can occur (25).

Further immunological characterization of
meningococcal isolates is based on “subcapsular”
antigens. Serotypes are antigenic variants of the
outer membrane porin, PorB, and serosubtypes
variants of the related PorA protein (26,27).
Variation in lipooligosaccharide (LOS), the major
glycolipid of the outer leaflet of the meningo-
cococal outer membrane, is rather less frequently
employed in routine isolate characterization and
defines “immunotypes” (28). The whole scheme
is conventionally written in the order serogroup
serotype serosubtype immunotype, with each
character separated by colons, thus:

B:15:P1.7,16:L3,7,9

Serotype, serosubtype (prefix P1.) and immu-
notype (prefix L) may have several characters for
one isolate, which are separated by commas.
Originally polyclonal sera were employed for
immunological isolate characterization but mono-
clonal antibodies are now available for many se-
rotypes, serosubtypes, and immunotypes. There
are a number of problems with the serological typ-
ing scheme (29) including a lack of comprehen-
sive reagents and poor correlation of serological
characteristics with the genetic relationships of
isolates (30,31). Molecular techniques have made
a number of contributions to resolving these prob-
lems by improving our understanding of antigen
synthesis and expression and providing more
direct means of identifying protein variants.

2.2. Capsular Antigens
The capsules of serogroup B and C meningo-

cocci are composed of homopolymeric sialic acids.
In the case of serogroup B polysaccharides the
sialic acid residues are “α2,8-linked, whereas the
serogroup C capsule is composed of “α2,9-linked
polysialic acids. Sialic acids are also constituents
of the serogroup W135 and Y capsules with addi-
tional galacatose and glucose residues, respec-
tively (32–35). The polysaccharide capsule of
serogroup A meningococci is rather different,

being a polymeric “α1,6-linked N-acetyl-D-
mannosamine-1-phosphate (33). Polyclonal anti-
sera and monoclonal antibodies are commonly
available for capsular typing (36–40) and are
most useful for serogrouping of disease isolates.
However, carriage isolates frequently remain not
serogrouped by this set of antibodies, because
capsular types other than A, B, C, W135, and Y
are expressed or, alternatively, because capsule
expression undergoes phase variation resulting in
a capsular negative phenotype (41–43). To over-
come this problem, molecular serogrouping
methods based on the identification of serogroup
specific capsular genes have been developed.

This approach exploits the knowledge of the
molecular mechanisms of capsule expression. The
genes required for the expression of a capsular
polysaccharide in meningococci are clustered at a
single chromosomal location, the cps locus (44).
Within this region, 16 genes have been assigned
to 5 gene loci in accordance with their biochemi-
cal function. The genetic organization of these loci
is almost identical in meningococci expressing all
serogroups analyzed so far and is summarized in
Fig. 1. Region A contains the genes required for
the biosynthesis of the capsular polysaccharide
(45); in loci encoding the synthesis serogroups B,
C, W135, and Y this region comprises the siaA,
siaB, siaC, and siaD genes which direct the syn-
thesis of the sialic acid containing capsules. The
siaA, siaB, and siaC genes are highly conserved
(46) as they perform the same function for menin-
gococci expressing each of these serogroups,
namely the synthesis of monomeric sialic acid and
its activation to form CMP-sialic acid (45). The
activated form of sialic acid is the substrate for the
polysialyltransferases, which direct the polymer-
ization of the activated sialic acid monomers. The
siaD genes are the only capsule biosynthesis
genes with functional and nucleotide sequence
specificity for these four serogroups. The siaD
genes of serogroup B and C meningococci share a
64.4% identity (45,46) and are unrelated to the
siaD genes of serogroup W135 and Y meningo-
cocci, which are more than 98% identical to each
other (43). There is one polymorphic region
between nucleotides 885 and 1029 in the 3,114-
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bp siaD genes of serogroup W135 and Y, which
confers serogroup specificity, and that can be used
to distinguish both serogroups (H. Claus and M.
Frosch, unpublished observations). The sequence
divergence among the siaD genes of all serogroups
provides the basis for the design of serogroup
specific oligonucleotides for PCR-based group-
ing system. This scheme can be extended by the
amplification of the myn genes that direct capsule
biosynthesis in serogroup A meningococci (47).

The biosynthesis region A of the capsule operon
is flanked by regions directing phosholipid substi-
tution of the polysaccharide genes (region B) (48),
LOS biosynthesis (region D) (49), and capsular
polysaccharide transport to the cell surface (region
C) (50). This latter region comprises four genes,
ctrA, ctrB, ctrC, and ctrD, which all show a very
high degree of sequence identity in all serogroups
analyzed so far (51). Consequently, one of these
genes, ctrA, is an attractive target sequence for
nonculture detection of meningococci.

2.3. Porin Antigens
The porB and porA genes, which encode the

serotype (PorB) and the serosubtype (PorA) anti-

gens of the meningococcus respectively, are
among the best studied of all meningococcal
genes and a very large number of alleles for each
of these loci have been characterized by nucle-
otide sequence determination (52–58). Compari-
sons of the deduced amino acid sequences of
many variants of both PorA and PorB have dem-
onstrated they are related members of a family of
Neisseria porins (54,59–62). For both PorA and
PorB, specific serological reactivities reside in vari-
able surface loops of the porin structure. In the case
of PorA, the serosubtyping antigen, most sequence
variability resides in the first and forth surface-
exposed loops of the putative porin structure,
described as Variable Region 1 (VR1) and VR2:
there is a third, less variable, region corresponding
to the fifth putative loop (VR3 or sVR) (53,54).

Originally the designation of serosubtypes was
on the basis of antibody reactivity (63–65) and
most of the serosubtype-specific monoclonal anti-
bodies have been shown to react with contiguous
peptide epitopes that are located within VR1 or
VR2. However, as soon as multiple sequences of
porA genes became available it was apparent that
much diversity was missed by the antibodies and
that the sequences present in the loops could be
divided into VR “families” which contained
related but distinct sequences. These studies also
showed that there were a number of reasons for
the lack of comprehensive coverage of the sero-
subtype monoclonal antibodies. In some cases iso-
lates expressed VR families in either VR1, VR2,
or both, for which no monoclonal antibody was
available, whereas other nonsubtypable isolates
expressed variants of VRs families that did not
react or reacted poorly with the relevant mono-
clonal antibody (57,66,67). For example, it was
shown that a single polymorphism between two
family members could completely abolish anti-
body reactivity (68) while other changes did not
affect antibody binding (66). The particular assay
conditions employed could also change antibody
reactivity to particular PorA proteins (69). Phase
variation by changes in the promoter region of the
porA gene (70) and interruption and inactivation
of the gene by an insertion element (71) can also
result in serosubtyping failure.

Fig. 1. Meningococcal capsular operons. (A) Sche-
matic depiction of the organization of the genes of the
capsule gene cluster (cps) indicating the functional
regions A (biosynthesis genes), B (phospholpid sub-
stitution of polysaccharide chains), C (cell suface trans-
port of capsular polysaccharide), D (LOS bioynthesis).
(B) Organization of the sialic acid biosynthesis genes.
siaA-C are highly conserved among serogroup B, C,
W135 and Y meningococci. siaD exhibits functional
and nucleotide sequence heterogeneity.
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These observations led to the proposal that the
peptide sequence of the VRs deduced from nucle-
otide sequences of the porA gene should be used
as the basis for subtype family definition, with
variants indicated by the addition of letter to the
subtype family name thus: P1.16a (57,67,68). The
increasing diversity of PorA proteins, however,
resulted in a number of problems with this sys-
tem: first, there were so many variants that the
addition of letters did not provide sufficient fam-
ily member designations; and second, some of the
families which were originally defined by mono-
clonal antibody reactivity were difficult to distin-
guish on the basis of their amino acid sequences.
A new system has been devised which maintains
as much consistency as possible with the previous
system and which utilizes numbers for the family
member definitions providing for unlimited expan-
sion of the number of family members. This
nomenclature is available on the world wide web
at http://outbreak.ceid.ox.ac.uk/porA-vr.

Although the serotype antigen, the meningococ-
cal PorB protein, is related to the PorA protein, and
conforms to a similar structural model (62), the anti-
genic variability of this protein is rather different
(55,56,72). First, a given meningococcal isolate has
one of two mutually exclusive genes at the porB
locus encoding either a class 2 or a class 3 PorB pro-
tein; there are numerous variants of both class 2 and
class 3 PorB proteins. Second, although antigenic
diversity among PorB proteins also resides in the
putative surface loops of the proposed porin struc-
ture, the surface loops of PorB variants are smaller
and less diverse. Third, in both class 2 and class 3
PorB proteins different surface loops vary compared
with PorA. Finally, the serotype monoclonal anti-
bodies do not in general react with contiguous pep-
tides in epitope scanning experiments although it is
possible to associate particular loops with particular
serotypes in some cases (73–75). DNA-based meth-
ods for the identification of serotypes have been
developed, which use oligodeoxyribonucleotide
probes, defined by nucleotide sequence analyses of
PorB proteins, to identify differences in surface loops
by hybridization (76,77), but ultimately nucleotide
sequence determination of most of the porB gene is
required to unambiguously identify a given allele (75).

2.4. Diversity in Housekeeping Genes

Selection pressures imposed by the host immune
system on antigen genes can distort the inter-iso-
late relationships inferred from characterization of
such genes, making closely related isolates appear
to be very different, while grouping otherwise
unrelated isolates that happen to share a particular
antigen gene allele at a particular locus. These
problems can be avoided by indexing the varia-
tion present at multiple housekeeping loci, which
are distributed around the bacterial chromosome
and are under stabilizing selection for conserva-
tion of function, so that the genetic changes which
accumulate are selectively neutral or nearly so.
The first method to exploit this approach was
multi locus enzyme electrophoresis (MLEE) (78).

Although MLEE was successful in establishing
the population structure of the meningococcus and
in identifying the major disease-associated lin-
eages (30,79), there were a number of problems
with this approach. The allelic variants were infer-
red by the differential mobility of the proteins
which they encoded during starch gel electro-
phoresis. This had the disadvantage that candidate
housekeeping loci for multi locus sequence typ-
ing (MLST) had to encode a protein (usually an
enzyme) which could be identified by staining after
electrophoresis, thereby limiting the loci which
could be exploited by this method. Further, the dif-
ferential mobility of the variant proteins relied on
charge differences in the allelic variants, so truly
neutral mutations, those which generated synony-
mous changes, were not detected. The identi-
fication of allelic variants also required an exten-
sive collection of reference isolates and the tech-
nique was relatively complex and time consuming,
although very high throughput could be achieved
in well set up laboratories. Consequently, few labo-
ratories implemented the approach routinely.

MLST was designed to overcome the problems
associated with MLEE. It was first developed
for the meningococcus (80) and has since been
extended to a number of other bacterial species
(81–84). The approach was similar to that employed
by MLEE, in that the variation present at multiple
loci around the chromosome that encoded proteins
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performing essential metabolic functions (“house-
keeping” genes) were identified and employed to
establish allelic profiles (electrophoretic types, or
ETs for MLEE and sequence types, or STs for
MLST). Relationships among allelic profiles
reflected, and were therefore used to establish,
genetic relationships among isolates.

The major difference was that in MLST, nucle-
otide sequence determination was used to identify
the alleles which were employed to generate the
allelic profile. This meant that any gene could
be chosen from the genome, a process now sim-
plified by the availability of complete genome
sequences, amplified by the polymerase chain
reaction (PCR) and its nucleotide sequence deter-
mined by rapid cycle sequencing. In this way, all
of the genetic variation present at a given locus
was identified including, importantly, synony-
mous nucleotide sequence changes. The greater
resolution of alleles, compared to that available
from starch gel electrophoresis, made it possible
to achieve similar resolution of isolates with a
seven locus MLST system to that achieved by a
14 locus or more MLEE system (80). As nucle-
otide sequence determination is a generic tech-
nique, it is possible for most molecular biology
laboratories to undertake MLST studies with no
additional equipment. In addition, an increasing
number of commercial services offer nucleotide
sequence determination services. Nucleotide
sequence data are definitive and readily trans-
ferred electronically via the Internet, and it was
possible to establish virtual isolate collections
accessible from the world wide web which could
be queried remotely (http://neisseria.mlst.net).
The STs are unambiguous and independent of the
laboratory in which they are determined, so it is
possible for direct comparisons to be made with
data from other laboratories which is stored on the
website. An important feature of the MLST web-
site is that it is curated and for a novel allele desig-
nation to be assigned it is necessary to deposit the
raw sequence data to ensure that sequence errors
are not introduced into the databases.

In practice 400–500 bp fragments of house-
keeping genes, rather than complete genes were
employed for MLST. This enabled the alleles (or,

more correctly, allele fragments) to be deter-
mined on both strands with only two nucleotide
sequencing primers, considerably reducing costs
and increasing the speed of the approach. In all
bacterial species so far analyzed, allelic fragment
of this size were sufficient to establish genetic
relationships among isolates (81–84). For MLST,
each distinct allelic fragment is identified by a
unique allele number, which is arbitrary and
assigned in order of description. The STs there-
fore comprise seven numbers, one for each
locus, as illustrated in Table 1 which shows the
typical STs for some of the more important men-
ingococcal hyperinvasive lineages.

2.5. Genes Conferring Antibiotic Resistance
Multiple nucleotide sequence analyses have

been performed on three chromosomal genes
encoding proteins that can confer antibiotic resis-
tance on meningococci: rpoB which encodes the
β subunit of DNA-directed RNA polymerase, mu-
tations in which confer resistance to rifampicin
(85); dhps which encodes dihydropterate syn-
thase, mutations in which confer resistance to
sulphonamide drugs (86); and penA which encodes
penicillin binding protein 2, mutations in which
confer resistance to β-lactam antibiotices (87).
These studies have shown that it is relatively easy
for rifampicin resistance to occur spontaneously
by mutation (85). For both dhps (86,88,89) and
penA (90,91), antibiotic resistance spreads by
horizontal genetic exchange rather than arising
de novo by mutation. In the of penicillin resistance
and perhaps sufonamide resistance, interspecies
gene transfer has been involved (92).

2.6. Genome Wide Diversity
Until very recently, molecular approaches to the

comparisons of whole genomes have been limited
to fingerprint analyses, producing patterns from
chromosomal DNA, usually after the DNA has
been digested with one or more restriction endo-
nuclease. In some cases the fingerprints are resolved
by pulsed field gel electrophoresis (PFGE) (93–96),
in others conventional electrophoresis (96,97),
southern hybridization with DNA probes has been
used to generate such fingerprint patterns (98). Ran-
dom amplified polymorphic DNAs (or RAPDs),
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where chromosomal fingerprints are generated by
PCR amplification with “random” oligodeox-
yribonucleotide primers (99) is an alternative
approach. Whilst these methods are useful in
establishing identity of isolates none is effective
in establishing genetical relationships among
strains, and care has to be taken in applying phy-
logenetic analyses to fingerprint data. The advent
of complete genome sequences allows more
detailed comparisons, but on a very small number
of isolates. For example, the two isolates sequenced
so far appear to have different gene orders, but
more data are required to establish how wide-
spread this is (100,101).

3. Molecular Diagnosis
of Meningococcal Disease

For confirmation of a clinical diagnosis it is nec-
essary to detect meningococci in samples of cere-
brospinal fluid (CSF), serum, or whole blood.
When the organism cannot be cultured, this has tra-
ditionally been achieved by techniques such as
microscopy, coagglutination, or latex agglutina-
tion, but these methods are often of low sensitivity
and specificity (102). The amplification of bacte-
rial genes from clinical samples by the PCR pro-
vides alternative methods for detecting bacteria in
clinical samples which are rapid and potentially
highly sensitive and specific (14). Most success has
been achieved with CSF samples, but the reluctance
of many physicians to take CSF samples (103) has
lead to an increasing interest in using serum or
whole blood samples, which are more readily
obtained but which are more difficult specimens for
PCR-based diagnostic techniques.

Diagnostic techniques that use the PCR require
small quantities of clinical material, are as rapid
or faster than culture, and the test-specific rea-
gents, the oligodeoxyribonucleotide primers, are
inexpensive. Modification of conventional proto-
cols, such as the use of seminested primer sets,
can achieve very high sensitivities, equivalent to
1 colony forming unit per amplification reaction
(104). Sensitivity and specificity can be further
improved by including hybridization assays with
membrane filters (Southern blots) or in micro titer
wells (PCR-ELISA) (105,106). In addition, the
amplified genes obtained can be further analyzed,
e.g., by digestion with restriction endonucleases,
hybridization with specific probes, or nucleotide
sequence determination, to provide not only diag-
nostic but also epidemiological data from the
same sample (14).

As it is in principle possible to amplify any bac-
terial gene by the PCR, careful choice of the tar-
get genes for these procedures is important. This
choice should be made on the grounds, not only of
test specificity and sensitivity, but also of the epi-
demiological value of the information that can be
obtained by analysis of the amplified gene. Once
a gene target has been chosen, extensive evalua-
tion of clinical samples, including double-blinded
trials is necessary before reliance can be placed
on a given method for diagnosis. Although dou-
ble-blinded trials of some methods have been car-
ried out, no extensive comparative analyses of
different PCR diagnostic techniques for meningo-
coccal disease have been published to date. The
data from a number of separate studies based on
different target genes are summarized here.

Table 1
Characteristic Sequence Types Associated with Particular Meningococcal Lineages

MLEE Lineage MLST Lineage Locus
designation designation abcZ adk aroE fumC gdh pdhC pgm

Subgroup I ST-1 complex 1 3 1 1 1 1 3
Subgroup IV ST-4 complex 1 3 3 1 4 2 3
Subgroup III ST-5 complex 1 1 2 1 3 2 3
Cluster A4 ST-8 complex 2 3 7 2 8 5 2
ET-37 complex ST-11 complex 2 3 4 3 8 4 6
ET-5 complex ST-32 complex 4 10 5 4 6 3 8
Lineage 3 ST-41 complex 3 6 9 5 9 6 9
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Because bacteria other than the meningococcus,
including Streptococcus pneumoniae, Haemo-
philus influenzae, group B streptococci, and Lis-
teria monocytogenes cause meningitis, a primary
requirement of nonculture diagnosis is species
identification. All eubacteria have rrn genes in
multiple copies in their chromosomes which
comprise conserved and species-specific variable
regions of gene sequence (107,108). Several meth-
ods exploit this by amplification of rrn genes from
clinical samples derived from suspected cases of
meningitis (102,109–112). A primary PCR can be
used to amplify a product from all eubacterial rrn
genes which can be followed by one or two sec-
ondary amplifications with species-specific primer
sets that produce differentially sized amplicons
which are characteristic for each species. The spe-
cies specific products are readily distinguished by
the separation of the amplicons using agarose gel
electrophoresis. Such methods require only small
samples of CSF of ~10 µL (102,109).

Further confirmation of infection with a menin-
gococcus can be achieved with a PCR test based on
the gene encoding the conserved capsular transport
protein, ctrA (113). After confirmation of a menin-
gococcal infection, the most important information
for the clinician and public health physician is the
serogroup of the causative organism. This informa-
tion enables appropriate public health measures
such as vaccination, administration of prophylactic
antibiotics, and counseling of contacts to be under-
taken (114). A PCR test that distinguishes alleles
of siaD, the gene encoding a sialyltransferase
involved in the synthesis of both serogroup B, C, Y,
and W135 capsules, has been developed (115,116).
This procedure is based on specific sequences of
the siaD gene that distinguish operons encoding
serogroup B, C, W135, and Y isolates. Both the ctrA
and siaD based technique has been adapted to a
micro-titer well PCR-ELISA hybridization and
ABI-Taqman™ automated format (117).

The porA and porB genes have not been exten-
sively used in diagnosis, but a number of groups
have successfully amplified these genes from
clinical specimens (77,104,118). Using appropri-
ate primers it is possible to amplify both the porA
and porB genes in the same experiment (55) and,

as the amplified genes have characteristic sizes
when examined by agarose gel electrophoresis,
this is a potentially useful characteristic for con-
firming the presence of meningococci. The dihy-
dropterate synthase (dhps) gene has been ampli-
fied from at least one clinical specimen (119).
Extensive studies in clinical specimens have not
been carried out, but in principle this technique
allows the identification of sulphonamide resis-
tance, a commonly determined epidemiological
characteristic, even when the organism is not
culturable. A similar approach is also, in principle,
applicable to the penA gene.

The IS1106 insertion sequence (IS), which is
present in several copies in the meningococcal
chromosome (120), has been used by several labo-
ratories as a diagnostic PCR target. A number of
double-blinded trials of methods based on IS1106
sequence have been done on clinical specimens
and several modifications in the technique have
been published (11,15,121). Unfortunately, an
insertion sequence is a poor choice as a target for
a diagnostic approach, as these elements may
cross species or genus boundaries. This behavior
provides a possible explanation of the false posi-
tive results that have been obtained with the
IS1106-based diagnostic techniques (122). The
use of this target is further complicated by nucle-
otide sequence rearrangements within the IS (15)
and amplification of IS1106 provides no epide-
miological data. For these reasons, this target
should not be used in preference to the other
amplification targets discussed above; however,
the work on IS1106 was the first to establish the
utility of PCR techniques for meningococcal diag-
nosis and the system could be used in addition to
one or more of the above methods for further con-
firmation of diagnosis.

4. Interpretation of Diversity:
Meningococcal Population Biology

and Epidemiology
Accurate isolate characterization is recognized

as a cornerstone of successful epidemiological
studies, but it is perhaps less widely appreciated
that it is also necessary to interpret these data with
appropriate theoretical frameworks if the maximum
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public health benefit is to be gained (17,123). The
advent of affordable and rapid nucleotide sequence
determination techniques permits the generation
of data that are both epidemiologically informa-
tive and directly applicable to studies of the epi-
demiology and population genetics of the organ-
ism (124). In particular MLST data has been
exploited in a number of studies to investigate
the population structure of the meningococcus
(125,126).

The genetic and antigenic diversity of menin-
gococcal populations, although considerable, is
not random and is structured. Although a compre-
hensive understanding of this structuring is yet to
be achieved, and it is unlikely that any one model
will provide a complete description of meningo-
coccal populations, a number of models are cur-
rently available which both provide testable pre-
dictions and represent an appropriate basis for the
development of more sophisticated models with
improved predictive power.

The essentially asexual nature of bacterial
reproduction implies a clonal population structure
(127), which is a consequence of each daughter
cell being an exact replica, or clone, of its mother
cell. Mutations occur during evolutionary time,
but new alleles which arise in this way will be con-
fined in the lineage in which they arose. Conse-
quently clonal populations are characterized by
linkage disequilibrium (nonrandom combination
of alleles) and relatively low diversity, especially
if the population undergoes diversity reduction
events such as periodic selection or bottle necking
which purge the population of diversity (128).
Preliminary analysis of MLEE data, which identi-
fied clusters of organisms with related ETs and
linkage disequilibrium, suggested that meningo-
coccal populations were clonal (30); however, a
number of lines of evidence have shown that this
is not an appropriate model (128).

The calculation of the index of association, or
IA, provides one means of assessing whether link-
age disequilibrium is due to clonality or an arti-
fact generated by the frequency distribution of
alleles in the population (129). For meningococ-
cal data sets IA analysis indicated that although the
clonal descent model could explain relationships

within complexes it was not an appropriate model
of the relationships among clonal complexes
(129). More support for this view was provided
by the observation that identical alleles were
found in genetically otherwise unrelated com-
plexes for loci encoding both antigens and house-
keeping proteins. Further, meningococcal data
sets were not congruent, that is to say the phylo-
genetic relationships identified among members
of different complexes depended on the loci
examined, which is in contradiction to the clonal
model which predicts that the phylogeny obtained
for a given population will be independent of the
gene chosen to reconstruct the phylogeny (126).

A likely explanation for this breakdown of
clonality in the long term evolution of meningo-
coccal populations is the fact that the meningo-
coccus is transformable (naturally competent for
DNA uptake), which permits meningococci to
partake in a quasi-sexual process, horizontal
genetic exchange—also referred to as “localized
sex” (130). This process involves the exchange of
small segments of genetic material among organ-
isms which do not necessarily share a common
mother cell, and in the meningococcus it is prob-
ably a consequence of autolysis of meningococcal
cells, which releases DNA that can be taken up by
other cells and incorporated into their genomes by
homologous recombination (131). Nucleotide
sequence determination of multiple alleles of vari-
ous genes have demonstrated widespread occur-
rence of mosaic genes which is consistent with
horizontal genetical exchange occurring regularly
throughout the meningococcal genome (91,94,132).
Indeed it is not uncommon to observe sequences
that appear to have been imported into the menin-
gococcal population from other species (133).
This inter-species horizontal genetic exchange
appears to have had an important role in the emer-
gence of resistance to a number of antibiotics,
including penicillin which is a first line drug for
the treatment of meningococcal disease. Horizon-
tal genetic exchange has important implications
for epidemiological analyses as it is necessary to
distinguish the clonal and horizontal spread of
genetic or serological markers. Where horizontal
spread occurs at high frequency, the epidemiologist
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may well follow the spread of the marker genes
rather than individual strains. To accommodate
recombination in bacterial populations two further
models of bacterial population structure have been
proposed, nonclonal (sometimes referred to as
panmictic), where recombination is sufficiently
frequent to eliminate clonal structure in a popula-
tion and so called “epidemic clonal,” where the
rapid spread of one particular lineage results in
the over representation of that genotype in the
population, giving an impression of clonality
(129,134). The extremes of strictly clonal and
completely nonclonal are probably very rare in
natural populations of bacteria, with most bacte-
rial population structures containing both clonal
and nonclonal elements, the ratio of which will
depend on the relative level of horizontal genetic
exchange per generation. Meningococci are, over
the long term, nonclonal but particular lineages
(clonal complexes) do exist and can persist for
periods of time of at least several decades.

A further complication of the population struc-
ture of meningococci is the relationship of carrier
isolates to those obtained from patients with inva-
sive disease (135). For understandable reasons,
the majority of isolate collections comprise men-
ingococci obtained from diseased patients. Indi-
vidual meningococci, however, must survive and
spread as efficient commensals as disease is not a
route for transmission and in any case is very rare
compared to colonization. Genetic analyses of
collections of disease and carriage isolates have
established that it is only a minority of genotypes,
the twelve or so “hyperinvasive lineages,” which
cause the majority of disease, whereas carried
meningococcal populations are much more diverse
and contain numerous genotypes which are rarely
if ever associated with disease (136). The use of
genomic techniques to characterize and compare
representatives of hyperinvasive and noninvasive
lineages provides a tantalizing prospect of under-
standing meningococcal pathogenesis. Current
models, therefore, envisage a meningococcal
population which comprises a diverse collection
of lineages, all of which persist solely as a virtue
of their capacity to spread as commensal inhabit-
ants of the human nasopharynx. The population is

considered to be dynamic with its composition, in
terms of lineages, changing with time. In addition
these lineages diversify, mainly by the recruitment
of new genetic material.

Further structure in meningococcal populations
is presented by the antigen genes. The first popu-
lation studies of meningococci established that the
genes and operons that encode the surface struc-
tures of the organism also move by horizontal
genetic exchange; however, while this occurs
rapidly in evolutionary terms, presumably in
response to the immune selection which menin-
gococci experience during carriage, structures in
the combination of antigen genes are preserved.
This is consistent with theoretical frameworks that
envisage the structuring of antigen combinations
as a consequence of the costs imposed on bacteria
by sharing of antigens. In other words, the theory
predicts that antigenic variants will be more suc-
cessful if they are as diverse as possible from other
meningococci (137). As more data, especially
from carried meningococci, becomes available
some of the predications from such models can be
more completely tested and the models developed
appropriately.

5. Conclusions

Despite much research over the last one hun-
dred years, and especially in the last 30, compre-
hensive and effective public health interventions
against meningococcal disease remain elusive.
The most attractive solution would be the devel-
opment of vaccines against each of the five men-
ingococcal capsular antigens which are associated
with invasive disease, but although it seems likely
that conjugate polysaccharide vaccines will soon
be available against serogroup A, C, Y, and
W-135 expressing meningococci, uncertainty
remains for vaccines against serogroup B organ-
isms, which causes the largest proportion of dis-
ease in many countries (138). Unfortunately the
serogroup B polysaccharide capsule is especially
poorly immunogenic (139), probably because of
identity with host antigens (140) so that, in addi-
tion to the technical problem of inducing a good
immune response, safety and regulatory issues
will have to be resolved. These may prove to be
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insurmountable. There are many alternative can-
didate antigens for meningococcal vaccines, in-
cluding for example the PorA and PorB proteins,
but none of these has yet provided a solution
(138). At best, vaccines against such components
may provide partial protection against particular
disease causing lineages.

The recent introduction of protein-conjugate
serogroup C polysaccharide vaccines in the United
Kingdom (141), along with the use of outer mem-
brane vesicle vaccines developed against specific
meningococcal lineages in Norway (142), Cuba
(143), and elsewhere (144) has established the
precedent for the introduction of vaccines which
protect against only a proportion of the meningo-
coccal population. However, with our current
understanding of the complicated population biol-
ogy of the meningococcus it is impossible to
assess the impact that these partial solutions might
have in populations where carriage rates of men-
ingococci are high: it is certainly not impossible
that while providing short term benefit they could
have marginal, or even paradoxical, effects on dis-
ease levels in the longer term (145). Molecular
tools such as MLST provide us with the opportu-
nity to follow the effects of such vaccine intro-
ductions on meningococcal populations and will
hopefully lead to improved management of this
terrible disease.
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