
Introduction

Multiple sclerosis (MS) is a chronic
inflammatory immune-mediated neurologi-
cal disease leading to demyelination of the
white matter of the brain and spinal cord (1,2).
It is suspected that the initial tissue damage
caused by infectious agents yields autoim-
munity to myelin components (3,4). Several

virus-induced models have been used to study
the underlying mechanisms of this disease
(5,6). In particular, the Theiler’s murine
encephalomyelitis virus (TMEV)-induced
demyelination system has been extensively
studied as a relevant model (7). After suscep-
tible mice are intracerebrally infected with
TMEV, they develop a chronic immune-medi-
ated demyelinating disease similar to human
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MS involving strong autoimmunity to myelin
antigens (8). Viral persistence is closely asso-
ciated with the progression of demyelinating
disease (9–11). In addition, the various proin-
flammatory chemokines and cytokines found
in the central nervous system (CNS) of
infected mice are similar to those found in
human MS. More recently, it has been shown
that various chemokines and cytokines are
directly activated by TMEV infection in many
different cells types including glial cells and
antigen-presenting cells (APCs) (12–14).
These findings suggest that these proinflam-
matory molecules affect the initiation and
establishment of inflammatory responses. In
this article, we will review current and ongo-
ing studies in order to understand the role and
mechanisms of activation of these cellular
genes in the protection and pathogenesis of
demyelination.

TMEV-induced demyelinating disease
(TMEV-IDD) has been recognized as an
immune-mediated disease based on several
experimental approaches. The treatment of
host with either anti-thymocyte, anti-Ia
(MHC class II), or anti-CD4 antibodies
delays the onset of disease (15–17), suggest-
ing the involvement of CD4+ T cells. T helper
type 1 (Th1) cells preferentially producing
interferon-γ (IFN-γ) are found within demyeli-
nating lesions of the CNS and appear to be
involved in the pathogenesis of demyelination
(18–21). Furthermore, the genetic association
between susceptibility to TMEV-IDD and the
major histocompatibility complex (MHC)
(22,23), as well as the T-cell receptor (TCR) β-
chain (24,25), further supports the involve-
ment of such immune responses in
pathogenesis. These associations have also
been identified in human MS (26). Attempts to
correlate antibody response to viral antigens
and pathogenesis have been made (27). How-
ever, there is no clear critical role of the anti-
body response in developing demyelinating

disease. A strong preventive role is estab-
lished if TMEV-specific antibodies are pre-
sent prior to viral infection, but these
antibodies provide weak protection after viral
persistence is established. The role of CD8+ T
cells is not yet clear. It is generally believed
that virus-specific CD8+ T cells are important
for viral clearance and consequent resistance
to TMEV-induced demyelinating disease (7).
Owing to the inflammatory nature of immune
responses in the CNS following TMEV infec-
tion, the majority of the previous studies have
been focused on the cytokines associated with
Th1 and/or Th2 responses.

Innate Immunity and TMEV-IDD

NK/NKT Cells
In general, viral infection and subsequent

pathogenesis can be greatly affected by differ-
ent innate immune responses. These include
natural killer (NK) and natural killer T (NKT)
cell responses, as well as various cytokines and
chemokines directly induced upon viral infec-
tion. Because TMEV infection also induces
various innate immune responses including a
wide-range of chemokines and cytokines
(28,29), these chemokines/cytokines and NK/
NKT cell responses are likely to affect each
other, leading to the induction of virus-specific
adaptive immune responses. The balance of
various cytokines produced by glial cells,
APCs, NK cells, as well as CD4+ and CD8+ T
cells, determines the outcome of either protec-
tion or pathogenesis. Not many studies on
NK/NKT cells associated with TMEV-IDD
have been reported. One early study (30)
attempted to remove the NK cell population
with anti-NK1.1 or anti-asialo-GM1 antibod-
ies. This study found that the lack of NK pop-
ulation in resistant C57BL/10 mice renders
susceptibility to acute encephalitis. In our pre-
liminary studies, NK-deficient mice (Ly49A
Tg C57BL/6 mice obtained from Dr. W.
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Yokoyama) with resistant background genes
are also susceptible (3/6 mice) to the early gray
matter disease, suggesting the importance of
NK response in viral clearance, hence protec-
tion from disease.

Interferon (IFN)-α/β
Administration of IFN-α/β is a widely

used and effective treatment for human MS
(31,32). However, its mechanism of action is
poorly understood. It is known that IFN-α/β
(type I) plays an important role in the reduc-
tion of blood–brain barrier (BBB) permeabil-
ity as well as induction of the NK response
(33,34). Type I IFN is induced via Toll-like
receptor (TLR)-mediated activation leading to
NF-κB activation upon microbial/viral infec-
tions, which results in further induction of
chemokine/cytokine expression (35). Infec-
tion of IFN-α/β receptor-deficient mice (IFN-
α/βR knockout [KO]) with TMEV results in
rapid gray matter disease and subsequent
death (36). Furthermore, type I IFN can
induce Th2 cytokines such as interleukin (IL)-
10 and IL-4 and downregulate Th1-associated
genes such as IL-12 receptor β2 (37,38). It is
also interesting to note that the induction of
IFN-α/β gene in macrophages or astrocytes
after TMEV-infection is significantly
decreased or delayed compared to other
proinflammatory cytokines (28,39). Thus, this
suggests that type I IFN plays a significant
role in the protection against TMEV-IDD.
Type I IFN is also a strong anti-viral agent that
directly inhibits viral replication. This
delayed IFN-α/β induction may result in viral
persistence, leading to subsequent early estab-
lishment of inflammatory responses and even-
tual Th1-mediated demyelinating disease in
susceptible SJL mice.

Other Cytokines
Many investigations have examined the

production of various cytokines in the CNS

throughout the course of TMEV-IDD. Both
Th1- and Th2-associated cytokines are
detected during early infection. These
include IFN-γ, IL-1, IL-6, IL-12, tumor
necrosis factor-α (TNF-α), and transform-
ing growth factor-β (TGF-β) (40–43). In
addition, previous studies indicate that
administration of anti-TNFα or anti-IL-12
antibody to susceptible mice significantly
inhibits both disease progression and sever-
ity, strongly supporting the importance of
these cytokines in the pathogenesis of dis-
ease (44,45). In MS, Th1-type cytokines are
associated with relapses, whereas Th2-type
cytokines are associated with remission
(46–48). However, the pathogenesis of
TMEV-IDD is significantly enhanced in
mice pretreated with anti-IFN-γ antibodies
or in IFN-γ receptor KO mice (36,49),
whereas administration of IFN-γ also exac-
erbates the disease (49). These results sug-
gest that this cytokine can be either
protective or pathogenic, depending on the
time present with respect to viral infection.
Therefore, these studies imply that the bal-
ance between Th1 and Th2 responses may
be important in the development of patho-
genesis or protection.

Chemokines
The production of chemokines has also

been detected in the CNS of mice following
a variety of viral infections, including
TMEV (50–55). Chemokines have multiple
biological functions in inflammatory res-
ponses, such as chemo-attraction of a vari-
ety of cell types, activation of certain cell
populations, as well as angiogenesis and
BBB dysfunction (56,57). Our results
concur with these findings. The brains (ini-
tial site of infection), but not the spinal
cords, from susceptible SJL/J mice infected
with TMEV show prominent expression of
RANTES and IP-10 as early as 1 and 3 d
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after viral infection when analyzed by RPA
(Fig. 1A). At the peak of viral RNA levels
(10 d postinfection), a corresponding
increase of RANTES and IP-10 transcripts
was observed in the brain. As the viral mes-
sage was reduced (20 d postinfection),
chemokine expression was only slightly
reduced, which may reflect continuous
chemokine gene activation by cytokines
produced by infiltrating T-cell populations.
In the spinal cord, however, the level of viral
and RANTES messages was barely
detectable at 6 d post viral infection, fol-
lowed by a rapid increase in viral, RANTES,
and IP-10 messages at 20 d postinfection.
These data strongly suggest that early
upregulation of chemokines in the brain and
spinal cord is subsequent to TMEV-infec-
tion and coincides with the level of viral
replication. Such a correlation between viral

persistence and chemokine production has
also recently been suggested by others in
TMEV-infected SJL mice (58). We have
also determined the levels of viral and
chemokine messages in the brain and spinal
cord of the prototypically resistant C57BL/6
strain, during TMEV infection (Fig. 1B).
RANTES and IP-10 (and to some level,
eotaxin, MIP-1β, and MCP-1) genes are
similarly induced at the early stage of viral
infection (up to 6 d). However, overall levels
of viral as well as chemokine messages
were markedly reduced later in the brain of
resistant C57BL/6 mice, in sharp contrast to
SJL/J mice. Interestingly, no significant
expression of chemokine or viral messages
was detectable in the spinal cord except for
IP-10 at 6 d postinfection. This lack of sig-
nificant upregulation correlates well with
the low inflammatory response in C57BL/6

Kim et al.4

Fig. 1. Chemokine and viral gene expression in pooled brains and spinal cords of susceptible SJL/J (A)
and resistant C57BL/6 (B) mice (four to eight mice per group) analyzed by RNase protection assay (RPA)
at different time points post-TMEV-infection.



mice. Therefore, the lack of sustained
chemokine induction in the CNS of resistant
C57BL/6 mice may reflect poor viral per-
sistence, critically important for initiating
and promoting inflammatory responses,
including cytokine/chemokine expression
leading to demyelination. Recently, it was
shown that transgenic mice expressing
MCP-1 (CCL2) in the CNS show increased
severity and accelerated onset of demyeli-
nating disease (59). Together, these studies
strongly suggest that chemokines are likely to
play an important role in the initiation of
TMEV-IDD.

Cellular Source of Cytokines 
and Chemokines

Glial Cells
Previous studies have indicated that the

main reservoir of viral replication is
microglia/macrophages in the CNS (60). Our
initial studies indicate that the majority
(>50%) of microglias in the CNS of TMEV-
infected SJL/J mice produce TNF-α, com-
pared to a minor population (<5%) of CNS-
infiltrating macrophages, suggesting that
microglia rather than infiltrating macrophages/
monocytes are a major contributor of pro-
inflammatory chemokines and cytokines
(Mohindru and Kim, unpublished data). Infec-
tion of other glial cells (e.g., astrocytes, oligo-
dendrocytes) within the CNS is also crucial for
viral persistence (61). However, isolation and
maintenance of these glial cells from infected
adult mice are rather difficult. As an alternate
source of glial cells, astrocytes, oligodendro-
cytes, and microglia derived from neonatal
brains have been utilized to investigate the
effects of viral infection on the production of
chemokines and cytokines. Owing to the abun-
dance and ease of isolation, primary astrocyte
cultures have been most frequently used. These

studies indicate that various cytokines such
as IL-12, IL-6, TNF-α, IL-1, and IFN-β are
directly induced following TMEV infection
in primary astrocytes (28). Similarly, TNF-α,
IL-6, IL-18, type I IFNs, and IL-12 genes are
activated in microglia cultures upon TMEV
infection (13). It is interesting to note that the
levels of key proinflammatory cytokines
(e.g., IL-12 and IL-1) are much reduced fol-
lowing infection with a low-pathogenic vari-
ant virus (14), strongly suggesting the
important pathogenic role of these initial
proinflammatory cytokines directly induced
after viral infection in developing demyeli-
nating disease.

In addition to cytokines, various chemo-
kines are also produced in these glial cells fol-
lowing TMEV infection. Previously, we have
demonstrated that several chemokine genes
are activated upon TMEV infection in various
glial cells (12). The scope of chemokine genes
that are activated at 6–8 h post-TMEV-infec-
tion has been determined using a mini-array
system (SuperArray, Bethesda, MD) (29). The
results clearly indicate that only select
chemokine genes (9 out of >30 tested) are sig-
nificantly (>fivefold) activated in astrocyte
cultures. These include MCP-1 (CCL2), MIP-
1α (CCL3), MIP-1β (CCL4), RANTES
(CCL5), MCP-3 (CCL7), MCP-5 (CCL12),
GRO-1 (CXCL1), MIP-2 (CXCL2), and IP-10
(CXCL10). It is interesting to note that the
level of GRO-1 (KC) chemokine protein
secreted by astrocytes after TMEV infection is
>20-fold higher than MCP-1 or MIP-1α.
However, the significance of this difference in
the pathogenesis of the initial inflammatory
response and establishment of chronic
demyelinating disease is not yet clear. It has
been reported that GRO-1 is a potent chemoat-
tractant of neurophils and an angiogenic
factor. Nevertheless, overlapping chemokines
(29) and cytokines (unpublished results) are
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also induced in astrocyte cultures after treat-
ment with proinflammatory cytokines. Thus,
chemokines and cytokines produced in a
delayed fashion (after 24 h viral infection)
may include those indirectly stimulated by the
initial proinflammatory cytokines produced in
culture.

Antigen-Presenting Cells
The initial commitment of Th1/Th2 differ-

entiation is most likely affected by profes-
sional APCs in the periphery. Thus, the
possibility that TMEV infection may also
directly induce proinflammatory cytokines in
professional APCs has been explored (14).
Infection of isolated DCs and macrophages
with pathogenic TMEV results in the prefer-
ential upregulation of Th1-promoting IL-12
production over Th2-promoting IL-10,
whereas nonpathogenic variant virus prefer-
entially activates IL-10 over IL-12. In addition
to these cytokines, additional proinflammatory
cytokines (e.g., TNF-α, IL-6, IL-1) as well as
chemokines (RANTES, MCP-1, MIP-2,
MCP-1, IP-10) are also induced in APCs upon
TMEV infection (unpublished observation).
These results suggest the importance of
cytokines directly induced in these cells by
TMEV infection in subsequent inflammatory
immune responses.

Molecular Mechanisms of
Chemokine/Cytokine Gene Activation

NF-κB Requirement
To identify the mechanism(s) involved in

TMEV-induced cytokine expression in glial
cells, the activation of NF-κB has been inves-
tigated in astrocytes by immunohistochem-
istry and electrophoretic mobility shift assay
(EMSA) (28). Rapid NF-κB nuclear translo-
cation is observed within 5–15 min after
TMEV infection. The activation of NF-κB is
also apparent based on EMSA experiments

with nuclear extracts from TMEV-infected
astrocytes. The molecular weights of NF-κB
subunits involved in the binding to NF- κB-
specific oligonucleotides suggest that
p65/p50 and p50/p50 complexes are involved
in the activation. These results conclusively
demonstrate the activation of NF-κB in astro-
cytes after TMEV infection. To correlate NF-
κB activation and cytokine gene expression
induced by TMEV, chemical inhibitors for the
NF-κB pathway (caffeic ester phenyl ester
and MG132), as well as recombinant-aden-
ovirus expressing a dominant-negative form
of I-κB, were used. Pretreatment of astrocytes
with these inhibitors suppress most, if not all,
of the cytokines and chemokines (28,29).
These results indicate that TMEV-induced
NF-κB activation is required for cytokine and
chemokine gene expression in primary astro-
cyte cultures.

MAPK, PKR, and IFN-α/β Dependence
Many pathways, including the double-

stranded RNA-dependent protein kinase
(PKR), can lead to NF-κB activation, result-
ing in the production of proinflammatory
cytokines (62–68). Pretreatment of astrocytes
with 2-aminopurine (AP), a serine threonine
protein kinase inhibitor of PKR (69), was able
to only partially reduce the level of some (i.e.,
IL-1, TNF-α, and IL-6) of the TMEV-induced
cytokines (28,29). In addition, TMEV-
induced cytokine expression was not signifi-
cantly compromised in a PKR-deficient
fibroblast cell line. These results strongly
suggest that NF-κB activation induced by
TMEV can be independent of the PKR path-
way. The possibility that MAPK is necessary
for the activation of chemokine/cytokine
genes after TMEV infection was also exam-
ined ([29] and unpublished results) using spe-
cific inhibitors for MEK and p38 (U0126 and
SB2024190, respectively). These treatments
partially inhibited both chemokine and cyto-
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kine gene expression, suggesting that activa-
tion of MAPK may also contribute to the acti-
vation of chemokine gene expression at some
level.

The type I interferons (IFN-α/β) induced
following various infections, including
viruses, further induce numerous other cyto-
kines (TNF-α, IL-12, IL-1, and IL-6) and
chemokines (63–65,70). To determine the
potential involvement of IFN-α/β in the induc-
tion of cytokines and chemokines by TMEV
infection, the levels of cytokine and
chemokine gene expression in astrocytes from
control and IFN-α/β receptor-deficient (IFN-
α/βR-KO) mice were examined (28, 29). The
overall kinetics of the initial gene expression
was similar to astrocytes with intact IFN-α/β
receptor. However, the levels of some
cytokines critically important for inflamma-
tory responses (IL-12p40 and TNF-α) are
significantly lower in the IFN-α/βR KO astro-
cytes during the late time periods (12–24 h).
The lack of additional stimulation secondarily
induced by Type I IFNs may result in a reduc-
tion in cytokine gene expression at late time
points, because IFN-α/β treatment induces
significant levels of cytokines and chemo-
kines in astrocyte cultures (28). These results
indicate that the induction of cytokines/
chemokines by TMEV does not require the
IFN-α/β pathway, which is important for
amplifying and sustaining the subsequent pro-
tective immune response (29).

Differential Gene Activation 
in Different Species

Infection with different picornaviruses
such as Coxsackievirus can cause meningi-
tis/encephalitis in humans and experimental
animals. Potential chemokine gene activation
in human astrocytes by TMEV has been
investigated along with the human picor-
naviruses, Coxsackievirus B3, or Coxsack-
ievirus B4 (71). Interestingly, all of these

viruses induce the expression of IL-8 and
MCP-1 genes in primary human astrocytes as
well as in an established astrocyte cell line.
The pattern of activated chemokine genes in
human astrocytes is quite restricted com-
pared to that in mouse astrocytes infected
with the same viruses, suggesting distinct
mechanisms of gene activation in cells from
different species (Fig. 2). Further studies
indicate that both AP-1 and NF-κB tran-
scription factors are required for the activa-
tion of chemokine genes in human astrocytes,
whereas only NF-κB activation is sufficient
for mouse astrocytes (71). Such a difference
in the activation pathway and pattern of
chemokine/ cytokine production may result
in potential differences in the pathogenic
outcome in different species following infec-
tion with the same virus.

Association With Viral Replication
Several lines of experimental data suggest

that there is an association between viral
replication and chemokine/cytokine gene
activation. First, UV-inactivated virus fails
to activate these genes in both mouse and
human astrocytes (12,71). Second, the
number of astrocytes showing viral message
is similar to that displaying NF-κB nuclear
translocation (28). Third, NF-κB inhibitors
that inhibit chemokine/cytokine gene acti-
vation following TMEV-infection com-
pletely suppress viral replication in both
mouse and human astrocytes (unpublished
results). These results strongly suggest that
cellular gene activation is required for
TMEV infection and replication. Supporting
this notion, viral replication is also signifi-
cantly enhanced in cell lines and primary
astrocytes that are preactivated with lipo-
polysaccharide (LPS), which is known to be
a potent activator for many different cell
types, including APCs (unpublished data).
In addition, we have also observed that
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administration of LPS or IL-1β peptide per-
mits viral persistence in resistant mice and
renders them susceptible to disease (11).

Role of the Initial Innate Immunity 
in Pathogenesis

As discussed earlier, a variety of chemo-
kines and cytokines appear to play critical
roles in early cellular infiltration, viral persis-
tence, development of adaptive immunity, and
consequent pathogenesis of viral demyelinat-
ing disease. It appears that viral replication is
required for the initial activation of chemokine
and cytokine genes and these are dependent on
NF-κB activation. It is not yet clear which
pathway triggers NF-κB activation. Because

dsRNA generated during TMEV replication
may activate NF-κB via PKR and TLR-3, it is
conceivable that these receptors are involved in
delivering initial signals for NF-κB activation,
leading to the production of chemokines and
cytokines. The initial proinflammatory
chemokines and cytokines produced in various
virus-infected glial cells and APCs may further
activate adjacent cell populations that are not
infected by virus (Fig. 3). The specific inhibi-
tion or delay in IFN-α/β gene activation in
virus-infected cells may allow continuous viral
replication initially. The newly released virus
may have easy access to adjacent cells that are
pre-activated by proinflammatory cytokines
from virus-infected cells. In particular, TNF-α
and IL-1, which are potent NF-κB activators,

Kim et al.8

Fig. 2. Activation of chemokine genes in human (A) and mouse (B) astrocytes following infection with
TMEV (TV), CVB3 (B3), and CVB4 (B4). U373 human astroglioma cells and mouse (SJL/J) primary astro-
cytes were used. The chemokine specific mRNA levels at 8 h after viral infection were assessed by RPA using
chemokine mutiprobe sets (mCK-5 and hCK-5, respectively; Pharmingen). Adapted with permission from
ref. 71.



Fig. 3. Potential role of innate immune responses in immune-mediated demyelination induced following
TMEV infection. Viral infection may activate various glial cells, including astrocytes, microglia via NF-κB
to produce select chemokines, and proinflammatory cytokines. The secreted chemokines promote infiltration
of various inflammatory cells to the CNS, including NK, Th, CTL, B, and monocytes/macrophages. The
secreted cytokines activate adjacent glia cells and infiltrating inflammatory cells, and this may enhance viral
infection, replication, and/or cellular function. The combination of NK, CTL, and Th cells to some extent clears
viral infection by removing virus-infected cells followed by resolution of inflammation. When, however, inad-
equate initial innate and virus-specific immune responses fail to clear viral infection in susceptible mice, a
chronic immune-mediated demyelinating inflammatory response is established.
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