
Abstract
Many tumor cells escape host-immune recognition by the down-
regulation or lack of immunostimulatory molecules. Expression of
immunostimulatory molecules on tumor cells by gene transfer can
be used to induce an antitumor immune response. However, we have
previously shown that protein transfer of glycosyl-phosphatidyli-
nositol (GPI)-linked costimulatory molecules is a successful alter-
native to traditional gene transfer in preparing such a tumor vaccine.
Vaccination with membranes modified by protein transfer to express
GPI-linked B7.1 (CD80), a costimulatory adhesion molecule,
induces protective immunity in mice and allogeneic antitumor T-cell
proliferation in humans in vitro. Our goal is to develop an optimal
tumor vaccine using tumor membranes modified by protein trans-
fer to target and stimulate antigen-presenting cells (APCs) and T
cells. We have investigated the efficacy of expressing GPI-anchored
cytokine molecules on the surface of tumor cells. Expression of
interleukin-12 (IL-12) on tumor-cell membranes in a GPI-anchored
form induces a strong antitumor immune response that is compa-
rable to the effects of secretory IL-12. Because many cytokines act
synergistically, we are testing the membrane expression and
immunostimulatory effects of cytokines individually as well as in
combination to determine potential complementary effects of coex-
pression on the antitumor immune response. Ultimately, the protein-
transfer vaccination may be used in humans alone or in multimodal
combination therapies to induce tumor regression and to serve as a
protective measure to prevent postsurgical secondary metastases.
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Introduction

Tumor-specific immune responses play a
major role in eliminating tumors from the
body. Immunotherapy in oncology aims to
supplement and stimulate a patient’s immune
system in the fight to recognize and eliminate
cancer. Potentially promising immunothera-
peutic approaches for cancer treatment have
emerged from recent advances in the under-
standing of the requirements necessary for
antigen-specific immune responses. Some of
these strategies include: vaccination with den-
dritic cells (DCs) modified to express tumor
antigens (1–4), peptide (5,6), or DNA vac-
cines (7,8), heat-shock proteins (HSPs)
(9,10), hybrid tumor cells (11), and tumor
cells transfected with costimulatory mole-
cules (12,13) or cytokines (14–16). We have
developed tumor vaccines based on a novel
protein-transfer method using GPI-linked
immunostimulatory molecules and isolated
tumor-cell membranes (17–19). Here, we out-
line the recent developments in various ther-
apeutic tumor-vaccine strategies using
immunostimulatory molecules.

Systemic Administration of Cytokines 
and Ex Vivo Stimulation of Antitumor
Cytotoxic Cells

Immunostimulatory molecules like cyto-
kines play an important role in the antitumor
response. Cytokines are a critical component in
the modulation of the immune system in fight-
ing cancer and are thus attractive candidates for
immunotherapeutic interventions (20–22).
Studies in murine tumor models have demon-
strated, for instance, that antitumor immune
responses can be stimulated postadministration
of the cytokines interleukin (IL)-2 (23), IL-4
(24), IL-6 (25,26), or granulocyte-macrophage
colony-stimulating factor (GM-CSF) (27,28).
IL-2, one of the chemical mediators of the
immune response, has been shown to have anti-

tumor capabilities through its activation of
helper (29) and cytotoxic T cells (30), natural
killer (NK) cells (31), lymphokine-activated
killer (LAK) cells (23), and macrophages (32).
IL-12 attracts T cells, APCs, NK cells, and
inflammatory cells to the site of secretion or
vaccination and can also activate and enhance
the maturation of antigen-specific cytotoxic T
cells (CTLs) (33).

Systemic administration of cytokines to
humans, particularly IL-2, initially appeared to
have promising results (34–36); however, sys-
temic administration of the IL-2 to humans is
problematic, not only because of rapid degra-
dation (37), but also because of severe toxic
side effects owing to paracrine activity (38).
Leonard and co-workers (39) found that sys-
temic delivery of IL-12 is also highly toxic to
patients, depending on the cytokine-adminis-
tration schedule. To circumvent the negative
side effects associated with systemic cytokine
administration, researchers developed an ex
vivo method of stimulating T cells (23,36,
40,41). High doses of cytokines such as IL-2
were used to produce LAK cells from T cells
and NK cells, which were then administered to
patients. This method was met with only min-
imal success, however, and it has recently been
shown that neither the co-administration of
systemic IL-12 nor GM-CSF improves the
antitumor response (42). Alternative methods
have therefore been developed to use cytokines
in antitumor immunotherapy.

Development of Vaccines 
With Antigen-Presenting Cells

An alternative approach to stimulating an
antitumor immune response is through the
direct use of APCs. Initial methods relied pep-
tide-pulsed macrophages (43) and on cell
fusion of APCs with tumor cells, resulting in
antigen-specific immunogenic tumor cells
(11). Cell fusion with DCs in particular results
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in the strongest antitumor responses (44). More
recent attention has been given to immuniza-
tion with active DCs armed with tumor anti-
gens on their cell surface (45). Sources of
antigens for DC loading include apoptotic
cells, tumor cells, live cells, cell lysates, pro-
teins, or antigens encoded by DNA or RNA
(46). It has also been demonstrated that HSPs
isolated from tumor cells act as potent adju-
tants in inducing an antitumor immune
response by stimulating DC maturation and
antigen presentation (9). DCs are attractive
candidates for tumor-vaccine strategies
because relatively few numbers of cells are
able to potently stimulate T-cell activation
(47). Notably, DCs are able to prime both anti-
gen-specific CD4+ T cells and CD8+ T cells
(46). Clinical studies have in fact demonstrated
metastatic regression and increased T- cell
immunity post-DC-vaccination (48,49). How-
ever, further work is necessary to optimize and
standardize the development, preparation, and
administration of such vaccines (45).

Gene Transfer of Immunostimulatory
Molecules

Antitumor T-cell response is dependent not
only upon interaction with the tumor-peptide
antigen and major histocompatibility com-
plex (MHC) (50), but also upon a second cos-
timulatory signal that comes from the
adhesion-receptor ligand binding between the
APC and the T cell (51–53). Many tumor cells,
while expressing MHC molecules, lack the
immune costimulatory or adhesion molecules
necessary for T-cell activation and subsequent
initiation of a host-immune response (54,55).
Without the second, costimulatory signal,
clonal anergy will result in the tumor-specific
T-cell population (53,56,57). To counteract the
downregulation or lack of many secondary
stimulation signals, researchers have shown
that the expression of costimulatory and other

immunostimulatory molecules by gene trans-
fer induces antitumor immune responses
(12,13).

Direct vaccination of mice with tumor cells
transfected with IL-2 genes has been shown to
provide protective immunity against parental
tumor challenge (58) and to cause tumor
regression in mice (59,60). Tumors trans-
fected with genes from other cytokines, such
as GM-CSF and IL-12, can also induce anti-
tumor immunity (22,27,33). Many studies in
the murine system have shown that the trans-
fection of costimulatory molecules can induce
an antitumor immune response (54,61,62).
Our laboratory has shown that after the
expression of B7.1 in the human renal carci-
noma line RCC-1 via gene transfer, RCC-1
stimulates strong proliferation and differenti-
ation signals to autologous T cells (63).

Gene transfer requires the use of viral vec-
tors, however, which complicate the treatment
strategy because antiviral host immune
responses may prohibit multiple immuniza-
tions using the same vector (64–66). Addi-
tionally, owing to the difficulty in transfecting
primary tumor lines, gene transfer requires
the establishment of tumor-cell lines, which is
also a time consuming process. Phase III
gene-therapy studies of immunostimulatory
molecule transfection in humans have shown
that the limiting factors in the process were
the isolation of cells from the primary tumor
and the low frequency of gene uptake. Gene
transfection is ultimately impractical for a
clinical setting (67).

Protein Transfer of Immunostimulatory
Molecules to Live Tumor Cells

Previously, our laboratory (68) and others
(69) have shown that costimulatory molecules
such as B7.1 can be inserted and expressed on
the cell surface via a novel method of direct pro-
tein transfer. The proteins are recombinantly
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linked to GPI lipid-molecule tails, which can
spontaneously insert into amphiphilic struc-
tures, such as a cell membrane (70). Studies
have since optimized conditions for the incor-
poration of GPI-anchored proteins onto the
cell surface (18,68,71–73), and purified GPI-
anchored molecules are able to incorporate
into the cell membrane in just 2 h at 37°C
(18,68). GPI-linked molecules can incorporate
into nucleated cells (74), non-nucleated cells
(73), and various types of tumors, including pri-
mary breast carcinoma (68). Notably, all the
studies showed that the preparation and incor-
poration of the GPI-linked proteins does not
affect the proteins’ ligand-binding abilities
(75–77). Thus, one can quickly express
immunostimulatory molecules on tumor cells
by this method without the use of time-con-
suming gene-transfer techniques for cancer-
vaccine development (78,79). Our lab has
demonstrated that human melanoma tumor
cells (SKMEL28) expressing GPI- linked B7.1
from protein transfer are able to induce an allo-
geneic T-cell response in vitro (68). In subse-
quent protein-transfer studies, immunization of
mice with other tagged or tailed immunostim-
ulatory molecules, such as B7.1 and CD40 (80)
or toxic shock syndrome toxin-1 (81), has also
been shown to initiate demonstrable antitumor
responses in vivo.

Protein Transfer of Costimulatory
Molecules to Isolated Tumor-Cell
Membranes

Protein transfer of costimulatory mole-
cules to whole tumor cells has provided tumor
vaccines that initiate promising antitumor
immunity (68,80,81). However, this method
has various limitations, because it is difficult
to establish and maintain tumor cell lines
from many primary tumors, and the tumor
lines that are established gradually lose the
GPI-linked proteins with progressive cell

divisions (68,72). Additionally, the adminis-
tration of live tumor cells to patients is
improbable, and irradiation of cells may not
be complete and may yield cells that are inca-
pable of immunostimulation (12,82).

As an alternative method, our laboratory has
demonstrated that protein transfer can be used
to express GPI-linked immunostimulatory
molecules in preparations of isolated tumor-
cell membranes alone (17,18). B7.1-expressing
membranes are effective in stimulating tumor-
specific T-cell and CTL proliferation and pro-
viding complete immunity to parental tumor
challenge with murine T-cell lymphoma (17).
Additionally, we have shown that the cell
membranes isolated from surgically removed
human melanoma and renal-cell carcinoma
tumor tissue can be modified to express GPI-
linked B7.1 by protein transfer (18). These
membranes are able to stimulate allogeneic T
cells in vitro. At present, the mechanism by
which these modified tumor membranes stim-
ulate an antitumor response is not known. It is
possible that the B7.1 molecules may be acting
to directly prime T cells or to indirectly prime
them through interactions with other CD28-
expressing cells, such as NK cells and mast
cells (Fig. 1). These cells in turn can stimulate
the potent DCs to process and present antigens
more efficiently to T cells.

Protein transfer to tumor-cell membranes,
as opposed to live tumor cells, offers several
advantages. Membranes do not divide or
actively metabolize, thus eliminating the loss
of GPI-linked molecules through cell divi-
sions, and GPI-linked B7.1 is stably
expressed for at least 7 d. Membranes pre-
pared from patients’ tumor cells can be frozen
in aliquots for at least 2 yr and later modified
to express the GPI-linked immunostimulatory
molecules for immunization (18). Addition-
ally, the membranes already modified to
express the costimulatory molecules can also
be frozen and thawed with little loss of
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expression (18). Notably, membranes pre-
pared from surgically removed tumor samples
expressed both MHC class I and class II mol-
ecules (18), thus indicating that their use in a
vaccine could possibly stimulate both CD8+

and CD4+ T-cell proliferation, which would
augment the antitumor response (28,83).

Cytokines Expressed on Cell Membranes
as Adjuvants

As described, cytokines also play a central
role in the modulation of the immune system

(20–22). Recently, we have shown that the
expression of GPI-linked IL-12 molecules on
tumor-cell membranes (Fig. 2) induces T-cell
proliferation and IFN-γ production, as well as
tumor immunity in a highly tumorigenic
murine mastocytoma model (19). Immunized
mice are protected for up to 55 d from tumor
challenge. A secondary advantage of GPI-
linked cytokine molecules may be the cre-
ation of an insoluble slow-release depot at the
vaccination site, as opposed to a transient sol-
uble cytokine depot. A major advantage of
local administration is the lack of toxicity
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Fig. 1. A hypothetical model for stimulation of T-cell proliferation by modified tumor membranes. (A)
Membrane-bound immunostimulatory molecules can indirectly stimulate T-cell production. B7.1 can bind
to CD28 expressing mast cells and NK cells. After binding, these mast and NK cells release IFN-γ and TNF-
α, which stimulate the DCs , resulting in further T-cell proliferation. Cytokines can also induce T-cell dif-
ferentiation through DC stimulation. In addition, (B) membrane-bound cytokines and adhesion molecules
can directly stimulate T-cell proliferation.



associated with systemic administration. GPI-
linked cytokine molecules can also be used in
protein transfer, allowing for a more rapid
preparation of cancer vaccines (18,19,84).
Finally, the presence of cytokines at the site of
immunization will attract cells of the immune
system, increasing the rate of antigen uptake
and presentation, and thus increasing the effi-
cacy of the tumor vaccine.

We have also engineered the GPI-linkage
of the cytokine GM-CSF to the cell membrane
(85). GM-CSF stimulates DCs, key initiators
of the adaptive immune response (86), and
potently induces antitumor immune activity
(27,28). Our study has shown that GPI-linked
GM-CSF can stimulate bone marrow-cell pro-
liferation in vitro and can induce DC genera-
tion in vivo, thus maintaining stimulatory
function while anchored to the cell mem-
brane. Additionally, the GM-CSF molecules

are partially shed from the cell membrane,
likely through proteolytic cleavage, resulting
in local cytokine release (85). This local
cytokine release promotes the migration of
APCs, such as DCs, to the site of vaccination,
thus facilitating tumor-specific antigen uptake
and presentation.

In current studies, we are evaluating the
expression of transfected GPI-linked IL-2
cytokine molecules on the surface of murine
mammary tumor cells. A recent study from
our laboratory has shown that the expression
of GPI-linked IL-2 molecules induces antitu-
mor immunity in the EL4, P815, and EG7
murine tumor models (87). We are testing the
expression and immunostimulatory effects of
IL-2 alone, as well as in conjunction with
B7.1 and IL-12 to determine the potential
complementary effects of co-expression. IL-
2 and IL-12 have been shown to have syner-
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Fig. 2. Attaching a GPI-anchor to secreted cytokines. GPI-anchor attachment sequence and cytokine gene
are recombinantly linked to form a GPI-modified cytokine that will be anchored to the cell membrane.



gistic effects on the activation of DCs and
their production of IFN-γ (88) and well as on
the generation of cytotoxic effector cells from
normal human bone marrow (89).

Conclusion

In summary, recent molecular and cellular
advances have furthered the understanding of
mechanisms necessary for immune-response
initiation and thus the development of immuno-
stimulatory cancer vaccines. In humans, the
protein transfer vaccination may be used one
day, alone or in multimodal combination ther-
apies, to induce tumor regression and to serve
as a protective measure postsurgery to prevent
secondary metastases. Our laboratory has
already shown that tumor membranes can be
isolated from human primary tumors and that
protein transfer of GPI-linked B7.1 to the mem-

branes is possible and in fact effective in stim-
ulating T-cell proliferation in vitro (17,18).
Clinical trials and comparison to other vaccine
strategies are necessary to determine clinical
efficacy. The protein-transfer method offers
several advantages, including the elimination of
the need for live cell culture in vaccine prepa-
ration as well as providing the possibility of
rapid vaccine preparation. GPI-linkage pro-
vides a promising alternative for the transport
and delivery of immunostimulatory molecules,
such as adhesion molecules and cytokines, for
the initiation of an antitumor response in tumor
vaccines.
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