Skip to main content

Cardiomyocytes Derived From Embryonic Stem Cells

  • Protocol
Hypertension

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMM,volume 108))

  • 1780 Accesses

Abstract

Self-renewing embryonic stem (ES) cells have been established from early mouse embryos as permanent cell lines. By cultivation in vitro as three-dimensional aggregates called embryoid bodies (EBs), ES cells can differentiate into derivatives of all three primary germ layers, including cardiomyocytes. ES cells thus represent a useful model system for studying cardiomyocyte developmental paradigms. This chapter describes techniques and protocols for the cultivation and maintenance of ES cell lines, and the differentiation of ES cell lines into all specialized cell types of the heart, including atrial-, ventricular-, sinus nodal- and Purkinje-like cardiomyocytes. We also include protocols for the isolation and evaluation (morphological, molecular, and functional) of in vitro-generated cardiomyocytes. We consider these latter techniques to be prerequisites for the successful use of this model system to study cardiomyocyte differentiation. Finally, our objective in writing this chapter is to provide sufficient detail and explanation so that any competent scientist who is new to the field will be able to successfully establish and employ this model system for the analysis of ES cell-derived cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154ā€“156.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634ā€“7638.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Wobus, A. M., Holzhausen, H., Jakel, P., and Schoneich, J. (1984) Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 152, 212ā€“219.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., and Wobus, A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189ā€“201.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chrono-tropic responses to adrenergic and cholinergic agents and Ca2+channel blockers. Differentiation 48, 173ā€“182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Wobus, A. M., Guan, K., Jin, S., et al. (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 1525ā€“1539.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Muller, M., Fleischmann, B. K., Selbert, S., et al. (2000) Selection of ventricularlike cardiomyocytes from ES cells in vitro. FASEB J. 14, 2540ā€“2548.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Klug, M. G., Soonpaa, M. H., Koh, G. Y., and Field, L. J. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216ā€“224.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Ventura, C., Zinellu, E., Maninchedda, E., Fadda, M., and Maioli, M. (2003) Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ. Res. 92, 617ā€“622.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Wobus, A. M., Guan, K., Yang, H.-T., and Boheler, K. R. (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle and vascular smooth muscle cell differentiation. In Methods in Molecular Biology, Vol. 185 Turksen, K. ed. Humana Press, Totowa, NJ, pp. 127ā€“156.

    Google ScholarĀ 

  13. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145ā€“1147.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Boheler, K. R. (2003) ES Cell differentiation to the cardiac lineage. Keller, G. and Wassarman, P. M. eds. Methods Enzymol. 365, 228ā€“241. Academic Press, San Diego, CA, in press.

    Google ScholarĀ 

  15. Hescheler, J., Fleischmann, B. K., Lentini, S., et al. (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36, 149ā€“162.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Abbondanzo, S. J., Gadi, I., and Stewart, C. S. (1993) Derivation of embryonic stem cell lines. In Guide to Techniques in Mouse Development, Vol. 225, Wassarman, P. M., and De Pamphilis, M. L. eds. Academic Press, San Diego, CA, pp.803ā€“822.

    ChapterĀ  Google ScholarĀ 

  17. Smith, A. G. and Hooper, M. L. (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121, 1ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Anisimov, S. V., Tarasov, K. V., Tweedie, D., Stern, M. D., Wobus, A. M., and Boheler, K. R. (2002) SAGE identification of gene transcripts with profiles unique to pluripotent mouse R1 embryonic stem cells. Genomics 79, 169ā€“176.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Smith, A. G., Heath, J. K., Donaldson, D. D., et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688ā€“690.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Williams, R. L., Hilton, D. J., Pease, S., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684ā€“687.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Hescheler, J., Wartenberg, M., Fleischmann, B. K., Banach, K., Acker, H., and Sauer, H. (2002) Embryonic stem cells as a model for the physiological analysis of the cardiovascular system. Meth. Mol. Biol. 185, 169ā€“87.

    CASĀ  Google ScholarĀ 

  22. Yang, H. T., Tweedie, D., Wang, S., et al. (2002) The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc. Natl. Acad. Sci. USA 99, 9225ā€“9230.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85ā€“100.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Anisimov, S. V., Tarasov, K. V., Riordon, D., Wobus, A. M., and Boheler, K. R. (2002) SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mech. Dev. 202, 25ā€“74.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Boheler, K.R., Crider, D.G., Tarasova, Y., Maltsev, V.A. (2005). Cardiomyocytes Derived From Embryonic Stem Cells. In: Fennell, J.P., Baker, A.H. (eds) Hypertension. Methods In Molecular Medicineā„¢, vol 108. Humana Press. https://doi.org/10.1385/1-59259-850-1:417

Download citation

  • DOI: https://doi.org/10.1385/1-59259-850-1:417

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-323-7

  • Online ISBN: 978-1-59259-850-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics