Skip to main content

Synthesis and Characterization of Hyaluronan-Based Polymers for Tissue Engineering

  • Protocol
Biopolymer Methods in Tissue Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

  • 1170 Accesses

Abstract

Hyaluronan (HA) is a naturally occurring, negatively charged high mol-wt glycosaminoglycan (GAG), that is composed of repeated disaccharide units of D-glucuronic acid and N-acetylglucosamine. It is the only GAG that lacks an associated protein moiety and sulfate groups. HA is a highly conserved and widely distributed polysaccharide. In a variety of mammalian tissues, it exerts structural functions because of its peculiar physicochemical properties. Because of its propensity to form highly hydrated and viscous matrices, HA imparts stiffness, resilience, and lubrication to tissues. The unique properties of HA are manifested in its mechanical function in the synovial fluid, the vitreous humor of the eye, and the ability of connective tissue to resist compressive forces, as in articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kujawa, M. J. and Caplan, A. I. (1986) Hayluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. Dev. Biol. 11, 504–518.

    Article  Google Scholar 

  2. Wheatley, S. C., Isacke, C. M., and Crossley, P. H. (1993) Restricted expression of the hyaluronan receptor, CD44, during postimplantation mouse embryogenesis suggests key roles in tissue formation and patterning. Development 119, 295–306.

    CAS  Google Scholar 

  3. Brown, J. J. and Papaioannou, V. E. (1993) Ontogeny of hyaluronan secretion during early mouse development. Development 117, 483–492.

    CAS  Google Scholar 

  4. Iocono, J. A. and Krummel, T. M. (2000) The role of hyaluronan in fetal repair: a review, in Redefining Hyaluronan (Abatangelo, G. and Weighel, P. H., eds.), Elsevier Science B.V., Amsterdam, The Netherlands, pp. 289–296.

    Google Scholar 

  5. Itay, S., Abramovici, A., Nevo, Z. (1987) Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin. Orthop. 220, 234–300.

    Google Scholar 

  6. Solchaga, L. A., Goldberg, V. M., and Caplan, A. I. (2000) Hyaluronic acid-based biomaterials in tissue engineered cartilage repair, in Redefining Hyaluronan (Abatangelo, G. and Weighel, P. H., eds.), Elsevier Science B.V., Amsterdam, The Netherlands, pp. 233–246.

    Google Scholar 

  7. Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., and Williams, D. F. (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19, 2101–2127.

    Article  CAS  Google Scholar 

  8. Rastrelli, A., Beccaro, M., Biviano, F., Calderini, G., and Pastorello, A. (1990) Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties. Clinical Implant Materials (Advances in Biomaterials) 9, 199–205.

    Google Scholar 

  9. Barbucci, R., Magnani, A., Baszkin, A., Da Costa, M. L., Bauser, H., Hellwig, G., et al. (1993) Physico-chemical surface characterization of hyaluronic acid derivatives as a new class of biomaterials. J. Biomat. Sci. Polymer Edition 4(3), 245–273.

    Article  CAS  Google Scholar 

  10. Mensitieri, M., Ambrosio, L., Nicolais, L., Bellini, D., and O’Regan, M. (1996) Viscoelastic Properties modulation of a novel autocrosslinked hyaluronic acid polymer. J. Material Science: Materials in Medicine 7, 695–698.

    Article  CAS  Google Scholar 

  11. West, D. C., Hampson, I. N., Arnold, F., and Kumar, S. (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324–1326.

    Article  CAS  Google Scholar 

  12. Deed, R., Rooney, P., Kumar, P., et al. (1997) Early-response gene signalling induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by high molecular weight hyaluronan. Int. J. Cancer 71, 251–256.

    Article  CAS  Google Scholar 

  13. Myers, S. R., Grady, J., Soranzo, C., Sanders, R., Green, C., Leigh, I. M., et al. (1997) A HA membrane delivery system for cultured keratinocytes: clinical “take” rates in the porcine kerato-dermal model. J. Burn Care Rehabil. 18, 214–222.

    Article  CAS  Google Scholar 

  14. Brun, P., Abatangelo, G., Radice, M., Zacchi, V., Guidolin, D., Daga Gordini, D., et al. (1999) Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J. Biomed. Mater. Res. 46, 337–346.

    Article  CAS  Google Scholar 

  15. Andreassi, L., Casini, L., Trabucchi, E., Diamantini, S., Rastrelli, A., Donati, L., et al. (1991) Human keratinocytes cultured on membranes composed of benzyl ester of HA suitable for grafting. Wounds 3(3), 116–126.

    Google Scholar 

  16. Harris, P. S., di Francesco, F., Barisoni, D., Leigh, I. M., and Navsaria, H. A. (1999) Use of hyaluronic acid and cultured autologous keratinocytess and fibroblasts in extensive burns. Lancet 353(9146), 35–36.

    Article  CAS  Google Scholar 

  17. Rheiwald, J. G. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cells 6, 331–344.

    Article  Google Scholar 

  18. Solchaga, L. A., James, E. D., Goldberg, V. M., and Caplan, A. I. (1999) Hyaluronic Acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 17(2), 205–213.

    Article  CAS  Google Scholar 

  19. Solchaga, L. A., Yoo, J., Lundberg, M., Hubregtse, B., and Caplan, A. I. (1999) Hyaluronic acid-based polymers in the treatment of osteochondral defects. Trans. Orthop. Res. Soc. 24, 56.

    Google Scholar 

  20. Solchaga, L. A., Yoo, J., Lundberg, M., Goldberg, V. M., and Caplan, A. I. (1999) Augmentation of the repair of osteochondral defects by autologous bone marrow in a hyaluronic acid-based delivery vehicle. Trans. Orthop. Res. Soc. 24, 801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Soranzo, C., Renier, D., Pavesio, A. (2004). Synthesis and Characterization of Hyaluronan-Based Polymers for Tissue Engineering. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:25

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:25

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics