Skip to main content

Resonance Raman Spectroscopy of Metalloproteins Using CW Laser Excitation

  • Protocol
Spectroscopic Methods and Analyses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 17))

Abstract

The study of metalloproteins by resonance Raman (RR) spectroscopy began two decades ago, with the publication by Long and coworkers of the first RR spectrum of the iron-sulfur protein rubredoxin (1,2). This simple spectrum, which contained only four bands attributed to the Fe-S stretching and bending vibrations of the protein FeS4 cluster, generated much interest because of the potential of RR spectroscopy for monitoring structures of metal centers in complex biological systems (3,4). The unique ability of this technique to study the coordination environment of transition metals in proteins derives from its dramatic increase in detection sensitivrty and selectivity for vibrations closely associated with atoms at the absorbing center(s) in the molecule. When the molecule is excited with a strong monochromatic light whose energy matches that of an electric-dipole allowed electronic transition, a vibronic coupling with the electronically excited state increases the probability of observing Raman scattering from vibrational transitions in the electronic ground state, and the modes that do show enhancement are localized on the chromophore (i.e., on the group of atoms that gives rise to the electronic transition). Since vibrational frequencies are sensitive to molecular bond strength, number of atoms, geometry, and coordination environment, the positions of the enhanced Raman bands can be used to monitor the chromophoric structure. Metalloproteins frequently exhibit allowed electronic transitions, owing to π-π* and/or ligand-metal charge-transfer (CT) transitions (5), and consequently, they give wide scope to the application of RR spectroscopy. A great many RR studies of heme proteins, cobalamin, chlorophylls, carotenoids, flavin nucleotides, the visual pigments, and bacteriorhodopsin, and a variety of iron and copper metalloprotein sites have been carried out in laboratories around the world (611).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, T V and Loehr, T M (1970) The possible determmatton of non coordination in nonheme iron proteins using laser-Raman spectroscopy Rubredoxin J Am Chem Sot 92, 6384–6386

    Article  CAS  Google Scholar 

  2. Long, T V., Loehr, T. M, Alkms, J. R., and Lovenberg, W (1971) Determination of iron coordmation in nonheme iron using laser-Raman spectroscopy. II Clostrtdium pasteurianum Rubredoxin in aqueous solution J Am Chem Soc 93, 1809–1811

    Article  CAS  Google Scholar 

  3. Spiro, T G. (1974) Resonance Raman spectroscopy* A new structure probe for biological chromophores Acc. Chem Res 7, 339–344

    Article  CAS  Google Scholar 

  4. Spiro, T. G. and Gaber, B. P (1977) Laser Raman scattering as a probe of protein structure Annu Rev Biochem 46, 553–572

    Article  CAS  Google Scholar 

  5. Que, L, Jr (ed.) (1988) Metal clusters in proteins ACS Symposium Series 372, American Chemical Society, Washington, DC

    Google Scholar 

  6. Carey, P R (1982) Biochemical Applications of Raman and Resonance Raman Spectroscopies Academic, New York

    Google Scholar 

  7. Tu, A. T. (1982) Raman Scattertng in Btology Wiley, New York.

    Google Scholar 

  8. Parker, F. S (ed) (1983) Appltcations of Infrared, Raman and Resonance Raman Spectroscopy in Biochemistry Plenum, New York

    Google Scholar 

  9. Moore, C B (ed) (1974 to present) Chemical and Biochemical Applications of Lasers, vol 1 to present, Academic, New York

    Google Scholar 

  10. Clark, R J H and Hester, R E (eds)(1970 to 1985) Advances in Infrared and Raman Spectroscopy, vols 1-12, and (1986 to present) Advances in Spectroscopy, vol. 13 to present, Wiley, Chichester.

    Google Scholar 

  11. Spiro, T G (ed) (1988) Biological Applications of Raman Spectroscopy, vols 1-3, Wiley-Interscience, New York

    Google Scholar 

  12. Spiro, T G. and Stem P (1977) Resonance effect in vibrational scattering from complex molecules Annu. Rev. Phys Chem 28,501–521.

    Article  CAS  Google Scholar 

  13. Albrecht, A C. (1961) On the theory of Raman intensities J Chem Phys. 34, 1476–1484.

    Article  CAS  Google Scholar 

  14. Spiro, T G (ed)(1988) Biological Applications of Raman Spectroscopy, vol 3, Resonance Raman Spectra of Heme and Metalloproteins, Wiley-Interscience, New York.

    Google Scholar 

  15. Spiro, T G, Czernuszewicz, R S., and Li, X-Y. (1990) Metalloporphyrin structure and dynamics from resonance Raman spectroscopy Coord Chem Rev. 100,514–571

    Article  Google Scholar 

  16. Gouterman, M (1979) Opttcal spectra and electromc structure of porphyrins and related rings, in Porphyrms, vol. III, Part A (Dolphin, D, ed), Academic, New York, pp 1–156

    Google Scholar 

  17. Li, X-Y., Czernuszewicz, R S, Kincaid, J R, Stem, P., and Spiro, T G. (1990) Consistent porphyrin force field. 2 Nickel octaethylporphyrm skeletal and substituent mode assignments from 15N, Meso-d4, and methylene-d16 Raman and Infrared isotope shifts J Phys Chem 94,47–61.

    Article  CAS  Google Scholar 

  18. Li, X-Y, Czernuszewlcz, R S, Kincaid, J R, and Spiro, T G. (1989) Conststent porphyrm force field 3. Out-of-plane modes in the resonance Raman spectra of planar and ruffled nickel octaethylporphyrin J. Am Chem Soc 111, 7012–7023.

    Article  CAS  Google Scholar 

  19. Czernuszewicz, R S., Li, X-Y, and Spiro, T G (1989) Nickel octaethylporphyrin ruffling dynamics from resonance Raman spectroscopy. J Am. Chem Sot 111,7024–7031.

    Article  CAS  Google Scholar 

  20. Czernuszewicz, R S, Macor, K A, LI, X-Y, Kincaid, J. R., and Spiro, T. G (1989) Resonance Raman spectroscopy reveals alu, vs a2u character and pseudo Jahn-Teller distortion in radical cations of NI II, CuII, and ClFeIII octaethyl-and tetraphenylporphyrms J. Am Chem Sot 111, 3860–3869.

    Article  CAS  Google Scholar 

  21. Atkinson, G. H (1983) Time-Resolved Vibrattonal Spectroscopy. Academic, New York

    Google Scholar 

  22. Hamaguchi, H. (1987) Transient and time-resolved resonance Raman spectroscopy of short-lived intermediate species, in Vibrattonal Spectra and Structure, vol. 16 (Durig, J. R., ed), Dekker, New York, pp. 227–309

    Google Scholar 

  23. Rousseau, D L and Friedman, J M (1988) Transient and cryogenic studies of photodissociated hemoglobin and myoglobin, in Biological Applications of Raman Spectroscopy, vol 3 (Spiro, T G., ed.), Wiley, New York, pp 133–215.

    Google Scholar 

  24. Tsuboi, M., Nishimura, Hirakawa, A Y., and Peticolas, W (1988) Resonance Raman spectroscopy and normal modes of the nucleic acid bases, in Biological Applicattons of Raman Spectroscopy, vol 2 (Spiro, T G, ed.), Wiley, New York, pp 109–179

    Google Scholar 

  25. Hudson, B. S. and Mayne, L. C (1988) Peptides and protein side chains, in Biological Applications of Raman Spectroscopy, vol 2 (Spiro, T. G., ed), Wiley, New York, pp. 181–209.

    Google Scholar 

  26. Kiefer, W. (1977) Recent techniques in Raman spectroscopy, in Advances in Infrared and Raman Spectroscopy, vol. 3 (Clark, R J H and Hester, R E., eds), Heyden, London, pp 1–42

    Google Scholar 

  27. Strommen, D P and Nakamoto, K (1984) Laboratory Raman Spectroscopy, Wiley, New York, pp. 16–20

    Google Scholar 

  28. Gardiner, D J and Graves, D J. (eds) (1989) Practical Raman Spectroscopy, Springer-Verlag, Berlin

    Google Scholar 

  29. Talmi, Y. (1982) Spectrophotometry and spectrofluorometry with the self-scanned photodiode array. Appl Spectrosc 36, 1–18

    Article  CAS  Google Scholar 

  30. Jones, D.G (1985) Photodiode array detectors in UV-VIS spectroscopy. Part I Anal Chem 57, 1057A–1073A.

    Article  CAS  Google Scholar 

  31. Pemberton, J E., Sobocinski, R. L, Bryant, M A, and Carter, D. A (1990) Raman spectroscopy using charge-coupled device detection Spectroscopy 5,26–36

    CAS  Google Scholar 

  32. Kiefer, W and Bernstein, H J (1971) A cell for resonance Raman excitation with lasers in liquids. Appl Spectrosc 2, 500,501

    Google Scholar 

  33. Shriver, D F. and Dunn, J. B. R (1974) The backscattermg geometry for Raman spectroscopy of colored materials Appl. Spectrosc. 28, 319–323.

    Article  CAS  Google Scholar 

  34. Czernuszewicz, R. S. and Johnson, M. K. (1983) A simple low-temperature cryostat for resonance Raman studies of frozen protein solutions Appl. Spectrosc. 37, 297–298

    Article  CAS  Google Scholar 

  35. Eng, J F., Czernuszewicz, R S, and Spiro, T. G (1985) Raman difference spectroscopy via backscattermg from a spinning tube and from a low-temperature tuning fork J. Raman Spectrosc 16, 432–437.

    Article  CAS  Google Scholar 

  36. Czernuszewicz, R S (1986) Closed-cycle refrigerator solution and rotating solid sample cells for anaerobic resonance Raman spectroscopy Appl Spectrosc 40, 571–573

    Article  CAS  Google Scholar 

  37. Drozdzewsh, P. M and Johnson, M K (1988) A simple anaerobic cell for lowtemperature Raman spectroscopy Appl Spectrosc 42, 1575–1577.

    Article  Google Scholar 

  38. Herzberg, G (1945) Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, Princeton

    Google Scholar 

  39. Wrlson, E B Jr., Decius, J C., and Cross, P C. (1955) Molecular Vibrations The Theory of Infrared and Raman Vtbrational Spectra. McGraw-Hill, New York

    Google Scholar 

  40. Steele, D. (1971) Theory of Vibrational Spectroscopy W B. Saunders, Philadelphia.

    Google Scholar 

  41. Woodward, L A (1972) Introduction to the Theory of Molecular Vibrations and Vibrattonal Spectroscopy Oxford University Press, London

    Google Scholar 

  42. Cyvin, S J. (1972) Molecular Structure and Vibrations. Elsvier, Amsterdarn.

    Google Scholar 

  43. Nakamoto, K (1986) Infrared and Raman Spectra of Inorganic Coordination Compounds, 4th ed Wiley-Interscience, New York

    Google Scholar 

  44. Colthup, N. B., Daly, L H, and Wiberley, S E. (1990) Introduction to Infrared and Raman Spectroscopy, 3rd ed Academic, New York

    Google Scholar 

  45. Doohsh, F R, Fateley, W. G, and Bentley, F F (1974) Characteristic Raman Frequenctes of Organic Compounds, 2nd ed. Academic, New York.

    Google Scholar 

  46. Adams, D M (1967) Metal-Ligand and Related Vibrations Edward Arnold, London

    Google Scholar 

  47. Szymanski, H A (1964, 1966, 1967) Interpreted Infrared Spectra, vols I-III, Plenum, New York.

    Google Scholar 

  48. Ferraro, J. R (1971) Low Frequency Vibrations of Inorganic and Coordination Compounds Plenum, New York

    Google Scholar 

  49. Mohan, N, Muller, A, and Nakamoto, K (1970) The metal isotope effect on molecular vibrations, in Advances tn Infrared ana' Raman Spectroscopy, vol 1 (Clark, R. J H and Hester, R E., eds.), Heyden, London, pp 173–226

    Google Scholar 

  50. Czernuszewicz, R S, LeGall, J., Moura, I., and Spiro, T G. (1986) Resonance Raman spectra of rubredoxin New assignments and vibrational coupling mechamsm from iron-54/uon-56 isotope shifts and variable-wavelength excitation. Inorg Chem 25, 696–700

    Article  CAS  Google Scholar 

  51. Yachandra, V. K, Hare, J., Gewuth, A, Czernuszewicz, R S., Kimura, T, Holm, R H, and Spiro, T G (1983) Resonance Raman spectra of spinach ferredoxin and adrenodoxm and of analog complexes. J. Am Chem. Sot 105, 6462–6468.

    Article  CAS  Google Scholar 

  52. Han, S, Czernuszewlcz, R. S, and Spiro, T. G (1989) Vibrational spectra and normal mode analysis for [2Fe-2S] protein analoques using 34S, 54Fe, and 2H sub-sittution: coupling of Fe-S stretchmg and S-C-C bending modes. J Am. Chem. sot 111, 3496–3504

    Article  CAS  Google Scholar 

  53. Han, S, Czernuszewlcz, R S, Kimura, T, Adams, M. W. W, and Spiro, T. G. (1989) Fe2S2 protein resonance Raman spectra revisrted. structural varrahons among adrenodoxm, ferredoxm, and red paramagnetic protein J Am Chem Sot 111, 3505–3511

    Article  CAS  Google Scholar 

  54. Johnson, M K, Czernuszewmz, R S, Spiro, T G, Fee, J A, and Sweeney, W V. (1983) Resonance Raman spectroscopic evidence for a common [3Fe-4S] structure among proteins containing three-iron centers J. Am Chem. Sot 105, 6671–6678

    Article  CAS  Google Scholar 

  55. Czernuszewicz, R S, Macor, K A, Johnson, M K, Gewtrth, A, and Sprro, T G (1987) Vibrattonal mode structure and symmetry in proteins and analogues containing Fe4s4, clusters resonance Raman evidence for different degrees of distortion in HiPIP and ferredoxm J Am. Chem Sot. 2, 7178–7187.

    Article  Google Scholar 

  56. Czernuszewlcz, R S., Sheats, J E, and Spir-o, T G (1987) Resonance Raman spectra and excitation profile for [Fe2O(O2CCH3)2(HB(pz)3)2], a hemerythrm analoque. Inorg Chem 26, 2063–2067

    Article  Google Scholar 

  57. Spiro, T. G., Czernuszewicz, R S, and Han, S (1988) Iron-sulfur protems and analog complexes, in Biological Applications of Raman Spectroscopy, vol 3 (Spiro, T G, ed), Wiley, New York, pp 523–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Czernusxewicx, R.S. (1993). Resonance Raman Spectroscopy of Metalloproteins Using CW Laser Excitation. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Spectroscopic Methods and Analyses. Methods in Molecular Biology, vol 17. Humana Press. https://doi.org/10.1385/0-89603-215-9:345

Download citation

  • DOI: https://doi.org/10.1385/0-89603-215-9:345

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-215-6

  • Online ISBN: 978-1-59259-504-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics