Skip to main content

Detection of Programmed Cell Death in Cells Exposed to Genotoxic Agents Using a Caspase Activation Assay

  • Protocol
  • 964 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

Abstract

Many environmental toxins cause DNA damage. Cells that have sustained significant DNA damage must attempt to repair the damage prior to replication, in which aberrant base incorporation can result in an irreversible mutation. If a cell cannot repair the damage, however, it may commit suicide through a genetically regulated programmed cell death (PCD) pathway. Crucial to the ultimate execution of PCD is a family of cysteine proteases called caspases. Activation of these enzymes occurs late in the PCD pathway, when a cell can no longer avoid cell death, but earlier than other PCD markers, such as morphological changes or DNA fragmentation. This protocol details a method for using fluorochrome-conjugated caspase inhibitors for the detection of activated caspases in intact cells using fluorescent microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schins, R. P. (2002) Mechanisms of genotoxicity of particles and fibers. Inhal. Toxicol. 14, 57–78.

    Article  PubMed  CAS  Google Scholar 

  2. Snyder, R. D. and Green, J. W. (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat. Res. 488, 151–169.

    Article  PubMed  CAS  Google Scholar 

  3. Weisburger, J. H. (2001) Antimutagenesis and anticarcinogenesis from the past to the future. Mutat. Res. 480-481, 23–35.

    PubMed  CAS  Google Scholar 

  4. Zito, R. (2001) Low doses and thresholds in genotoxicity: from theories to experiments. J. Exp. Clin. Cancer Res. 20, 315–325.

    PubMed  CAS  Google Scholar 

  5. Lincz, L. F. (1998) Decipher the apoptotic pathway: all roads lead to death. Immunol. Cell Biol. 76, 1–19.

    Article  PubMed  CAS  Google Scholar 

  6. Jenner, P. and Olanow, C. W. (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47, 161–170.

    Google Scholar 

  7. Paradis, E., Douillard, H., Koutroumanis, M., Gooryer, C, and LeBlanc, A. (1996) Amyloid beta peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons. J. Neurosci. 16, 7533–7539.

    PubMed  CAS  Google Scholar 

  8. Hetts, S. W. (1998) To die or not to die: an overview of apoptosis and its role in disease. JAMA 279, 300–307.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmerman, K. C, Bonzon, C, and Green, D. R. (2001) The machinery of programmed cell death. Pharmacol. Ther. 92, 57–70.

    Article  Google Scholar 

  10. Zou, H., Henzel, J., Lui, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

  11. Li, P., Nijhawan, D., Budihardjo, I., et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  12. Cai, J., Yang, J., and Jones, D. P. (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta 1366, 139–149.

    Article  PubMed  CAS  Google Scholar 

  13. Shi, Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470.

    Article  PubMed  CAS  Google Scholar 

  14. Earnshaw, W. C, Martins, L. M., and Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424.

    Article  PubMed  CAS  Google Scholar 

  15. McCarthy, N. J. and Evan, G. I. (1998) Methods for detecting and quantifying apoptosis, Curr. Top. Dev. Biol. 36, 259–278.

    Article  PubMed  CAS  Google Scholar 

  16. Köhler, C, Orrenius, S., and Zhivotovsky, B. (2002) Evaluation of caspase activity in apoptotic cells. J. Immunol. Methods 265, 97–110.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Gehring, M.E., Koty, P.P. (2005). Detection of Programmed Cell Death in Cells Exposed to Genotoxic Agents Using a Caspase Activation Assay. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:465

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:465

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics