Skip to main content

NOE Assignment With ARIA 2.0

The Nuts and Bolts

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

The assignment of nuclear Overhauser effect (NOE) resonances is the crucial step in determining the three-dimensional structure of biomolecules from nuclear magnetic resonance (NMR) data. Our program, Ambiguous Retraints for Iterative Assignment (ARIA), treats Noe assignment as an integral part of the structure determination process. This chapter briefly outlines the method and discusses how to carry out a complete structure determination project with the new version 2.0 of ARIA. Two new features greatly streamline the procedure: a new graphical user interface (GUI) and the incorporation of the data model of the Collaborative Computing Project for the NMR community (CCPN). The GUI supports the user in setting up and managing a project. The CCPN data model facilitates data exchange with a great variety of other programs. We give practical guidelines for how to use ARIA and how to analyze results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245, 645–660.

    Article  PubMed  CAS  Google Scholar 

  2. Nilges, M. and O’Donoghue, S. I. (1998) Ambiguous NOEs and automated NOESY assignment. Prog. NMR Spec. 32, 107–139.

    Article  CAS  Google Scholar 

  3. Linge, J. P., O’Donoghue, S. I., and Nilges, M. (2001) Automated assignment of ambiguous nuclear Overhauser effects with ARIA. Methods Enzymol. 339, 71–90.

    Article  PubMed  CAS  Google Scholar 

  4. Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315, 316.

    Article  PubMed  CAS  Google Scholar 

  5. Göler, A. and Kalbitzer, H. R. (1997) Relax, a flexible program for the back calculation of NOESY spectra based on complete relaxation matrix formalism. J. Magn. Reson. 124, 177–188.

    Article  Google Scholar 

  6. Yip, P. F. and Case, D. A. (1991) Incorporation of internal motions in NMR refinements based on NOESY data. In Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy (Hoch, J. C., Poulsen, F. M., and Redfield, C., eds.). Plenum, New York, pp. 317–330.

    Google Scholar 

  7. van Rossum, G. and de Boer, J. (1991) Linking a stub generator (AIL) to a prototyping language (Python). In EurOpen: UNIX Distributed Open Systems in Perspective: Proceedings of the Spring 1991 EurOpen Conference, Tromsø, Norway, May 20–24, 1991 (EurOpen, ed.), EurOpen, Buntingford, Herts, UK, pp. 229–247.

    Google Scholar 

  8. Brünger, A. T., Adams, P. D., Clore, G. M. Delano,W. L., Gros, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography and NMR system (CNS): a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921.

    Article  PubMed  Google Scholar 

  9. Nilges, M., Macias, M. J., O’Donoghue, S. I., and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from spectrin. J. Mol. Biol. 269, 408–422.

    Article  PubMed  CAS  Google Scholar 

  10. Fogh, R. H., Ionides, J., Ulrich, E., Boucher, W., Vranken, W., Linge, J. P., et al. (2002) The CCPN project: an interim report on a data model for the NMR community. Nat. Struct. Biol. 9, 416–418.

    Article  PubMed  CAS  Google Scholar 

  11. The World Wide Web Consortium (1999) Extensible Markup Language (XML) 1.0, W3C recommendation. Available at http://www.w3.org/TR/REC-xml. Accessed 03/04/04.

  12. Kraulis, P., Domaille, P. J., Campbell-Burk, S. L., van Aken, T., and Laue, E. D. (1994) Solution structure and dynamics of ras p21.GDP determined by heteronuclear three-and four-dimensional NMR spectroscopy. Biochemistry 33, 3515–3531.

    Article  PubMed  CAS  Google Scholar 

  13. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson, B. A. and Blevins, R. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  15. Garrett, D., Powers, R., Gronenborn, A., and Clore, G. (1991) A common sense approach to peak picking two-, three-and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220.

    CAS  Google Scholar 

  16. Kjæ, M., Andersen, K. V., and Poulsen, F. M. (1994) Automated and semiautomated analysis of homo-and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program PRONTO. Meth. Enzymol. 239, 288–308.

    Article  Google Scholar 

  17. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.

    Article  PubMed  Google Scholar 

  18. Bartels, C., Xia, T.-H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10.

    Article  Google Scholar 

  19. Güntert, P., Braun, W., and Wüthrich, K. (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530.

    Article  PubMed  Google Scholar 

  20. Hall, S. R. and Spadaccini, N. (1994) The STAR file: Detailed specifications. J. Chem. Inf. Comput. Sci. 34, 505–508.

    CAS  Google Scholar 

  21. Tjandra, N., Garrett, D. S., Gronenborn, A. M., Bax, A., and Clore, G. M. (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat. Struct. Biol. 4, 443–449.

    Article  PubMed  CAS  Google Scholar 

  22. Meiler, J., Blomberg, N., Nilges, M., and Griesinger, C. (2000) A new approach for applying residual dipolar couplings as restraints in structure calculations. J. Biomol. NMR 16, 245–252.

    Article  PubMed  CAS  Google Scholar 

  23. Stein, E. G., Rice, L. M., and Brünger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164.

    Article  PubMed  CAS  Google Scholar 

  24. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.

    Article  PubMed  CAS  Google Scholar 

  25. Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180.

    Article  PubMed  CAS  Google Scholar 

  26. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., et al. (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. J. Mol. Biol. 280, 933–952.

    Article  PubMed  CAS  Google Scholar 

  27. Folmer, R. H., Hilbers, C. W., Konings, R. N., and Nilges, M. (1997) Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. J. Biomol. NMR 9, 245–258.

    Article  PubMed  CAS  Google Scholar 

  28. Linge, J. P. (2001) New Methods for Automated NOE Assignment and NMR Structure Calculation. Books on Demand, Norderstedt, Germany.

    Google Scholar 

  29. Mumenthaler, C. and Braun, W. (1995) Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. J. Mol. Biol. 254, 465–480.

    Article  PubMed  CAS  Google Scholar 

  30. Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M., and Nilges, M. (2003) Refinement of protein structures in explicit solvent. Proteins 20, 496–506.

    Article  Google Scholar 

  31. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55.

    Article  PubMed  CAS  Google Scholar 

  32. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  33. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  34. Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362.

    Article  PubMed  CAS  Google Scholar 

  35. Liu, Z., Macias, M. J., Bottomley, M. J., Stier, G., Linge, J. P., Nilges, M., et al. (1999) The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Fold. Des. 7, 1557–1566.

    Article  CAS  Google Scholar 

  36. Doreleijers, J. F., Rullmann, J. A., and Kaptein, R. (1998) Quality assessment of NMR structures: a statistical survey. J. Mol. Biol. 281, 149–164.

    Article  PubMed  CAS  Google Scholar 

  37. Vriend, G. and Sander, C. (1993) Quality control of protein models: directional atomic contact analysis. J. Appl. Cryst. 26, 47–60.

    Article  CAS  Google Scholar 

  38. Doreleijers, J. F., Raves, M. L., Rullmann, T., and Kaptein, R. (1999) Completeness of NOEs in protein structure: a statistical analysis of NMR data. J. Biomol. NMR 14, 123–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Habeck, M., Rieping, W., Linge, J.P., Nilges, M. (2004). NOE Assignment With ARIA 2.0. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:379

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics