Skip to main content

Differential Display Techniques to Identify Tumor Suppressor Gene Pathways

  • Protocol
  • 880 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

Abstract

Differential display is a reverse-transcription polymerase chain reaction (RT-PCR) technique that was introduced in 1992 by Liang and Pardee (1). In this technique, messenger RNA 3′ termini are amplified using an anchored oligo-dT primer and a series of arbitrary 13-mers; a single round of cDNA synthesis is followed by PCR amplification in the presence of radiolabeled nucleotide, resulting in the amplification of subsets of mRNAs expressed in the cell. This complex PCR product is resolved on a denaturing polyacrylamide gel; following autoradiography, gene expression is detected as a ladder of cDNAs that differ in size by a single nucleotide. Theoretically, the use of different sets of primers from both directions in discrete RT-PCR reactions allows for the examination of the majority of expressed genes within the cell. This chapter will focus first on a brief review of the use of differential display to identify p53 target genes, as well as secondary tumor suppressor genes important for tumor progression. This will be followed by an overview of the methodology of differential display, along with recent advances in this technique; a more comprehensive analysis can be found in Methods in Molecular Biology, Volume 85: Differential Display Methods and Protocols, edited by Liang and Pardee (2). An outline of the methodology involved in differential display is provided in Fig. 1, and individual steps are described below; typically these steps follow the protocol described by Liang and Pardee (1,2), but in some instances changes have been made and noted.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  2. Liang, P. and Pardee, A. B. (1997) Methods in Molecular Biology, Volume 85: Differential Display Methods and Protocols. (Liang, P. and Pardee, A. B., eds.). Humana Press, Totowa, NJ, pp. 3–11.

    Chapter  Google Scholar 

  3. El-Deiry, W. S., Tokino T., Velculescu V. E., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  4. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Mice lacking p21/waf1/cip1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684.

    Article  PubMed  CAS  Google Scholar 

  5. Okamoto, K. and Beach, D. (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816–4822.

    PubMed  CAS  Google Scholar 

  6. Zauberman, A., Lupo, A., and Oren, M. (1995) Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene 10, 2361–2366.

    PubMed  CAS  Google Scholar 

  7. Smith, M. L., Kontny, H. U., Bortnick, R., and Fornace, A. J. (1997) The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin toxicity. Exp. Cell Res. 230, 61–68.

    Article  PubMed  CAS  Google Scholar 

  8. Okamoto, K. and Prives, C. (1999) A role of cyclin G in the process of apoptosis. Oncogene 18, 4606–4615.

    Article  PubMed  CAS  Google Scholar 

  9. Okamoto, K., Kamibayashi, C., Serrano, M., Prives, C., Mumby, M. C., and Beach, D. (1996) p53-dependent association between cyclin G and the B′ subunit of protein phosphatase 2A. Mol. Cell. Biol. 16, 6593–6602.

    PubMed  CAS  Google Scholar 

  10. Lehar, S. M., Nacht, M., Jacks, T., Vater, C. A., Chittenden, T., and Guild B. C. (1996) Identification and cloning of ei24, a gene induced by p53 in etoposide-treated cells. Oncogene 12, 1181–1187.

    PubMed  CAS  Google Scholar 

  11. Gu, Z., Flemington, C., Chittenden, T., and Zambetti, G. P. (2000) ei24, a p53 response gene involved in growth suppression and apoptosis. Mol. Cell. Biol. 20, 233–241.

    Article  PubMed  CAS  Google Scholar 

  12. Amson, R. B., Nemani, M., Roperch, J. P., et al. (1996) Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven-in-absentia gene. Proc. Natl. Acad. Sci. USA 93, 3953–3957.

    Article  PubMed  CAS  Google Scholar 

  13. Roperch, J. P., Lethrone, F., Prieur S., et al. (1999) SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and 21Waf1. Proc. Natl. Acad. Sci. USA 96, 8070–8073.

    Article  PubMed  CAS  Google Scholar 

  14. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M., and Reed, J. C. (1998) p53-inducible human homologue of Drosophila seven-in-absentia (Siah) inhibits cell growth: suppression by Bag-1. EMBO J. 17, 2736–2747.

    Article  PubMed  CAS  Google Scholar 

  15. Relaix, F., Wei, X., Li, W., et al. (2000) Pw1/Peg3 is a potential cell death mediator and cooperates with Siaha in p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 97, 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  16. Tanikawa, J., Ichikawa-Iwata, E., Kanei-Ishii, C., et al. (2000) p53 suppresses the c-myb-induced activation of heat shock transcription factor 3. J. Biol. Chem. 275, 15578–15585.

    Article  PubMed  CAS  Google Scholar 

  17. Germani, A., Bruzzoni-Giovanelli, H., Fellous, A., Gisselbrecht, S., Varin-Blank, N., and Calvo, F. (2000) SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene 19, 5997–6006.

    Article  PubMed  CAS  Google Scholar 

  18. Lin, J., Chen, J., Elenbaas, B., and Levine, A. J. (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus E1B 55-kD protein. Genes Dev. 8, 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  19. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H., and Oren, M. (1995) Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170–2183.

    Article  PubMed  CAS  Google Scholar 

  20. Caelles, C., Helmberg, A., and Karin, M. (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target gene. Nature 370, 220–223.

    Article  PubMed  CAS  Google Scholar 

  21. Wagner, A. J., Kokontis, J. M., and Hay, N. (1994) Myc-mediated apoptosis requires wild type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8, 2817–2830.

    Article  PubMed  CAS  Google Scholar 

  22. Sabbatini, P., Chiou, S-K., Rao, L., and White, E. (1995a) Modulation of p53-mediated tran-scriptional repression and apoptosis by adenovirus E1B 19K protein. Mol. Cell. Biol. 15, 1060–1070.

    PubMed  CAS  Google Scholar 

  23. Shen, Y. and Shenk, T. E. (1994) Relief of p53-mediated transcriptional repression by the adenovirus E1B-19K protein or the cellular bcl2 protein. Proc. Natl. Acad. Sci. USA 91, 8940–8944.

    Article  PubMed  CAS  Google Scholar 

  24. Maheswaran, S., Englert, C., Bennett, P., Heinrich, G., and Haber, D. A. (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev. 9, 2143–2156.

    Article  PubMed  CAS  Google Scholar 

  25. Ryan, K. M. and Vousden, K. H. (1998) Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol. Cell. Biol. 18, 3692.

    PubMed  CAS  Google Scholar 

  26. Walker, K. K. and Levine, A. J. (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA 93, 15335–15340.

    Article  PubMed  CAS  Google Scholar 

  27. Sakamuro, D., Sabbatini, P., White, E., and Prendergast, G. C. (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy, M., Hinman, A., and Levine, A. J. (1996) Wild type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10, 2971–2980.

    Article  PubMed  CAS  Google Scholar 

  29. Ahn, J., Murphy, M., Kratowicz, S., Wang, A., Levine, A. J., and George, D. L. (1999) Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18, 5954.

    Article  PubMed  CAS  Google Scholar 

  30. Johnsen, J. I., Aurelio, O. N., Kwaja, Z., et al. (2000) p53-mediated negative regulation of stathmin/Op18 expression is associated with G2/M cell cycle arrest. Int. J. Cancer 88, 685–691.

    Article  PubMed  CAS  Google Scholar 

  31. Roperch, J. P., Alvaro, V., Prieur, S., et al. (1998) Inhibition of presenilin 1 expression is promoted by p53 and p21WAF1 and results in apoptosis and tumor suppression. Nat. Med. 4, 835–838.

    Article  PubMed  CAS  Google Scholar 

  32. Murphy, M., Ahn, J., Walker, K. K., et al. (1999) Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501

    Article  PubMed  CAS  Google Scholar 

  33. Zilfou, J., Hoffman, W. H., Sank, M., George, D. L., and Murphy, M. The co-repressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974–3985.

    Google Scholar 

  34. Varmeh-Ziaie, S., Okan, I., Wang, Y., et al. (1997). Wig-1, a new p53-induced gene encoding a zinc-finger protein. Oncogene 15, 2699–2704.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, R., Averboukh, L., Zhu, W., et al. (1998) Identification of rCop-1, a new member of the CCN protein family as a negative regulator for cell transformation. Mol. Cell. Biol. 18, 6131–6141.

    PubMed  CAS  Google Scholar 

  36. Tanaka, H., Arakawa, H., Yamaguchi, T., et al. (2000) A ribonucleotide reductase gene involved in a p53-dependent cell cycle checkpoint for DNA damage. Nature 404, 42–49.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, C. P., Slate, D. L., Gravel, R., and Ruddle, F. H. (1979) Biological detection of specific mRNA molecules by microinjection. Proc. Natl. Acad. Sci. USA 76, 4503–4506.

    Article  PubMed  CAS  Google Scholar 

  38. Donahue, P. J., Hsu, D. K. W., and Winkles, J. (1997) Methods in Molecular Biology, Volume 85: Differential Display Methods and Protocols. (Liang, P. and Pardee, A. B., eds.) Humana Press, Totowa, NJ, pp. 25–35.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Biade, S., Murphy, M.E. (2003). Differential Display Techniques to Identify Tumor Suppressor Gene Pathways. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:481

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:481

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics