Skip to main content

An In Vivo Angiogenesis Assay to Study Positive and Negative Regulators of Neovascularization

  • Protocol
Vascular Disease

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 30))

Abstract

The formation of new blood vessels from existing blood vessels has been referred to as angiogenesis to distinguish the process from de novo embryonic vessel formation or vasculogenesis (1). This chapter will describe an in vivo assay to measure angiogenesis. There are several important reasons to study and measure angiogenesis in vascular disease. First, it is necessary to try to understand proliferative angiogenesis as it occurs in tumors and in diabetic complications and devise strategies to inhibit it. Second, there is intense interest in improving angiogenesis after ischemia or in chronic wounds (2). Third, many potential modulators of angiogenesis need to be evaluated to determine their effects on blood vessel development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J. (1995) Angiogenesis in cancer, vascular rheumatoid and other diseases. Nat. Med. 1, 27ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Melillo, G., Scoccianti, M., Kovesdi, I., Safi, J. Jr., Riccioni, T., and Capogrossi, M. C. (1997) Gene therapy for collateral vessel development. Cardiovasc. Res. 35, 480ā€“489.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Knighton, D. R. and Fiegel, V. D. (1991) Regulation of cutaneous wound healing by growth factors and the micro-environment. Invest. Radiol. 26, 604ā€“611.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Quesada, A. R., Barbacid, M. M., Mira, E., Fernandez-Resa, P., Marquez, G., and Aracil, M. (1997) Evaluation of fluorometric and zymographic methods as activity assays for stromelysins and gelatinases. Clin. Exp. Metastasis 15, 339,340.

    Google ScholarĀ 

  5. Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., and McEwan, R. N. (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239ā€“3245.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Varner, J. A., Brooks, P. C., and Cheresh, D. A. (1995) REVIEW: the integrin alpha V beta 3: angiogenesis and apoptosis. Cell. Adhes. Commun. 3, 367ā€“374.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Norrby, K. (1997) Mast cells and de novo angiogenesis: angiogenic capability of individual mast-cell mediators such as histamine, TNF, IL-8 and bFGF. Inflamm. Res. 46, S7,8.

    Google ScholarĀ 

  8. Brown, L. F., Detmar, M., Claffey, K., Nagy, J. A., Feng, D., Dvorak, A. M., and Dvorak, H. F. (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79, 233ā€“269.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Klagsbrun, M. and Dā€™Amore, P. A. (1991) Regulators of angiogenesis. Annu. Rev. Physiol. 53, 217ā€“239.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Grant, D. S., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58, 933ā€“943.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Yoshida, S., Ono, M., Shono, T., Izumi, H., Ishibashi, T., Suzuki, H., and Kuwano, M. (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol. Cell. Biol. 17, 4015ā€“4023.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Oā€™Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315ā€“328.

    ArticleĀ  Google ScholarĀ 

  15. Oā€™Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277ā€“285.

    ArticleĀ  Google ScholarĀ 

  16. Gimbrone, M. A., Cotran, R. S., Leapman, S. B., and Folkman, J. (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413.

    PubMedĀ  Google ScholarĀ 

  17. Ausprunk, D. H., Knighton, D. R., and Folkman, J. (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois: role of host and pre-existing graft blood vessels. Am. J. Pathol. 79, 597.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Muthukaruppan, V. R. and Auerbach R. (1979) Angiogenesis in the mouse cornea. Science 205, 1416.

    ArticleĀ  Google ScholarĀ 

  19. Folkman, J. and Haudenschild, C. (1980) Angiogenesis in vitro. Nature 288, 551ā€“556.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Nicosia, R. F. and Madri, J. A. (1987) The microvascular extracellular matrix: developmental changes during angiogenesis in the aortic ring-plasma clot model. Am. J. Pathol. 128, 78ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J. (1988) Role of laminin and basement membrane in the differentiation of human endothelial cells into capillary-like structures. J. Cell. Biol. 107, 1589ā€“1597.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Thompson, J. A., Anderson, K. D., DiPietro, J. M., Zwiebel, J. A., Zametta, M., Anderson, W. F., and Maciag, T. (1988) Site-directed neovessel formation in vivo. Science 241, 1349ā€“1352.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Grant, D. S., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58, 933ā€“943.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Mignatti, P., Tsuboi, R., Robbins, E., and Rifkin D. B. (1989) In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108, 671ā€“682.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Plunkett, M. L. and Hailey, J. A. (1990) An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab. Invest. 62, 510ā€“517.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Iruela-Arispe, M. L., Hasselaar, P., and Sage, H. (1991) Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64, 174ā€“186.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Passaniti, A., Taylor, R. M., Pili, R., Guo Y., Long, P. V., Haney, J.A., Pauly, R. R., Grant, D. S., and Martin, G. R. (1992) A simple, quantitative method for assessing angiogenesis and anti-angiogenic agents using reconstituted basement membrane, heparin, and FGF. Lab. Invest. 67, 519ā€“528.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Brown, K. J., Maynes, S. F., Bezos, A., Maguire, D. J., Ford, M. D., and Parish, C. R. (1996) A novel in vitro assay for human angiogenesis. Lab. Invest. 75, 539ā€“555.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Jain, R. K., Schlenger, K., Hockel, M., and Yuan, F. (1997) Quantitative angiogenesis assays: progress and problems. Nature Med. 3, 1203ā€“1208.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Swarm, R. L. (1963) Transplantation of a murine chondrosarcoma in mice of different inbred strains. J. Natl. Cancer Inst. 31, 953ā€“974.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Kleinman, H. K., McGarvey, M. L., Hassell, J. R., Star, V. L., Cannon, F. B., Laurie, G. W., and Martin, G. R. (1986) Basement membrane complexes with biological activity. Biochemistry 25, 312ā€“318.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. DeLisser, H.. M, Christofidou-Solomidou, M., Strieter, R. M., Burdick, M. D., Robinson, C. S., Wexler, R. S., et al. (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol. 151, 671ā€“677.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Kibbey, M. C., Grant, D. S., and Kleinman, H. K. (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J. Natl. Cancer Inst. 84, 1633ā€“1638.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Vukanovic, J., Passaniti, A., Hirato, T., Traysman, R. J., and Isaacs, J. T. (1992) Antiangiogenic effects of the Quinoline-3-carboxamide, linomide. Cancer Res. 53, 1833ā€“1837.

    Google ScholarĀ 

  35. Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., et al. (1993) Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. USA 90, 1937ā€“1941.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Pili, R., Guo, Y., Chang, J., T., Nakanishi, H., Martin, G. R., and Passaniti, A. (1994) Altered angiogenesis underlying age-dependent changes in tumor growth86, 1303ā€“1314.

    CASĀ  Google ScholarĀ 

  37. Pili, R., Chang, J., Partis, R. A., Mueller, R. A., Novick, T., Chrest, F. J., and Passaniti, A. (1995) The Ī±-glucosidase inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res. 55, 2920ā€“2926.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Muhlhauser, J., Merrill, M. J., Pili, R., Maeda, H., Bacic, M., Bewig, B., Passaniti, A., et al. (1995) VEGF165 expressed by replication deficient recombinant adenovirus vector induces angiogenesis in vivo. Cir. Res. 77, 1077ā€“1086.

    CASĀ  Google ScholarĀ 

  39. Muhlhauser, J., Pili, R., Merrill, M.J., Maeda, H., Passaniti, A., Crystal, R. G., and Capogrossi, M. C. (1995) In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or non-secreted forms of acidic fibroblast growth factor. Human Gene Ther. 6, 1457ā€“1465.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Taraboletti, G., Garofalo, A., Belotti, D., Drudis, T., Borsotti, P., Scanziani, E., Brown, P, D., and Giavazzi R. (1995) Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metallo-proteinases. J. Natl. Cancer Inst. 87, 293ā€“298.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Angiolillo, A. L., Sgadari, C., Taub, D. D., Liao, F., Farber, J. M., Maheshwari, S., et al. (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J. Exp. Med. 182, 155ā€“162.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Bussolino, F., Arese, M., Montrucchio, G., Barra, L., Primo, L., Benelli, R., et al. (1995) Platelet activating factor produced in vitro by Kaposiā€™s sarcoma cells induces and sustains in vivo angiogenesis. J. Clin. Invest. 96, 940ā€“952.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Camussi, G., Montrucchio, G., Lupia, E., De Martino, A., Perona, L., Arese, M., et al. (1995) Platelet-activating factor directly stimulates in vitro migration of endothelial cells and promotes in vivo angiogenesis by a heparin-dependent mechanism. J. Immunol. 154, 6492ā€“6501.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Corallini, A., Campioni, D., Rossi, C., Albini, A., Possati, L., Rusnati, M., et al. (1996) Promotion of tumour metastases and induction of angiogenesis by native HIV-1 Tat protein from BK virus/tat transgenic mice. AIDS 10, 701ā€“710.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Biancone, L., Martino, A. D., Orlandi, V., Conaldi, P. G., Toniolo, A., and Camussi, G. (1997) Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med. 186, 147ā€“152.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Haralabopoulos, G. C., Grant, D. S., Kleinman, H. K., and Maragoudakis, M. E. (1997) Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am. J. Physiol. 273, 239ā€“245.

    Google ScholarĀ 

  47. Angiolillo, A. L., Kanegane, H., Sgadari, C., Reaman, G. H., and Tosato, G. (1997) Interleukin-15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commun. 233, 231ā€“237.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Montrucchio, G., Lupia, E., de Martino, A., Battaglia, E., Arese, M., Tizzani, A., Bussolino, F., ad Camussi, G. (1997) Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha. Am. J. Pathol. 151, 557ā€“563.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Wilson, M. J. and Sinha, A. A. (1997) Human prostate tumor angiogenesis in nude mice: metalloprotease and plasminogen activator activities during tumor growth and neovascularization of subcutaneously injected matrigel impregnated with human prostate tumor cells. Anat. Rec. 249, 63ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Pili, R., Chang, J., Muhlhauser, J., Crystal, R. G., Capogrossi, M. C., and Passaniti, A. (1997) Adenovirus-mediated gene transfer of fibroblast growth factor-1: angiogenesis and tumorigenicity in nude mice. Int. J. Cancer 73, 258ā€“263.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Riccioni, T., Cirielli, C., Wang, X., Passaniti, A., and Capogrossi, M. (1998) Adenovirus-mediated wild-type p53 overexpression inhibits endothelial cell differentiation in vitro and angiogenesis in vivo. Gene Ther. 5, 747ā€“754.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Skobe, M., Rockwell, P., Goldstein, N., Vosseler, S., and Fusenig, N. E. (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat. Med. 3, 1222ā€“1227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Auerbach, R., Morrissey, L. W., and Sidly, Y. A. (1978) Regional differences in the incidence and growth of mouse tumors following intradermal or subcutaneous inoculation. Cancer Res. 38, 1739ā€“1744.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Capogrossi, M.C., Passaniti, A. (1999). An In Vivo Angiogenesis Assay to Study Positive and Negative Regulators of Neovascularization. In: Baker, A.H. (eds) Vascular Disease. Methods in Molecular Medicineā„¢, vol 30. Humana Press. https://doi.org/10.1385/1-59259-247-3:367

Download citation

  • DOI: https://doi.org/10.1385/1-59259-247-3:367

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-731-1

  • Online ISBN: 978-1-59259-247-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics