Skip to main content
Book cover

Rotaviruses pp 133–145Cite as

In Vivo Study of Immunity to Rotaviruses

Selected Methods in Mice

  • Protocol
  • 498 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 34))

Abstract

Rotaviruses (RVs) are important human pathogens. The murine model of RV infection has been very useful in clarifying the mechanisms that mediate clearance of primary RV infection, and the mechanisms that mediate immunity to reinfection. The use of immunodeficient strains of mice, immunodepletion studies with specific monoclonal antibodies (MAbs), and passive transfer of purified cells are three basic, complementary experimental approaches that have been used for this purpose, and are the subject of this chapter. These experimental approaches analyze the outcome of RV infection under artificial conditions; thus, the relevance of the results obtained, to the physiological immune response of immunocompetent mice or humans, is at times difficult to establish. For example, immunodeficient strains of mice frequently develop compensatory immune mechanisms that are potentially absent or nonfunctional in immunocompetent mice. Immunodepletion experiments introduce into the experimental animal high (nonphysiological) levels of antibodies (Abs) that potentially have other immunomodulatory effects different from the desired one, and, many times, depletion strategies fail to completely eliminate the target cell population. Passive cell transfer experiments analyze the antiviral capacity of a specific cell population (many times abnormal in number), independent of other cells with which it may normally interact, and in an environment to which it is at least partially alien. Because of these and other limitations of such experimental approaches, one should be very careful in selecting adequate controls, and cautious in the interpretation of the results, by taking into account results obtained with two or three of the approaches and analysis of the characteristics of the immune response in normal animals. The combination of two or three strategies (for example, passive cell transfer into immunodeficient hosts and immunodepletion of selected cell populations in immunocompetent hosts) have proven particularly useful in the study of immunity to RV.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Greenberg, H. B., Clark, H. F. P., and Offit, A. (1994) Rotavirus pathology and pathophysiology. Curr. Top. Microbiol. Immunol. 185, 255–283.

    CAS  PubMed  Google Scholar 

  2. Franco, M. A., Feng, N., and Greenberg, H. B. (1996) Molecular determinants of immunity and pathogenicity of rotavirus infection in the mouse model. J. Infect. Dis. 174 Suppl 1, S47–S50.

    CAS  PubMed  Google Scholar 

  3. Riepenhoff-Talty, M., Dharakul, T., Kowalski, E., Michalak, S., and Ogra, P. L.(1987) Persistent rotavirus infection in mice with severe combined immunodeficiency. J. Virol. 61, 3345–3348.

    CAS  PubMed  Google Scholar 

  4. Franco, M. A. and Greenberg, H. B. (1995) Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J. Virol. 69, 7800–7806.

    CAS  PubMed  Google Scholar 

  5. Franco, M. A. and Greenberg, H. B. (1997) Immunity to rotavirus in T cell deficient mice. Virology 338, 169–179.

    Article  Google Scholar 

  6. Franco, M. A., Tin, C., Rott, L., VanCott, J. L., McGhee, J. R., and Greenberg, H. B. (1997) Evidence for CD8+ T cell immunity to murine rotavirus in the absence of perforin, fas and gamma interferon. J. Virol. 71, 479–486.

    CAS  PubMed  Google Scholar 

  7. McNeal, M. M., Rae, M. N., and Ward, R. L. (1997) Evidence that resolution of rotavirus infection in mice is due to both CD4 and CD8 cell-dependent activities. J. Virol. 71, 8735–8742.

    CAS  PubMed  Google Scholar 

  8. Franco, M. A. and Greenberg, H. B., (1997) CD8+ T cells can mediate almost complete short term and partial long term immunity to rotavirus in mice. J. Virol. 71, 4165–4180.

    CAS  PubMed  Google Scholar 

  9. McNeal, M. M., Barone, K. S., Rae, M. N., and Ward, R. L. (1995) Effector functions of antibody and CD8+ cells in resolution of rotavirus infection and protection against reinfection in mice. Virology 214, 387–397.

    Article  CAS  PubMed  Google Scholar 

  10. Burns, J. W., Siadat, P. M., Krishnaney, A. A., and Greenberg, H. B. (1996) Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity [see comments]. Science 272, 104–107.

    Article  CAS  PubMed  Google Scholar 

  11. Ros, J. R., Williams, M. B., Rott, L. S., Butcher, E. C., and Greenberg H. B., (1998) Expression of the mucosal homing receptor alpha4beta7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. J. Virol. 72, 726–730.

    Google Scholar 

  12. Leist, T. P., Cobbold, S. P., Waldmann, H., Aguet, M., and Zinkernagel R. M. (1987) Functional analysis of T lymphocyte subsets in antiviral host defense. J. Immunol. 138, 2278–2281.

    CAS  PubMed  Google Scholar 

  13. Sarawar, S. R., Sangster, M., Coffman, R. L., and Doherty, P. C. (1994) Administration of anti-IFN-gamma antibody to beta 2-microglobulin-deficient mice delays influenza virus clearance but does not switch the response to a T helper cell 2 phenotype. J. Immunol. 153, 1246–1253.

    CAS  PubMed  Google Scholar 

  14. Schwenk, F., Kuhn, R., Angrand, P. O., Rajewsky, K., and Stewart, A. F. (1998). Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  15. Taterka, J., Cebra, J. J., and Rubin, D. H. (1995) Characterization of cytotoxic cells from reovirus-infected SCID mice: activated cells express natural killer-and lymphokine-activated killer-like activity but fail to clear infection. J. Virol. 69, 3910–3914.

    CAS  PubMed  Google Scholar 

  16. Mombaerts, P., Mizoguchi, E., Ljunggren, H. G., Iacomini, J., Ishikawa, H., Wang, L., Grusby, M. J., Glimcher, L. H., Winn, H. J., Bhan, A. K., et al. (1994) Peripheral lymphoid development and function in TCR mutant mice. Int. Immunol. 6, 1061–1070.

    Article  CAS  PubMed  Google Scholar 

  17. Shinkai, Y. and Alt, F. W. (1994) CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2-/-mice in the absence of TCR beta chain expression. Int. Immunol. 6, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  18. Lin, T., Matsuzaki, G., Kenai, H., Nakamura, T., and Nomoto, K. (1993) Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur. J. Immunol. 23, 1968–1974.

    Article  CAS  PubMed  Google Scholar 

  19. Saito, H., Kanamori, Y., Takemori, T., Nariuchi, H., Kubota, E., Takahashi-Iwanaga, H., Iwanaga, T., and Ishikawa, H. (1998) Generation of intestinal T cells from progenitors residing in gut cryptopatches [see comments]. Science 280, 275–278.

    Article  CAS  PubMed  Google Scholar 

  20. Quinn, D. G., Zajac, A. J., Hioe, C. E., and Frelinger, J. A. (1997) Virus-specific, CD8+ major histocompatibility complex class I-restricted cytotoxic T lymphocytes in lymphocytic choriomeningitis virus-infected beta2-microglobulin-deficient mice. J. Virol. 71, 8392–8396.

    CAS  PubMed  Google Scholar 

  21. Nonoyama, S., Smith, F. O., Bernstein, I. D., and Ochs, H. D. (1993) Strain-dependent leakiness of mice with severe combined immune deficiency. J. Immunol. 150, 3817–3824.

    CAS  PubMed  Google Scholar 

  22. Young, F., Ardman, B., Shinkai, Y., Lansford, R., Blackwell, T. K., Mendelsohn, M., Rolink, A., Melchers, F., and Alt, F. W. (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation Genes Dev. 8, 1043–1057 (published erratum appears in Genes Dev. 9, 3190).

    Article  CAS  PubMed  Google Scholar 

  23. Mombaerts, P., Mizoguchi, E., Grusby, M. J., Glimcher, L. H., Bhan, A. K., and Tonegawa, S. (1993)β Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75, 274–282.

    Article  CAS  PubMed  Google Scholar 

  24. Kaufmann, S. H., Blum, C., and Yamamoto, S. (1993) Crosstalk between alpha/beta T cells and gamma/delta T cells in vivo: activation of alpha/beta T-cell responses after gamma/delta T-cell modulation with the monoclonal antibody GL3. Proc. Natl. Acad. Sci. USA 90, 9620–9624.

    Article  CAS  PubMed  Google Scholar 

  25. Sheehan, K. C., Ruddle, N. H., and Schreiber, R. D. (1989) Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J. Immunol. 142, 3884–3893.

    CAS  PubMed  Google Scholar 

  26. Finkelman, F. D., Katona, I. M., Mosmann, T. R., and Coffman, R. L. (1988) IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J. Immunol. 140, 1022–1027.

    CAS  PubMed  Google Scholar 

  27. Eiden, J., Lederman, H. M., Vonderfecht, S., and Yolken, R. (1986) T-cell-deficient mice display normal recovery from experimental rotavirus infection. J. Virol. 57, 706–708.

    CAS  PubMed  Google Scholar 

  28. Offit, P. A. and Dudzik, K. I. (1990) Rotavirus-specific cytotoxic T lymphocytes passively protect against gastroenteritis in suckling mice. J. Virol. 64, 6325–6328.

    CAS  PubMed  Google Scholar 

  29. Dharakul, T., Rott, L., and Greenberg, H. B. (1990) Recovery from chronic rotavirus infection in mice with severe combined immunodeficiency: Virus clearance mediated by adoptive transfer of immune CD8+ lymphocytes. J. Virol. 64, 4375–4382.

    CAS  PubMed  Google Scholar 

  30. Dharakul, T., Labbé, M., Cohen, J., Bellamy, A. R., Street, J. E., Mackow, E. R., Fiore, L., Rott, L., and Greenberg, H. B. (1991) Immunization with baculovirusexpressed recombinant rotavirus proteins VP1, VP4, VP6, and VP7 induces CD8+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. J. Virol. 65, 5928–5932.

    CAS  PubMed  Google Scholar 

  31. Williams, M. B., Rosé, J. R., Rott, L. S., Franco, M. A., Greenberg, H. B., and Butcher, E. C. (1998) The memory B cell subset responsible for the secretory IgA response and protective humoral immunity to rotavirus expresses the intestinal homing receptor, alpha4beta7. J. Immunol. 161, 4227–4235.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Franco, M.A., Greenberg, H.B. (2000). In Vivo Study of Immunity to Rotaviruses. In: Gray, J., Desselberger, U. (eds) Rotaviruses. Methods in Molecular Medicine™, vol 34. Humana Press. https://doi.org/10.1385/1-59259-078-0:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-078-0:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-736-6

  • Online ISBN: 978-1-59259-078-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics