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Abstract
In this paper we provide an introduction to the Frank-Wolfe algorithm, a method for
smooth convex optimization in the presence of (relatively) complicated constraints.
We will present the algorithm, introduce key concepts, and establish important base-
line results, such as e.g., primal and dual convergence. We will also discuss some of
its properties, present a new adaptive step-size strategy as well as applications.

1 Introduction

Throughout this paper we will be concerned with constrained optimization problems
of the form

min
x∈P

f (x), (Opt)

where P ⊆ R
n is some convex feasible region capturing the constraints, e.g., a poly-

hedron arising from a system of linear inequalities or a spectrahedron, and f is the
objective function satisfying some regularity property, e.g., smoothness and convex-
ity. We also need to specify what access methods we have, both, to the function and
the feasible region. A common setup is black box first-order access for f , allowing
(only) the computation of gradients ∇f (x) for a given point x as well as the function
value f (x). For the access to the feasible region P , which we will assume to be com-
pact in the following, there are several common models; we simplify the exposition
here for the sake of brevity:

1. Projection. Access to the projection operator �P of P that, for a given point x ∈
R

n returns �P (x)
.= argminy∈P ‖x − y‖, for some norm ‖.‖ (or more generally

Bregman divergences).
2. Barrier function. Access to a barrier function of the feasible region P that in-

creases in value to infinity when approaching the boundary of P . A typical ex-
ample is, the barrier function −∑

i log(bi − Aix) for a linear inequality system
P

.= {x | Ax ≤ b}.
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3. Linear Minimization. Access to a Linear Minimization Oracle (LMO) that, given
a linear objective c ∈R

n, returns y ∈ argminx∈P 〈c, x〉.
Specialized approaches for specific cases, e.g., the simplex method (Dantzig [27, 28])
in the case of linear objectives which uses an explicit description of the feasible region
also exist but here we concentrate on the aforementioned black box model. There
are also proximal methods, which can be considered generalizations of projection-
based methods and which we will not explicitly consider for the sake of brevity; see
e.g., Nemirovski and Yudin [65], Nesterov [66, 67], Nocedal and Wright [68] for a
discussion.

Traditionally, problems of the form (Opt) are solved by variants of projection-
based methods. In particular first-order methods, such as variants of projected gradi-
ent descent are often chosen in large-scale contexts as they are comparatively cheap.
For some feasible region P with projector �P (e.g., �P (x)

.= argminy∈P ‖x − y‖)
and smooth objective function f , projected gradient descent (PGD) updates typically
take the form:

x
t+ 1

2
← xt − γt∇f (xt ) (PGD)

xt+1 ← �P (x
t+ 1

2
),

where γt is some step-size, e.g., γt = 1/L if f is L-smooth (see Definition 2.1)
and convex. In essence, a descent step is taken without considering the constraints,
and then it is projected back into the feasible region (see Fig. 1). Projection-based
first-order methods have been extensively studied, with comprehensive overviews
available in, e.g., Nesterov [67], Nocedal and Wright [68]. Optimal methods and
rates are known for most scenarios. Efficient execution of the projection operation is
possible for simple constraints, such as box constraints or highly structured feasible
regions, e.g., as discussed in Gupta et al. [43], Moondra et al. [63] for submodular
base polytopes. However, when the feasible region grows in complexity, the projec-
tion operation can become the limiting factor. It often demands the solution of an
auxiliary optimization problem—known as the projection problem—over the same
feasible region for every descent step. This complexity renders the use of projection-
based methods for many significant constrained problems quite challenging; in some
cases relaxed projections which essentially compute separating hyperplanes can be
used though.

Interior point methods (IPM) offer an alternative approach, see e.g., Boyd et al.
[8], Potra and Wright [71]. To illustrate this approach, consider the goal of mini-
mizing a linear function c over a polytope defined as P

.= {x | Ax ≤ b}. The typical
updates in a path-following IPM resemble:

xμ ← argminx〈c, x〉 + μ
∑

log(bi − Aix), (IPM)

where the value of μ → 0 according to some strategy for μ. Often, these steps are
only approximately solved. IPMs, while potent with appealing theoretical guarantees,
usually necessitate a barrier function that encapsulates the feasible region’s descrip-
tion. In numerous critical scenarios, a concise feasible region description is either
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unknown or proven to be non-existent. For instance, the matching polytope does not
admit small linear programs, neither exact ones (Rothvoss [73]) nor approximate ones
(Braun and Pokutta [9, 10], Sinha [74]). Additionally, achieving sufficient accuracy in
the IPM step updates often requires second-order information, which can sometimes
restrict its applicability.

Upon closely examining the two methods mentioned earlier, it is clear that both
essentially transform the constrained problem (Opt) into an unconstrained one. They
then either correct updates that violate constraints (as in PGD) or penalize nearing
constraint violations (as in IPM). Yet, another category of techniques exists, termed
projection-free methods, which focus directly on constrained optimization. Unlike
their counterparts, these methods sidestep the need for costly projections or penalty
strategies and maintain feasibility throughout the process. The most notable variants
in this category are the Frank-Wolfe (FW) methods—going back to Frank and Wolfe
[34]—which will be the focus of this article and which are also known as conditional
gradient (CG) methods (Levitin and Polyak [57]).

Historically, methods like the Frank-Wolfe algorithm garnered limited attention
because of certain drawbacks, notably sub-optimal convergence rates. However, there
was a notable resurgence in interest around 2013. This revival is largely attributed
to shifting requirements and their other, now suddenly relevant properties. Notably,
these methods are well suited to handle complicated constraints and possess a low
iteration complexity. This makes them very effective in the context of large-scale ma-
chine learning problems (see, e.g., Lacoste-Julien et al. [54], Jaggi [48], Négiar et al.
[64], Dahik [26], Jing et al. [49]), image processing (see, e.g., Joulin et al. [50], Tang
et al. [75]), quantum physics (see, e.g., Gilbert [41], Designolle et al. [30]), submodu-
lar function maximization (see, e.g., Feldman et al. [33], Vondrák [79], Badanidiyuru
and Vondrák [5], Mirzasoleiman et al. [60], Hassani et al. [45], Mokhtari et al. [61],
Anari et al. [1], Anari et al. [2], Mokhtari et al. [62], Bach [4]), online learning (see,
e.g., Hazan and Kale [46], Zhang et al. [86], Chen et al. [20], Garber and Kretzu [39],
Kerdreux et al. [51], Zhang et al. [87]) and many more (see, e.g., Bolte et al. [6],
Clarkson [22], Pierucci et al. [70], Harchaoui et al. [44], Wang et al. [81], Cheung
and Li [21], Ravi et al. [72], Hazan and Minasyan [47], Dvurechensky et al. [32],
Carderera and Pokutta [17], Macdonald et al. [58], Carderera et al. [18], Garber and
Wolf [40], Bomze et al. [7], Wäldchen et al. [80], Chen and Sun [19], de Oliveira
[29], Designolle et al. [30], Designolle et al. [31], Lacoste-Julien [52]). Moreover,
there has been a proliferation of modifications to these methods, addressing many of
their historical limitations (see, e.g., Freund et al. [35], Lacoste-Julien and Jaggi [53],
Garber and Hazan [37, 38], Lan et al. [56], Braun et al. [12], Braun et al. [14], Braun
et al. [13], Combettes and Pokutta [23], Tsuji et al. [78]) and there is an intricate
connection between Frank-Wolfe methods and subgradients methods (Bach [3]); see
Braun et al. [15] for a comprehensive exposition.

Rather than relying on potentially expensive projection operations (see Fig. 2),
Frank-Wolfe methods use a so-called Linear Minimization Oracle (LMO). This sub-
routine only involves optimizing a linear function over the feasible region, often prov-
ing more cost-effective than traditional projections; see Combettes and Pokutta [24]
for an in-depth comparison. The nuclear norm ball, along with matrix completion,
is a prime example highlighting the difference in complexity. The core updates in
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Fig. 1 Projection-based
methods: may require
(potentially expensive)
projection back into P to ensure
feasibility

Fig. 2 Projection-free methods:
ensure feasibility by forming
convex combinations only

Fig. 3 New iterates are formed
by convex combination with an
extreme point approximating the
gradient, ensuring feasibility

Frank-Wolfe methods often rely on the following fundamental update:

vt ← argminv∈P 〈∇f (xt ), v〉 (FW)

xt+1 ← (1 − γt )xt + γtvt ,

where any solution to the argmin is suitable and γt follows some step-size strategy,
e.g., γt = 2

2+t
. Essentially, the LMO identifies an alternate direction for descent. Sub-

sequently, convex combinations of points are constructed within the feasible region to
maintain feasibility. Viewed through the lens of complexity theory, the Frank-Wolfe
methods reduce the optimization of a convex function f over P into the repeated op-
timization of evolving linear functions over P . A schematic of the most basic variant
of the Frank-Wolfe algorithm is shown in Fig. 3.

For a more comprehensive exposition complementing this introductory article the
interested reader is referred to Braun et al. [15]; the notation has been deliberately
chosen to be matching whenever possible.

1.1 Outline

We start with some basic notions and notations in Sect. 2 and then present the orig-
inal Frank-Wolfe algorithm along with some motivation in Sect. 3. We then pro-
ceed in Sect. 4 with establishing basic properties, such as e.g., convergence and also
provide matching lower bounds. While this is primarily an overview article, we do
provide a new adaptive step-size strategy in Sect. 4.5, which is also available in the
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Fig. 4 (Strong) convexity and smoothness provide linear and quadratic approximations to f . Orange:
quadratic upper bound via smoothness, Red: quadratic lower bound via strong convexity, Magenta: linear
lower bound via convexity, Blue: function f

FrankWolfe.jl julia package. In Sect. 5 we then consider applications of the Frank-
Wolfe algorithm and also discuss computational aspects in Sect. 6.

2 Preliminaries

In the following ‖·‖ will denote the 2-norm if not stated otherwise. Note however that
in general other norms are possible and have been used in the context of Frank-Wolfe
algorithms. Moreover, for simplicity we assume that f is differentiable, which is a
standard assumption in the context of Frank-Wolfe algorithms although non-smooth
variants are known (see, e.g., Braun et al. [15] for details).

For our analysis we will heavily rely on the following key concepts:

Definition 2.1 (Convexity and Strong Convexity) Let f : P → R be a differentiable
function. Then f is convex if

f (y) − f (x) ≥ 〈∇f (x), y − x〉 for all x, y ∈ P. (2.1)

Moreover, f is μ-strongly convex if

f (y) − f (x) ≥ 〈∇f (x), y − x〉 + μ

2
‖y − x‖2 for all x, y ∈ P. (2.2)

Definition 2.2 (Smoothness) Let f : P → R be a differentiable function. Then f is
L-smooth if

f (y) − f (x) ≤ 〈∇f (x), y − x〉 + L

2
‖y − x‖2 for all x, y ∈ P. (2.3)

The smoothness and (strong) convexity inequalities from above allow us to obtain
upper and lower bounds on the function f . Convexity and strong convexity provide
respectively linear and quadratic lower bounds on the function f at a given point x

while smoothness provides a quadratic upper bound as shown in Fig. 4.
For completeness we note that, both, L-smoothness and μ-strong convexity can

also be expressed without relying on function values of f only using gradients ∇f .
This is in particular useful in the context of an adaptive step-size strategy that we will
discuss in Sect. 4.5 as it significantly improves numerical stability of the estimates.
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Fig. 5 The Frank–Wolfe step:
To minimize a convex function
f over a polytope P , a linear
approximation of f is
constructed at xt as
f (xt ) + 〈∇f (xt ), x − xt 〉. The
Frank–Wolfe vertex vt

minimizes this approximation.
The step transitions from xt to
xt+1 by moving towards vt as
determined by a step-size rule.
Contour lines of f in red and
linear approximation blue
(Color figure online)

Remark 2.3 (Smoothness and Strong Convexity via Gradients) Let f : P → R be a
differentiable function. Then f is L-smooth if

〈∇f (y) − ∇f (x), y − x〉 ≤ L‖y − x‖2 for all x, y ∈ P, (2.4)

and similarly f is μ-strongly convex if

〈∇f (y) − ∇f (x), y − x〉 ≥ μ‖y − x‖2 for all x, y ∈ P. (2.5)

There is also the closely related and seemingly stronger property of L-Lipschitz
continuous gradient ∇f , however in the case that P is full-dimensional and f is con-
vex it is known to be equivalent to L-smoothness (see Nesterov [67, Theorem 2.1.5]
for the unbounded case, i.e., where P = R

n and Braun et al. [15, Lemma 1.7] for P

being arbitrary convex domain). In particular, for twice differentiable convex func-
tions f , we can also capture smoothness and strong convexity in terms of the Hessian
via ‖∇2f ‖ ≤ L and via the largest eigenvalue of ∇2f being upper bounded by L ≥ 0
and the smallest eigenvalue being lower bounded by μ ≥ 0, respectively; the first
inequality is useful for numerical estimation of L.

In the following the domain P will be a compact convex set and we assume that
we have access to a so-called Linear Minimization Oracle (LMO) for P , which
upon being provided with a linear objective function c returns a minimizer v =
argminx∈P 〈c, x〉 as formalized in Algorithm 2. Note that v is not necessarily unique
and without loss of generality we assume that v is an extreme point of P ; these ex-
treme points are also often called atoms in the context of Frank-Wolfe algorithms. For
the compact convex set P the diameter D of P is defined as D

.= maxx,y∈P ‖x − y‖.
Regarding the function f we assume that we have access to gradients and func-

tion evaluations which is formalized as First-Order Oracle (denoted as FOO), which
given a point x ∈ P , returns the function value f (x) and gradient ∇f (x) at x;
see Algorithm 3. In the following we let x∗ be one of the optimal solutions to
minx∈P f (x) and define further f ∗ .= f (x∗). Moreover, if not stated otherwise we
consider f : P →R. See Fig. 6 for the two oracles.
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Fig. 6 Access to function f and feasible region P is via two functions that we assume to have (oracle)
access to

Algorithmus 4 : Frank–Wolfe algorithm
Input: Initial atom x0 ∈ P , smooth and convex objective function f

Output: Iterates x1, . . . ∈ P

1 for t = 0 to . . . do
2 vt ← argminv∈P 〈∇f (xt ), v〉
3 γt ← 2

2+t
4 xt+1 ← (1 − γt )xt + γtvt

5 end for

3 The Frank-Wolfe Algorithm

We will now introduce the original variant of the Frank-Wolfe (FW) algorithm due
to Frank and Wolfe [34], which is often also referred to as Conditional Gradients
(Levitin and Polyak [57]). Although many advanced variants with enhanced proper-
ties and improved convergence in specific problem configurations exist today, we will
focus on the original version for clarity and to underscore the fundamental concepts.

Suppose we are interested in minimizing a smooth and convex function f over
some compact convex feasible set P . A natural strategy would be to follow the neg-
ative of the gradient ∇f (x) at a given point x. However, how far can we go into
that direction before we hit the boundary of the feasible region? Moreover, even if
we would know how far we can go, i.e., we would potentially truncate steps to not
leave the feasible region, even then the resulting algorithm might not be converging
to an optimal solution. In fact, the arguably most well-known strategy, the projected
gradient descent method does not simply stop at the boundary but follows the neg-
ative of the gradient according to some step-size, disregarding the constraints, and
then projects back onto the feasible region. This last step can be very costly: if we
do not have an efficient formulation or algorithm for the projection problem, solving
this projection problem can be a (relatively expensive) optimization problem in itself.
In contrast, the basic idea of the Frank-Wolfe algorithm is to not follow the negative
of the gradient but to follow an alternative direction of descent, which is well-enough
aligned with the negative of the gradient, ensures enough primal progress, and for
which we can easily ensure feasibility by means of computing convex combinations.
This is done via the aforementioned Linear Minimization Oracle, with which we can
optimize the negative of the gradient over the feasible region P and then take the
obtained vertex to form an alternative direction of descent. The overall process is
outlined in Fig. 5 and in Algorithm 4 we provide the Frank-Wolfe algorithm, which
only requires access to (Opt) via the LMO (see Algorithm 2) to access the feasible
region and via the FOO (see Algorithm 3) to access the function.



10 S. Pokutta

As can be seen, assuming access to the two oracles, the actual implementation is
very straight-forward: a simple computation of a convex combination, which ensures
that we do not leave the feasible region. We made the deliberate choice in Line 3
of Algorithm 4 to use the most basic step-size strategy γt = 2

2+t
, the so-called open

loop or agnostic step-size, as this makes the algorithm parameter-independent, i.e.,
not requiring any function parameters or parameter estimations. In the worst-case,
this step-size is not dominated by more elaborate strategies (such as, e.g., line search
or short steps), however in many important special cases there are better choices. As
this is crucial we will discuss this a little more in-depth in Sect. 4.5 and will also
provide a new variant of an adaptive step-size strategy.

Another important property is that the algorithm is affine invariant, i.e., prob-
lem rescaling etc. does not affect the algorithm’s performance, compared to most
other methods including PGD (notable exceptions exist, e.g., Newton’s method). This
makes the algorithm also very robust (especially with the open loop step-sizes) often
offering superior numerical stability.

Finally, we would like to mention that at iteration t the iterate xt is a convex
combination of at most t + 1 extreme points (or atoms) of P . This will allow us later
to obtain sparsity vs. approximation trade-offs in Sect. 4.1.

4 Properties

We will now establish key properties of Algorithm 4. We start with convergence
properties and will then establish matching lower bounds as well as other properties.

4.1 Convergence

We will now prove the convergence of the Frank-Wolfe algorithm (Algorithm 4).
Convergence proofs for these methods typically use two key ingredients, which we
will introduce in the following.

Lemma 4.1 (Primal gap, Dual gap, and Frank-Wolfe gap) Let f be a convex function
and P a compact convex set and consider (Opt). For all x ∈ P it holds:

f (x) − f (x∗)
︸ ︷︷ ︸

primal gap at x

≤ 〈∇f (x), x − x∗〉
︸ ︷︷ ︸

dual gap at x

≤ max
v∈P

〈∇f (x), x − v〉
︸ ︷︷ ︸

Frank-Wolfe gap at x

. (FW-gap)

Proof The first inequality follows from convexity and the second inequality follows
from maximality. �

The Frank-Wolfe gap plays a crucial role in the theory of Frank-Wolfe methods as
it provides an easily computable optimality certificate and suboptimality gap mea-
sure. An extreme point v ∈ argmaxz∈P 〈∇f (x), x − z〉, is typically referred to as
Frank-Wolfe vertex for ∇f (x). The Frank-Wolfe gap also naturally appear in the first-
order optimality condition for (Opt), which states that x∗ ∈ P is optimal for (Opt) if
and only if the Frank-Wolfe gap at x∗ is equal to 0. Note that in the constrained case
it does not necessarily hold that ∇f (x∗) = 0.
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Lemma 4.2 (First-order Optimality Condition) Let x∗ ∈ P . Then x∗ is an optimal
solution to (Opt) if and only if

〈∇f (x∗), x∗ − v〉 ≤ 0

for all v ∈ P . In particular, we have that the Frank-Wolfe gap maxv∈P 〈∇f (x∗),
x∗ − v〉 = 0.

The second property that is crucial is smoothness as it allows us to lower bound
the primal progress we can derive from a step of the Frank-Wolfe algorithm.

Lemma 4.3 (Primal progress from smoothness) Let f be an L-smooth function and
let xt+1 = (1 − γt )xt + γtvt with xt , vt ∈ P . Then we have

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉 − γ 2
t

L

2
‖xt − vt‖2. (4.1)

Proof The statement follows directly from the smoothness inequality (2.3)

f (y) − f (x) ≤ 〈∇f (x), y − x〉 + L

2
‖y − x‖2,

choosing x ← xt and y ← xt+1, plugging in the definition of xt+1, and rearranging.
This gives the desired inequality

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉 − γ 2
t

L

2
‖xt − vt‖2. �

With these two key ingredients (Lemma 4.1 and Lemma 4.3) we can now establish
the basic convergence rate of the Frank-Wolfe algorithm:

Theorem 4.4 (Primal convergence of the Frank-Wolfe algorithm) Let f be an L-
smooth convex function and let P be a compact convex set of diameter D. Consider
the iterates of Algorithm 4. Then the following holds:

f (xt ) − f (x∗) ≤ 2LD2

t + 2
,

and hence for any accuracy ε > 0 we have f (xt ) − f (x∗) ≤ ε for all t ≥ 2LD2

ε
.

Proof The convergence proof of the Frank-Wolfe algorithm follows an approach that
is quite representative for convergence results in that area. The proof follows the
template outlined in Braun et al. [15] and mimics closely the proof in Jaggi [48].

Our starting point is the inequality from Lemma 4.3

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉 − γ 2
t

L

2
‖xt − vt‖2

≥ γt (f (xt ) − f (x∗)) − γ 2
t

L

2
‖xt − vt‖2. (Lemma 4.1)
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Subtracting f (x∗) on both sides, bounding ‖xt − vt‖ ≤ D, and rearranging leads to

f (xt+1) − f (x∗) ≤ (1 − γt )(f (xt ) − f (x∗)) + γ 2
t

LD2

2
. (4.2)

This contraction relates the primal gap at xt+1 with the primal gap at xt . We conclude
the proof by induction. First observe that for t = 0 by (4.2) it follows

f (x1) − f (x∗) ≤ LD2

2
≤ 2LD2

2
.

Now consider t ≥ 1. We have

f (xt+1) − f (x∗)

≤ (1 − γt )(f (xt ) − f (x∗)) + γ 2
t

LD2

2

≤ t

2 + t
(f (xt ) − f (x∗)) + 4

(2 + t)2

LD2

2
(definition of γt )

≤ t

2 + t

2LD2

2 + t
+ 4

(2 + t)2

LD2

2
(induction hypothesis)

= 2LD2

t + 3

(
(3 + t)(1 + t)

(2 + t)2

)

≤ 2LD2

t + 3
, ((3 + t)(1 + t) ≤ (2 + t)2)

which completes the proof. �

The theorem above provides a convergence guarantee for the primal gap. However,
it relies on knowledge of the diameter D and Lipschitz constant L for estimating the
number of required iterations to reach a certain target accuracy ε. We can also con-
sider the Frank-Wolfe gap maxvt∈P 〈∇f (xt ), xt −vt 〉, which upper bounds the primal
gap f (xt ) − f (x∗) via Lemma 4.1. While this gap is not monotonously decreasing
(similar to the primal gap in the case of the open loop step-size) it is readily avail-
able in each iteration and hence can be used as a stopping criterion, i.e., we stop the
algorithm when maxvτ ∈P 〈∇f (xτ ), xτ − vτ 〉 ≤ ε, not requiring a priori knowledge
about D and L. For the running minimum we can establish a convergence rate simi-
lar to that in Theorem 4.4; see Jaggi [48], see also Braun et al. [15, Theorem 2.2 and
Remark 2.3].

Theorem 4.5 (Frank-Wolfe gap convergence of the Frank-Wolfe algorithm) Let f

be an L-smooth convex function and let P be a compact convex set of diameter D.
Consider the iterates of Algorithm 4. Then the running minimum of the Frank–Wolfe
gaps up to iteration t satisfies:

min
0≤τ≤t

max
vτ ∈P

〈∇f (xτ ), xτ − vτ 〉 ≤ 6.75LD2

t + 2
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Another important property of the Frank-Wolfe algorithm is that it maintains con-
vex combinations of extreme points and in each iteration at most one new extreme
point is added. This leads to a natural accuracy vs. sparsity trade-off, where sparsity
broadly refers to having convex combinations with a small number of vertices. This
property is very useful and has been exploited repeatedly to prove mathematical re-
sults via applying the convergence guarantee of the Frank-Wolfe algorithm; we will
see such an example further below in Sect. 5.1

4.2 A Matching Lower Bound

In this section we will now provide a matching lower bound example due to Lan [55],
Jaggi [48] that will require �(LD2/ε) LMO calls to achieve an accuracy of ε for an
L-smooth function f and a feasible region of diameter D. This lower bound holds
for any algorithm that accesses the feasible region solely through an LMO and shows
that in general the convergence rate of the Frank-Wolfe algorithm in Theorem 4.4
cannot be improved. We consider

min
x∈conv {e1,...,en} ‖x‖2,

i.e., we minimize the standard quadratic f (x) = ‖x‖2 over the probability simplex
P

.= conv {e1, . . . , en}, where the ei denote the standard basis vectors in R
n, i.e., we

have L = 2 and D = √
2 and any other combination of values for L and D can be

obtained via rescaling. As f is strongly convex it has a unique optimal solution,
which is easily seen to be x∗ = ( 1

n
, . . . , 1

n
) with optimal objective function value

f (x∗) = 1
n

. Note that the optimal solution lies in the relative interior of P , one of the
earliest cases in which improved convergence rates for Frank-Wolfe methods have
been obtained (GuéLat and Marcotte [42]).

If we now run the Frank-Wolfe algorithm from any extreme point x0 of P , then
after t < n iterations, we have made t LMO calls, and hence have picked up at most
t +1 of the n standard basis vectors. This is the only information available to us about
the feasible region and by convexity the only feasible points the algorithm can create
are convex combinations xt of these picked up extreme points. Thus it holds

f (xt ) ≥ min
x∈convS

S⊆{e1,...,en}
|S|≤t+1

f (x) = 1

t + 1
.

Therefore the primal gap after t iterations satisfies f (xt ) − f (x∗) ≥ 1/(t + 1) −
1/n and thus with the choice n � 1/ε we need �(1/ε) LMO calls to guarantee a
primal gap of at most ε. Finally, observe that this example also provides an inherent
sparsity vs. optimality tradeoff: if we aim for a solution with sparsity t , then the
primal gap can be as large as f (xt ) − f (x∗) ≥ 1/(t + 1) − 1/n.

However, several remarks are in order to put this example into perspective. First
of all, the lower bound example only holds up to the dimension n of the problem and
that is for good reason. Once we pass the dimension threshold, the lower bound is not
instructive any more and other step-size strategies might achieve linear rates for t ≥ n,
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Fig. 7 Minimizing f (x) = ‖x‖2 over the probability simplex of dimension n = 10 with an iteration limit
of k = 104. It can be seen that once the iteration t crosses the dimension threshold n the short step strategy
immediately recovers the optimal solution

Fig. 8 Same parameters as in Fig. 7, however with the modified objective f (x) = ‖x − ( 1
n , . . . , 1

n )‖2.

Note, that ( 1
n , . . . , 1

n ) is the optimal solution for minimizing f (x) = ‖x‖2 over the probability simplex.
Dual convergence is identical while primal convergence differs

and in particular if the step-size is the short step rule (see also Sect. 4.5) with exact
smoothness L we are optimal after exactly t = n − 1 iterations; see Figs. 7 and 8 for
computational examples. Moreover, here we considered convergence rates indepen-
dent of additional problem parameters. Introducing such parameters might provide
more granular convergence rates under mild assumptions as shown, e.g., in Garber
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[36]. There is also a different lower bound of �(1/ε) by Wolfe [85] (see also Braun
et al. [15, Theorem 2.8]) that is based around the so-called zigzagging phenomenon
of the Frank-Wolfe algorithm and that holds beyond the dimension threshold. How-
ever, it only holds for step-size strategies—grossly simplifying—that are at least as
good as the short step strategy and interestingly the open loop step-size strategy is not
subject to this lower bound. This is no coincidence, as there are cases (Wirth et al.
[82, 84]) where the open loop step-size can achieve a convergence rate of O(1/ε2)

for instances that satisfy the condition of the lower bound of Wolfe [85]. Finally,
there is a universal lower bound (Braun et al. [15, Proposition 2.9]) that matches the
improved O(1/ε2) rate for the open loop step-size:

Proposition 4.6 Let f be an L-smooth and convex function over a compact convex
set P . Then for t ≥ 1, the iterates of the Frank-Wolfe algorithm (Algorithm 4) with
any step sizes γτ satisfy

f (xt ) − f (x∗) ≥
t−1∏

τ=1

(1 − γτ ) · 〈∇f (x∗), x1 − x∗〉, (4.3)

and in particular for the open loop step-size rule γτ = 2/(τ + 2) we have

f (xt ) − f (x∗) ≥ 2

t (t + 1)
· 〈∇f (x∗), x1 − x∗〉. (4.4)

Finally, in actual computations these lower bounds are rarely an issue as instances
often possess additional structure and adaptive step-size strategies (see Sect. 4.5) pro-
vide excellent computational performance without requiring any knowledge of prob-
lem parameters.

4.3 Nonconvex Objectives

The Frank-Wolfe algorithm can also be used to obtain locally optimal solutions if f is
nonconvex but smooth. In this case, x ∈ P is locally optimal (or first-order critical)
if and only if the Frank-Wolfe gap at x is 0, i.e., maxv∈P 〈∇f (x), x − v〉 = 0. We
will present a simple argument to establish convergence to a locally optimal solution,
however the argument can be improved as done in Lacoste-Julien [52], which was
also the first to establish convergence for smooth nonconvex objectives. In particular,
our argument will use a constant step-size γt = γ

.= 1√
T +1

which has the advantage
that it is parameter-free, but we need to decide on the number of iterations T ahead
of time and the convergence guarantee only holds for the last iteration T in contrast
to so-called anytime guarantees that hold in each iteration t = 0, . . . , T . Nonetheless,
the core of the argument is identical and more clearly isolated that way.

Theorem 4.7 (Convergence for nonconvex objectives) Let f be an L-smooth but
not necessarily convex function and P be a compact convex set of diameter D. Let
T ∈ N, then the iterates of the Frank-Wolfe algorithm (Algorithm 4) with the step-size
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γt = γ
.= 1√

T +1
satisfy:

GT
.= min

0≤t≤T
max
vt∈P

〈∇f (xt ), xt − vt 〉 ≤ max{2h0,LD2}√
T + 1

,

where h0
.= f (x0) − f (x∗) is the primal gap at x0.

Proof Our starting point is the primal progress bound at iterate xt from Lemma 4.3

f (xt ) − f (xt+1) ≥ γ 〈∇f (xt ), xt − vt 〉 − γ 2 L

2
‖xt − vt‖2.

Summing up the above along the iterations t = 0, . . . , T and rearranging gives

γ

T∑

t=0

〈∇f (xt ), xt − vt 〉 ≤ f (x0) − f (xT +1) + γ 2
T∑

t=0

L

2
‖xt − vt‖2

≤ f (x0) − f (x∗) + γ 2
T∑

t=0

LD2

2
= h0 + γ 2(T + 1)

LD2

2
.

We divide by γ (T + 1) on both sides to arrive at our final estimation

GT ≤ 1

T + 1

T∑

t=0

〈∇f (xt ), xt − vt 〉 ≤ h0

γ (T + 1)
+ γ

LD2

2
, (4.5)

and for γ = 1√
T +1

this yields

GT ≤ 1

T + 1

T∑

t=0

〈∇f (xt ), xt − vt 〉 ≤ 2h0 + LD2

2
√

T + 1
≤ max{2h0,LD2}√

T + 1
, (4.6)

which completes the proof. �

Note that GT can be observed throughout the algorithm’s run and can be used
as a stopping criterion. Moreover, the convergence rate of O(1/

√
T ) is optimal; see

Braun et al. [15] for a discussion. If we have knowledge about h0, L, and D then
the above estimation can be slightly improved while maintaining a constant step size

rule. We revisit (4.5) and optimize for γ , to obtain γ =
√

2h0
LD2(T +1)

and hence:

GT ≤ 1

T + 1

T∑

t=0

〈∇f (xt ), xt − vt 〉 ≤
√

2h0LD2

T + 1
≤ max{2h0,LD2}√

T + 1
. (4.7)

In the right most estimation the two bounds from (4.6) and (4.7) are identical, which
is due to the relatively weak estimation of the very last inequality. In fact, the dif-
ference between (4.6) und (4.7) is that in the former we have the arithmetic mean
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between 2h0 and LD2 as bound, i.e., GT ≤ 2h0+LD2

2
1√
T +1

, whereas in (4.7) we have

the geometric mean of the two terms, i.e., GT ≤
√

2h0LD2 1√
T +1

; by the AMGM
inequality the latter is smaller than the former. In both cases, we can also turn the
guarantees into anytime guarantees (with minor changes in constants) by using the

step-size rules γt = 1/
√

t + 1 and γt =
√

2h0
LD2(t+1)

, respectively, and then using the

bound
∑T −1

t=0
1√
t+1

≤ 2
√

T − 1. Then telescoping works analogously to the above
with minor adjustments. Finally, note that in all estimation we do not only provide a
guarantee for the running minimum of the Frank-Wolfe gap but their averages in fact
and the former is a consequence of the latter.

4.4 Dual Prices

Another very useful property of the Frank-Wolfe algorithm (and also its more com-
plex extensions) is that we readily obtain dual prices for active constraints, as long as
the LMO provides dual prices. Similar to linear optimization, the dual price of a con-
straint captures the (local) rate of change of the objective if the constraint is relaxed.
This is in particular useful in, e.g., portfolio optimization applications and energy
problems, where marginal prices of constraints can guide decisions of real-world de-
cision makers. Here we will only consider dual prices at the optimal solution x∗ and
we will only cover the basic case without any degeneracy. However we can also de-
rive dual prices for approximately optimal solutions and we refer the interested reader
to Braun and Pokutta [11] for an in-depth discussion.

Suppose that the feasible region P is actually a polytope of the form P = {z :
Az ≤ b} with A ∈ R

m×n and b ∈ R
n. Let x ∈ P be arbitrary. By strong duality we

have that v ∈ P is a minimizer for the linear program min{z:Az≤b}〈∇f (x), z〉 if and
only if there exist dual prices 0 ≤ λ ∈ R

m, so that

∇f (x) = −λA and 〈∇f (x), v〉 = min{z:Az≤b}〈∇f (x), z〉 = −〈λ,b〉,
(LP-duality)

i.e., the dual prices together with the constraints certify optimality. It is well known
that the second equation can be equivalently replaced by a complementary slackness
condition that states 〈λ,b − Av〉 = 0; it can be readily seen that (LP-duality) implies
〈λ,b − Av〉 = 0 by rearranging and the other direction follows similarly. Now con-
sider a primal-dual pair (v,λ) that satisfies (LP-duality). By definition v is also a
Frank-Wolfe vertex for ∇f (x), so that we immediately obtain

〈∇f (x), x − v〉 = −〈λA,x − v〉 = 〈λ,b − Ax〉,
i.e., the Frank-Wolfe gap at x is equal to the complementarity gap for x given λ;
if the latter would be 0 then complementary slackness would hold or equivalently
the Frank-Wolfe gap would be 0 and (x,λ) would be an optimal primal-dual pair.
This can be now directly be related to min{z:Az≤b} f (z) via Slater’s (strong dual-
ity) condition of optimality: x is optimal for min{z:Az≤b} f (z) if and only if x is
optimal for min{z:Az≤b}〈∇f (x), z〉. This implies that if x is an optimal solution to
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min{z:Az≤b} f (z) then (x,λ) will also satisfy (LP-duality). Hence for an optimal so-
lution x, the dual prices λ valid for v are also valid for x.

Given that the LMO for polytopes is often realized via linear programming solvers
that compute dual prices as by-product, we readily obtain dual prices λ for the optimal
solution x∗ via the Frank–Wolfe vertex v for ∇f (x∗).

4.5 Adaptive Step-Sizes

The primal progress of a Frank-Wolfe step is driven by the smoothness inequality.
Suppose f is L-smooth, then using the definition of the Frank-Wolfe step, i.e., xt+1 =
(1 − γt )xt + γtvt and Lemma 4.3 provides:

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉 − γ 2
t

L

2
‖xt − vt‖2. (4.8)

Now rather than plugging in the open loop step-size, we can view the right-hand side
as an expression in one variable γt and maximize the right-hand side. This leads to
the optimal choice

γt = 〈∇f (xt ), xt − vt 〉
L‖xt − vt‖2

and f (xt ) − f (xt+1) ≥ 〈∇f (xt ), xt − vt 〉2

2L‖xt − vt‖2
. (4.9)

Technically we can only form convex combinations if γt ∈ [0,1], so that we have

to truncate γt := min
{ 〈∇f (xt ),xt−vt 〉

L‖xt−vt‖2 ,1
}

; observe that γt ≥ 0 holds always as the we

have that the Frank-Wolfe gap 〈∇f (xt ), xt −vt 〉 ≥ 0. This step-size choice is often re-
ferred to as short step step-size and is the Frank-Wolfe equivalent to steepest descent.
In the case that the truncation is active, it holds that 〈∇f (xt ), xt − vt 〉 ≥ L‖xt − vt‖2

and together with (4.8) it follows that we are in a regime where we converge linearly
with

f (xt ) − f (xt+1) ≥ 〈∇f (xt ), xt − vt 〉/2 ≥ (f (xt ) − f (x∗))/2,

i.e., the primal progress is at least half of the Frank-Wolfe gap and hence at least half
of the primal gap.

The short step strategy avoids the overhead of line searches, however unfortunately
it requires knowledge of the smoothness constant L or at least reasonably tight upper
bounds of such. This issue is what Pedregosa et al. [69] addressed in a very nice
paper by dynamically approximating L. Rather than performing a traditional line
search on the function value, the approximation of L leads only to a slightly slower
convergence rate by a constant factor, has only small overhead, and does not suffer
the additive resolution issue of traditional line searches, where one can only get as
accurate as the line search ε. In particular, this adaptive strategy allows to adapt to the
potentially better local smoothness of f , rather than relying on a worst-case estimate;
see Braun et al. [15] for an in-depth discussion.

In a nutshell, what Pedregosa et al. [69] do is perform a multiplicative search for
L until the smoothness inequality

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉 − γ 2
t

M

2
‖xt − vt‖2. (adaptive)
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Algorithmus 5 : (modified) Adaptive step-size strategy

Input: Objective function f , smoothness estimate L̃, feasible points x, v with
〈∇f (x), x − v〉 ≥ 0, progress parameters η ≤ 1 < τ

Output: Updated estimate L̃∗, step-size γ

1 M ← ηL̃

2 loop
3 γ ← min{〈∇f (x), x − v〉 / (M‖x − v‖2),1} {compute short step for

estimation M}
4 if 〈∇f (x + γ (v − x)), x − v〉 ≥ 0 then
5 L̃∗ ← M

6 return L̃∗, γ

7 end if
8 M ← τM

9 end loop

holds for the approximation M of L with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

being the short
step.

Unfortunately, checking (adaptive) in practice can be numerically very challeng-
ing as we mix function evaluations, gradient evaluations, and quadratic norm terms.
Rather we present a new variant of the adaptive step-size strategy, where we rely on
a different test for accepting the estimation M of L:

〈∇f (xt+1), xt − vt 〉 ≥ 0, (altAdaptive)

where xt+1 = (1 − γt )xt + γtvt as before with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

being the

short step for the estimation M , i.e., we only test (inner products with) the gradient
∇f at different points. Moreover, this test might provide additional primal progress as
we discuss below. This leads to the adaptive step-size strategy given in Algorithm 5,
which is numerically very stable, however requires gradient computations (rather than
function evaluations).

We first show now that our condition (altAdaptive) implies the same primal
progress as (adaptive) and then we will show that (altAdaptive) holds for L if f

is L-smooth. As such all results of Pedregosa et al. [69] apply readily to the modified
variant in Algorithm 5. To demonstrate the convergence behavior of the various step-
size strategies we ran a simple test problem with results presented in Fig. 9. We see
that the adaptive strategy approximates the short step very well and both significantly
outperform the open loop strategy.

In the following we present the slightly more involved estimation based on a new
progress bound from smoothness. For completeness we also include a significantly
simplified estimation based on the regular smoothness bound in Appendix A, how-
ever there we only guarantee approximation of the smoothness constant within a fac-
tor of 2. We start with introducing another variant of the smoothness inequality. Note
that all these inequalities are equivalent when considering all x, y, however we want
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Fig. 9 Convergence speed for a simple quadratic over a K-sparse polytope with three different step-size
strategies. The basic open loop step-size γt = 2

2+t
, the short step rule, which requires a smoothness esti-

mate L (here we used the exact smoothness), and the adaptive step-size rule that dynamically approximates
L. Plot is log-log so that the order of the convergence corresponds to different slopes of the trajectories

to apply them for a specific pair of points x, y and then their transformations from
one into another might not be sharp as demonstrated in the following remark:

Remark 4.8 (Point-wise smoothness estimations) Suppose that f is L-smooth and
convex and consider two points x, y. Suppose we want to derive (2.3) from the
gradient-based variant in (2.4) using only the two points x, y. Then the naive way
of doing so it:

f (y) − f (x) ≤ 〈∇f (y), y − x〉 (convexity)

≤ 〈∇f (x), y − x〉 + L‖y − x‖2. (using (2.4))

Observe that this is almost the desired inequality (2.3), except for the smoothness
constant 2L and not L.

The following lemma provides a different smoothness inequality that allows for
tighter estimations. It requires f to be L-smooth and convex on a potentially slightly
larger domain containing P .

Lemma 4.9 (Smoothness revisited) Let f be an L-smooth and convex function on
the D-neighborhood of a compact convex set P , where D is the diameter of P . Then
for all x, y ∈ P it holds:

〈∇f (y) − ∇f (x), y − x〉2

2L‖y − x‖2
≤ f (y) − f (x) − 〈∇f (x), y − x〉. (4.10)
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Proof As shown in Braun et al. [15, Lemma 1.8], if f is an L-smooth convex function
on the D-neighborhood of a convex set P , then for any points x, y ∈ P it holds

‖∇f (y) − ∇f (x)‖2 ≤ 2L(f (y) − f (x) − 〈∇f (x), y − x〉). (4.11)

Next we lower bound the left-hand side as

〈∇f (y) − ∇f (x), y − x〉2

‖y − x‖2 ≤ ‖∇f (y) − ∇f (x)‖2.

Chaining these two inequalities together and rearranging gives the desired claim. �

The proof above explicitly relies on the convexity of f via Braun et al. [15, Lemma
1.8]. With Lemma 4.9 we can provide the following guarantee on the primal progress.

Lemma 4.10 (Primal progress from (altAdaptive)) Let f be an L-smooth and convex
function on the D-neighborhood of a compact convex set P , where D is the diameter

of P . Further, let xt+1 = (1 − γt )xt + γtvt with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

for some

M . If 〈∇f (xt+1), xt − vt 〉 ≥ 0, then it holds:

f (xt ) − f (xt+1)

≥
⎧
⎨

⎩

〈∇f (xt ),xt−vt 〉2+〈∇f (xt+1),xt−vt 〉2

2 max{L,M}‖xt−vt‖2 if γt ∈ [0,1]
〈∇f (xt ),xt−vt 〉

2 + 〈∇f (xt+1),xt−vt 〉2

2〈∇f (xt ),xt−vt 〉 ≥ 〈∇f (xt ),xt−vt 〉
2 if γt = 1 and M ≥ L

.

Proof If γt = 1, then without loss of generality we can assume that M =
〈∇f (xt ),xt−vt 〉

‖xt−vt‖2 , as M only occurs in the definition of γt and xt+1. Our starting point is
Equation (4.10) with x ← xt+1 and y ← xt :

f (xt ) − f (xt+1)

≥ 〈∇f (xt ) − ∇f (xt+1), xt − xt+1〉2

2L‖xt − xt+1‖2

+ 〈∇f (xt+1), xt − xt+1〉

= 〈∇f (xt ) − ∇f (xt+1), xt − vt 〉2

2L‖xt − vt‖2

+ 〈∇f (xt ), xt − vt 〉 · 〈∇f (xt+1), xt − vt 〉
M‖xt − vt‖2 (definition of xt+1 and γt )

≥ 〈∇f (xt ) − ∇f (xt+1), xt − vt 〉2

2 max{L,M}‖xt − vt‖2

+ 〈∇f (xt ), xt − vt 〉 · 〈∇f (xt+1), xt − vt 〉
max{L,M}‖xt − vt‖2

(〈∇f (xt+1), xt − vt 〉 ≥ 0)

= 〈∇f (xt ), xt − vt 〉2 + 〈∇f (xt+1), xt − vt 〉2

2 max{L,M}‖xt − vt‖2
.
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Now if γt = 1 and M ≥ L, then the above simplifies to:

f (xt ) − f (xt+1) ≥ 〈∇f (xt ), xt − vt 〉
2

+ 〈∇f (xt+1), xt − vt 〉2

2〈∇f (xt ), xt − vt 〉 ≥ 〈∇f (xt ), xt − vt 〉
2

.

This finishes the proof. �

Before we continue a few remarks are in order. First of all, observe that

f (xt ) − f (xt+1) ≥ 〈∇f (xt ), xt − vt 〉2 + 〈∇f (xt+1), xt − vt 〉2

2 max{L,M}‖xt − vt‖2
,

has an additional term compared to the standard smoothness estimation (4.9) and
〈∇f (xt+1), xt −vt 〉 = 0 if and only if xt+1 is identical to the line search solution. This
is in particular the case if f is a standard quadratic as then the line search solution
is identical to the short step solution. Nonetheless, in the typical case this extra term
provides additional primal progress. Taking the maximum in the denominator ensures
that if M < L, then we recover the primal progress that one would have obtained
with the estimation M = L. This seems counter-intuitive as usually using estimations
M < L would lead to overshooting and negative primal progress, however here we
still require that (altAdaptive) holds for M , which prevents exactly this as can be seen
from the proof. In particular, disregarding adaptivity for a second, in the case where
L is known, then with the choice M = L, Lemma 4.11 provides a stronger primal
progress bound compared to (4.9) assuming that (altAdaptive) holds for L (which
holds always as f is L-smooth; see Lemma 4.11):

f (xt ) − f (xt+1) ≥ 〈∇f (xt ), xt − vt 〉2 + 〈∇f (xt+1), xt − vt 〉2

2L‖xt − vt‖2 .

This improved primal progress bound might give rise to improved convergence rates
in some regimes; see also Teboulle and Vaisbourd [76] for a similar analysis for the
unconstrained case providing optimal constants for the convergence rates of gradi-
ent descent. Moreover, the discussion above also implies that if (altAdaptive) holds
it might provide more primal progress than the original test via (adaptive) used in
Pedregosa et al. [69].

To conclude, we will now show that (altAdaptive) holds for L, whenever the func-
tion is L-smooth and γt is the corresponding short step for L. This implies that both
(altAdaptive) and (adaptive) hold for L whenever f is L-smooth with the added ben-
efit of numerical stability and additional primal progress via (altAdaptive).

Lemma 4.11 (Smoothness implies (altAdaptive)) Let f be L-smooth. Further, let

xt+1 = (1 − γt )xt + γtvt with γt = min
{ 〈∇f (xt ),xt−vt 〉

L‖xt−vt‖2 ,1
}

. Then (altAdaptive) holds,
i.e.,

〈∇f (xt+1), xt − vt 〉 ≥ 0.
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Proof We use the alternative definition of smoothness using the gradients (2.4), i.e.,
we have

〈∇f (y) − ∇f (x), y − x〉 ≤ L‖y − x‖2 for all x, y ∈ P.

Now plug in x ← xt and y ← xt+1, so that we obtain

〈∇f (xt+1) − ∇f (xt ), xt+1 − xt 〉 ≤ L‖xt+1 − xt‖2

and using the definition of xt+1 it follows

〈∇f (xt+1) − ∇f (xt ), γt (vt − xt )〉 ≤ Lγ 2
t ‖vt − xt‖2.

Now, if γt = 1, then 〈∇f (xt ), xt − vt 〉 ≥ L‖xt − vt‖2, so that

〈∇f (xt+1) − ∇f (xt ), vt − xt 〉 ≤ 〈∇f (xt ), xt − vt 〉,

holds. Otherwise, if 0 < γt < 1, then dividing by γt and plugging in the definition of
γt yields

〈∇f (xt+1) − ∇f (xt ), vt − xt 〉 ≤ 〈∇f (xt ), xt − vt 〉.

In both cases, rearranging gives the desired inequality

〈∇f (xt+1), xt − vt 〉 ≥ 0.

Finally, in case γt = 0 we have xt = xt+1 and the assertion holds trivially. �

Remark 4.12 (Faster open loop convergence) The adaptive step-size strategy from
above uses feedback from the function and as such is not of the open loop type. In
many applications such adaptive strategies are the strategies of choice as the function
feedback is relatively minimal but convergence speed is superior (in most but not
all cases as mentioned in Sect. 4.2). For many important cases we can also obtain
improved convergence with rates of higher order for open loop step-sizes by using the
modified step-size rule γt = 	

t+	
with 	 ∈ N≥1; see Wirth et al. [82, 84] for details.

This is quite surprising as we only change the shift 	 and not the order of t in the
denominator of γt . In fact, note that the order of t in the denominator cannot be
changed significantly as we need that

∑
t γt = ∞ and that

∑
t γ

2
t converges for the

step-size strategy to work; see Braun et al. [15]. If the corresponding 	 cannot be set
in practice, and if it has to be an open loop strategy, γt = 2+log(t+1)

t+2+log(t+1)
works very

well; we can use t or t + 1 in the log depending on whether the first iteration is t = 0
or t = 1. This corresponds essentially to a strategy where 	 is gradually increased
and it provides accelerated convergence rates when those exist while maintaining the
same worst-case convergence rates as the basic strategy γt = 2

t+2 (Wirth et al. [83]).
For a sample computation, see Fig. 10.
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Fig. 10 Convergence speed for a simple quadratic over a K-sparse polytope for open loop strategies of the
form γt = 	

	+t
. We can see that (depending on the specifics of the problem) larger 	 achieve convergence

rates of a higher order. For comparison also the adaptive step-size strategy has been included. Plot is
log-log so that the order of the convergence corresponds to different slopes of the trajectories

5 Two Applications

In the following we will present two applications of the Frank-Wolfe algorithm. Both
examples use very simple quadratic objectives of the form f (x) = ‖x −p‖2 for some
p for the sake of exposition; for more complex examples see also Braun et al. [15].

5.1 The Approximate Carathéodory Problem

Our first example, is the Approximate Carathéodory Problem. For this example, the
Frank-Wolfe algorithm does not only present a practical means to solve the problem
but in fact, its convergence guarantees itself provide a proof of the theorem and op-
timal bounds for a wide variety of regimes. Here we will confine ourselves to the
2-norm case not assuming any additional properties, however many more involved
cases are possible as studied in Combettes and Pokutta [25].

Given a compact convex set P ⊆ R
n, recall that Carathéodory’s theorem states that

any x∗ ∈ P can be written as a convex combination of no more than n + 1 extreme
points of P , i.e., x∗ = ∑

1≤i≤n+1 λivi with λ ≥ 0,
∑

i λi = 1, and vi extreme points
of P with 1 ≤ i ≤ n + 1. In the context of Carathéodory’s theorem, the cardinality of
a point x∗ ∈ P , refers to the minimum number of required extreme points to express
x∗ as a convex combination of those. If x∗ is of low cardinality it is often also referred
to as sparse. Every specific convex combination that expresses x∗ provides an upper
bound on the cardinality of x∗. The approximate variant of Carathéodory’s problem
asks: given x∗ ∈ P , what is required cardinality of an x ∈ P to approximate x∗ within
an error of no more than ε > 0 (in a given norm)? Put differently, we are looking for
x ∈ P with ‖x − x∗‖ ≤ ε of low cardinality. The approximate Carathéodory theorem
states:
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Theorem 5.1 (Approximate Carathéodory Theorem) Let p ≥ 2 and P be a compact
convex set. For every x∗ ∈ P , there exists x ∈ P with cardinality of no more than
O(pD2

p/ε2) satisfying ‖x − x∗‖p ≤ ε, where Dp = maxv,w∈P ‖w − v‖p is the p-
norm diameter of P .

Note that the bounds of Theorem 5.1 are essentially tight in many cases (Mirrokni
et al. [59]). In the following, we briefly discuss the case p = 2 without any additional
assumptions. Suppose we have given a point x∗ ∈ P we can consider the objective

f (x)
.= ‖x − x∗‖2.

Further, let ε > 0 be the approximation guarantee. Assuming, we have access to an
LMO for P , we can now minimize the function f (x) over P via the Frank-Wolfe
algorithm (Algorithm 4). In order to achieve ‖x − x∗‖ ≤ ε we have to run the Frank-
Wolfe algorithm until f (xt ) = f (xt ) − f (x∗) ≤ ε2, which by Theorem 4.4 takes no
more than O(2D2/ε2) iterations, where D is the 	2-diameter of P . Moreover, in
each iteration the algorithm is picking up at most one extreme point as discussed
in Sect. 4.1. This establishes the guarantee for case p = 2 in Theorem 5.1. Here
we applied the basic convergence guarantee from Theorem 4.4. However, for the
Frank-Wolfe algorithm many more convergence guarantees are known, depending
on properties of the feasible domain and position of the point x∗ that we want to
approximate with a sparse convex combination. These improved convergence rates
immediately translate into improved approximation guarantees for the approximate
Carathéodory problem and we state some of these guarantees in Table 1.

Apart from establishing theoretical results by means of the Frank-Wolfe algo-
rithm’s convergence guarantees it can be easily used in actual computations, see e.g.,
Figs. 11 and 12 for an example. Observe that in the particular case of f (x) here,
we can also directly observe the primal gap and hence use it as a stopping crite-
rion. The Frank-Wolfe approach to the approximate Carathéodory Problem has been
also recently used in Quantum Mechanics to establish new Bell inequalities and local
models, as well as improve the Grothendieck constant KG(3) of order 3 (see Desig-
nolle et al. [30, 31] and the references contained therein). This approach is also very
useful in the context of the coreset problem, which asks for a subset of data points
of a large data set that maintains approximately the same statistical properties (see
Braun et al. [15, Sect. 5.2.5]).

5.2 Separating Hyperplanes

In Sect. 5.1 we have used the Frank-Wolfe algorithm for obtaining a convex decom-
position of a point x∗ ∈ P , i.e., we certified membership in P . We can also use the
Frank-Wolfe algorithm with the same objective f (x) = ‖x − x̃‖2 to obtain separating
hyperplanes for points x̃ /∈ P , i.e., we certify non-membership. This has been suc-
cessfully applied in Designolle et al. [30, 31] to certify that the correlations of certain
quantum states exhibit non-locality, i.e., are truly quantum by separating them from
the local polytope, the polytope of all classical correlations. Moreover, it has also
been used in Thuerck et al. [77] to derive separating hyperplanes from enumeration
oracles.
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Table 1 Cardinality bounds to achieve ε-approximation for the approximate Carathéodory prob-
lem with respect to the 	p -norm; see Combettes and Pokutta [25] for full table. Recall that P

is (α, q)-uniformly convex if for any x, y ∈ P , γ ∈ [0,1], and z ∈ R
n with ‖z‖ ≤ 1 we have

y + γ (x − y) + γ (1 − γ ) · α‖x − y‖qz ∈ P , where α and q are positive. An (α/2,2)-uniformly con-
vex set is called α-strongly convex

	p-norm Assumption Cardinality bound

p ∈ [2,+∞[ – O
(

pD2
p

ε2

)

or O
(

p(D2∗+D2
0)

ε2

)

(Dp , D0, D∗ diameters; see Combettes and Pokutta [25])

x∗ ∈ ri(P ) O
(

p
(

Dp
rp

)2
ln

(
1
ε

))

(ri(P ) relative interior, rp radius so that B
p
rp (x∗) ∩ aff(P ) ⊆ P )

αp-strongly convex P O
(√

pDp+p/αp
ε

)

(αp, qp)-uniformly
convex P ,
qp ∈ [2,+∞[

O
(

(pD2
p)(qp−1)/qp +p/α

2/qp
p

ε2(qp−1)/qp

)

p ∈ ]1,2[ – O
(

n(2−p)/pD2
2

ε2

)

p = 1 – O
(

nD2
2

ε2

)

(n ambient dimension of P , D2 is 	2-diameter)

p = +∞ – O
(

D2
2

ε2

)

(D2 is 	2-diameter)

Fig. 11 Cardinality vs. approximation error in 	2-norm over a polytope of dimension n = 1000 for the
Frank-Wolfe algorithm and two more advanced variants Lazy Away-step Frank-Wolfe [14] and Blended
Pairwise Conditional Gradients [78]. All algorithms use the short step step-size

In the following we provide the most naive way of computing separating hyper-
planes. An improved strategy has been presented in Thuerck et al. [77], which derives
a new algorithmic characterization of non-membership, that requires fewer iterations
of the Frank-Wolfe algorithm compared to our naive strategy here. It is also inter-
esting to note that from a complexity-theoretic perspective, what the Frank-Wolfe
algorithm does is to turn an LMO for P into a separation oracle for P via optimizing
the objective ‖x − x̃‖2.
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Fig. 12 Same setup as in Fig. 11, however the step-size strategy is the adaptive strategy from Sect. 4.5. As
we can see the Frank-Wolfe algorithm is quite sensitive to the strategy while more advanced variants, due
to their design of only adding new vertices when not enough progress can be made otherwise, are not

Given x̃ /∈ P , we consider the optimization problem

min
x∈P

‖x − x̃‖2, (Sep)

with f (x)
.= ‖x − x̃‖2. Using Lemma 4.2 we can immediately obtain a separating

hyperplane from an optimal solution x∗ ∈ P to (Sep):

〈∇f (x∗), x∗〉 ≤ 〈∇f (x∗), v〉, (sepHyperplane)

which holds for all v ∈ P . Moreover, as x̃ /∈ P , we have by convexity 〈∇f (x∗), x∗ −
x̃〉 ≥ f (x∗) − f (x̃) = f (x∗) > 0. and hence (sepHyperplane) is violated by x̃, i.e.,
〈∇f (x∗), x∗〉 > 〈∇f (x∗), x̃〉. This argument provides the desired separating hyper-
plane mathematically, but numerically it is problematic as we usually solve Prob-
lem (Sep) only up to some accuracy ε > 0, typically using the Frank-Wolfe gap
maxv∈P 〈∇f (xt ), xt − v〉 ≤ ε as stopping criterion. When the algorithm stops we
similarly obtain

〈∇f (xt ), xt 〉 − ε ≤ 〈∇f (xt ), x〉 which simplifies to

min
v∈P

〈∇f (xt ), v〉 ≤ 〈∇f (xt ), x〉, (validIneq)

which is valid for all x ∈ P . However this inequality does not necessarily separate x̃

from P . A sufficient condition for separation is that x̃ is
√

ε-far from P so that we
have ‖x∗ − x̃‖ >

√
ε. We then can use the same convexity argument as before:

〈∇f (xt ), xt − x̃〉 − ε (stopping criterion)

≥ f (xt ) − f (x̃) − ε (convexity)

≥ f (x∗) − ε > 0. (‖x∗ − x̃‖ >
√

ε)

Now turning this argument around, if x̃ /∈ P is ε-far from P , we need to run
the Frank-Wolfe algorithm until the Frank-Wolfe gap satisfies maxv∈P 〈∇f (xt ), xt −
v〉 ≤ ε2. Combining this with Theorem 4.5 we can estimate

6.75LD2

t + 2
≤ ε2,
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Fig. 13 Each iterate xk induces a valid inequality of the form minv∈P 〈∇f (xt ), v〉 ≤ 〈∇f (xt ), x〉 in blue
(dashed blue line is ∇f (xt ) at xt ), which may or may not separate x̃; see middle and left respectively. At
x∗ the induced inequality minv∈P 〈∇f (x∗), v〉 = 〈∇f (x∗), x∗〉 ≤ 〈∇f (x∗), x〉 is guaranteed to separate
x̃ /∈ P and often (but not always) induces a facet of P

with L = 2. Thus we have found a separating hyperplane for x̃ whenever t ≥
13.5D2/ε2.

In practice however we usually do not know D and we also do not know how far
x̃ is from P . Nonetheless, we can simply test in each iteration t whether x̃ violates
(validIneq), i.e.,

∇f (xt ) separates x̃ ⇔ min
v∈P

〈∇f (xt ), v〉 > 〈∇f (xt ), x̃〉.

and simply stop then and are guaranteed this will take no more than O(D2/ε2) iter-
ations. The process is illustrated in Fig. 13. A similar approach, basically combining
Sects. 5.1 and 5.2 can also be used to compute the intersection of two compact con-
vex sets or certify their disjointness by means of a separating hyperplane (assuming
LMO access to each) as shown in Braun et al. [16].

6 Computational Codes

For actual computations we have developed the FrankWolfe.jl Julia package,
which implements many Frank-Wolfe variants and is highly customizable. Moreover,
we have also developed a mixed-integer extension Boscia.jl that allows for some
of the variables taking discrete values.

Appendix A: Adaptive Step-Sizes: Simpler Estimation

In this section we will present a simplified estimation of Sect. 4.5 for adaptive step-
sizes albeit at the cost being only able to approximate the smoothness of f within a
factor of 2. The basic setup is identical to the one before, however we use a different
test for accepting the estimation M of L:

〈∇f (xt+1), xt − vt 〉 ≥ 1

2
〈∇f (xt ), xt − vt 〉, (altAdaptive-simple)

https://github.com/ZIB-IOL/FrankWolfe.jl
https://github.com/ZIB-IOL/Boscia.jl
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Algorithmus 6 : (modified) Adaptive step-size strategy – simple variant

Input: Objective function f , smoothness estimate L̃, feasible points x, v with
〈∇f (x), x − v〉 ≥ 0, progress parameters η ≤ 1 < τ

Output: Updated estimate L̃∗, step-size γ

1 M ← ηL̃

2 loop
3 γ ← min{〈∇f (x), x − v〉 / (M‖x − v‖2),1} {compute short step for

estimation M}
4 if 〈∇f (x + γ (v − x)), x − v〉 ≥ 1

2 〈∇f (x), x − v〉 then
5 L̃∗ ← M

6 return L̃∗, γ

7 end if
8 M ← τM

9 end loop

where xt+1 = (1 − γt )xt + γtvt as before with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

being

the short step for the estimation M and the corresponding algorithm becomes Al-
gorithm 6 in this case. We proceed similarly as before: we first show that con-
dition (altAdaptive-simple) implies primal progress and then we will show that
(altAdaptive-simple) holds for 2L if f is L-smooth; this is were (altAdaptive-simple)
is weaker than (altAdaptive).

Lemma 7.1 (Primal progress from (altAdaptive-simple)) Let xt+1 = (1−γt )xt +γtvt

with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

for some M . If 〈∇f (xt+1), xt − vt 〉 ≥ 1
2 〈∇f (xt ),

xt − vt 〉, then it holds:

f (xt ) − f (xt+1) ≥ γt 〈∇f (xt ), xt − vt 〉/2

=
{ 〈∇f (xt ),xt−vt 〉2

2M‖xt−vt‖2 if γt ∈ [0,1)

〈∇f (xt ), xt − vt 〉/2 if γt = 1
.

Proof The proof follows directly via convexity and plugging in the definitions:

f (xt ) − f (xt+1)

≥ 〈∇f (xt+1), xt − xt+1〉 (convexity)

≥ γt 〈∇f (xt+1), xt − vt 〉 (definition of xt+1)

≥ γt 〈∇f (xt ), xt − vt 〉/2 (assumption of (altAdaptive-simple))

=
{ 〈∇f (xt ),xt−vt 〉2

2M‖xt−vt‖2 if γt ∈ [0,1)

〈∇f (xt ), xt − vt 〉/2 if γt = 1
. (definition of γt )

�



30 S. Pokutta

Note that the proof above (again) explicitly relies on the convexity of f . It remains
to show that (altAdaptive-simple) holds for 2L, whenever the function is L-smooth
and γt is the corresponding short step for M = 2L. The proof is very similar to before,
however the last step is different.

Lemma 7.2 (Smoothness implies (altAdaptive-simple)) Let f be L-smooth. Further,

let xt+1 = (1 − γt )xt + γtvt with γt = min
{ 〈∇f (xt ),xt−vt 〉

M‖xt−vt‖2 ,1
}

and M = 2L. Then

(altAdaptive-simple) holds, i.e.,

〈∇f (xt+1), xt − vt 〉 ≥ 1

2
〈∇f (xt ), xt − vt 〉.

Proof We use the alternative definition of smoothness using the gradients, i.e., we
have

〈∇f (y) − ∇f (x), y − x〉 ≤ L‖y − x‖2 for all x, y ∈ P,

by Remark 2.3. Now plug in x ← xt and y ← xt+1, so that we obtain

〈∇f (xt+1) − ∇f (xt ), xt+1 − xt 〉 ≤ L‖xt+1 − xt‖2

and with plugging in the definition of xt+1 we obtain

〈∇f (xt+1) − ∇f (xt ), γt (vt − xt )〉 ≤ Lγ 2
t ‖vt − xt‖2.

If γt > 0, dividing by γt and then plugging in the definition of γt yields

〈∇f (xt+1) − ∇f (xt ), vt − xt 〉 ≤ 1

2
〈∇f (xt ), xt − vt 〉,

and rearranging gives the desired inequality

〈∇f (xt+1), xt − vt 〉 ≥ 1

2
〈∇f (xt ), xt − vt 〉.

In case γt = 0 we have xt = xt+1 and the assertion holds trivially. �

We will now show that (altAdaptive-simple) is indeed weaker than (altAdaptive)
and that we cannot replace M = L in Lemma 4.11. To this end consider the following
1-dimensional example: Pick f (x)

.= x2, so that L = 2 holds. Consider f : [−1,1] �→
R and xt = 1. Then we have ∇f (xt ) = 2, vt = −1, and

〈∇f (xt ), xt − vt 〉
L‖xt − vt‖2 = 2(1 − (−1))

2(1 − (−1))2 = 1

2
,

so that γt = min
{ 〈∇f (xt ),xt−vt 〉

L‖xt−vt‖2 ,1
}

= 1
2 , xt+1 = 0, and ∇f (xt+1) = 0. This contra-

dicts 0 = 〈∇f (xt+1), xt − vt 〉 ≥ 1
2 〈∇f (xt ), xt − vt 〉 > 0.
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