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Abstract We give an overview of the differential geometric and analytic aspects of
Higgs bundles and their moduli spaces and highlight some of their interrelations with
neighboring fields. We review various current developments in this subject and pro-
vide a discussion of a number of open problems.
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1 Introduction

It is now more than 30 years ago that Nigel Hitchin introduced the concept of a
Higgs bundle over a Riemann surface and derived his self-duality equations as a set
of nonlinear partial differential equations capable of giving a parametrization of their
moduli spaces. Since then the study of these spaces – the set of all Higgs bundles
modulo a natural “gauge” equivalence – has grown into a rich mathematical subject
with interrelations with many different topics and numerous research directions yet
to be explored. To describe some of these is the aim of the present survey article.

Very briefly, a Higgs bundle is a pair consisting of a holomorphic vector bundle
E over a Riemann surface X and an endomorphism field Φ – the so-called Higgs
field – such that the holomorphicity condition ∂̄EΦ = 0 is satisfied. While we refer

� J. Swoboda
swoboda@mathi.uni-heidelberg.de

1 Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205,
69120 Heidelberg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1365/s13291-021-00229-1&domain=pdf
mailto:swoboda@mathi.uni-heidelberg.de


66 J. Swoboda

to §4.1 for a precise definition of these mathematical objects, we outline here the
broader mathematical context into which Higgs bundles fit. By their very definition,
Higgs bundles are a generalization of the concept of holomorphic vector bundles,
and as the latter, are a subject of complex geometry. That they may alternatively be
described in terms of partial differential equations in vector bundles over X makes the
study of their moduli space at the same time a topic of interest in geometric analysis.
It is through this second formulation that a number of geometric structures, such
as Riemannian metrics of special holonomy, on the moduli space of Higgs bundle
become apparent. This relationship is not accidental but now known to be part of a
bigger picture, the Kobayashi–Hitchin correspondence, which goes beyond the realm
of Higgs bundles over Riemann surfaces. The self-duality equations themselves have
their origin in particle physics – they can be regarded as special instances of the self-
dual Yang–Mills equations proposed by Chen Ning Yang and Robert Mills in 1954 –
where they continue to be a topic of much ongoing interest.

These are only two of the many interrelations which make the study of moduli
spaces of Higgs bundles a multifaceted and fascinating topic of mathematical re-
search. Other, at first sight unrelated areas, are present in their study: the subject
shows close connections with or is influenced by the areas of surface group repre-
sentations, (higher) Teichmüller theory, completely integrable systems, Riemannian
manifolds of special holonomy and supersymmetric quantum field theories, to name
a few. Some of these connections are by now firmly established, while others are still
the subject of ongoing research. We made an effort to balance both aspects in this
survey article, giving this article its rough structure. While the first half places the
topic into its wider mathematical context and reviews some of its foundations, ample
space is devoted in the second half to various recent research directions and open
problems.

This article is meant for a nonspecialist readership. We therefore start with a con-
densed outline of the underlying differential geometric concepts: vector bundles, con-
nection and curvature forms, gauge symmetries and so on, assuming only a basic
knowledge of smooth manifolds and Lie groups. We shall illustrate the geometric-
analytic construction of moduli spaces in the prototypical examples of the Teich-
müller moduli space and the moduli space of solutions to the self-dual Yang–Mills
equations. These examples are both classical and directly related to the core topic
of this survey: moduli spaces of Higgs bundles. Much of their complex geometry
generalizes that of holomorphic vector bundles. We therefore introduce the relevant
concepts, such as Mumford’s notion of stability of holomorphic vector bundles, in §3.
Higgs bundles and Hitchin’s self-duality equations then enter the stage, with some of
their basic features being reviewed in §4. Their moduli spaces are subsequently dis-
cussed from several different points of view: as Riemannian manifolds, as topological
spaces and as completely integrable algebraic systems. Several applications of Higgs
bundles are covered in §5. The final §6 is devoted to an account of some of the recent
developments in the field. Here we also include the discussion of some currently open
questions and conjectures.

Higgs bundles are a vast area of research, so we cannot give a comprehensive
overview here. The choice of topics presented in this article reflects the author’s re-
search interests and focusses on the more differential-geometric and analytic aspects
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of the subject. Many important developments have therefore been omitted completely,
for instance the role Higgs bundles play in Ngô’s proof of the Fundamental Lemma
[115, 116], in mirror symmetry [29, 63], and in Kapustin and Witten’s gauge the-
ory interpretation of the geometric Langlands conjecture [80]. Similarly, the study
of the symplectic and complex geometry of various interesting submanifolds (A and
B branes) of Higgs bundle moduli spaces, though a large and currently very active
field, is not being included here. Other topics, such as moduli spaces of opers or the
interrelation of the theory of Higgs bundles with the rapidly evolving field of higher
Teichmüller theory, are omitted or only touched upon very briefly.

2 Moduli Spaces in Geometry

A common theme in geometry is the phenomenon that many structures of interest,
such as Riemannian metrics with special curvature properties, solutions of geometri-
cally defined partial differential equations, or spaces of representations, to name only
a few, exist not isolated but appear in continuous families. One therefore is not so
much interested in describing individual members of such a family but rather wants
to understand all of them in toto. The idea underlying the concept of a moduli space
is therefore to consider a given family of interesting geometric structures as a geo-
metric object in its own right and to explore its shape. Such families often possess
“large” groups of continuous symmetries, and one usually is interested only in prop-
erties invariant under this group action. One is therefore led to study the given family
modulo symmetries, the actual moduli space, a usually much smaller and hence more
tractable object. While not in the focus of this survey, moduli spaces can in many sit-
uations of interest be used to derive geometric invariants of the manifolds they are
defined on. This idea has turned out to be particularly fruitful in symplectic topology
and algebraic geometry where Gromov–Witten and other invariants are obtained from
various moduli spaces associated with pseudoholomorphic curves. Related examples
include the Seiberg–Witten invariants as well as Floer homology in its various guises.
The aim of this section is to illustrate the concept of a moduli space in a variety of ex-
amples. All of these are directly related to the main subject of this article, the moduli
space of Higgs bundles.

2.1 Hyperbolic Surfaces and the Teichmüller Moduli Space

Let Σ be a closed surface, i.e. a compact two-dimensional smooth manifold without
boundary. We further assume that Σ is oriented. Its diffeomorphism type is uniquely
determined by a single topological invariant, the genus γ (Σ) of the surface Σ . Intu-
itively, this is the number of holes of Σ . For instance, γ (S2) = 0 in case of the sphere,
and γ (T 2) = 1 for the torus. The genus is related to the Euler characteristic, i.e. the
alternating sum of the Betti numbers of Σ , through the relation χ(Σ) = 2 − 2γ (Σ).

Surfaces are the first interesting class of manifolds one encounters in Riemannian
geometry. Here one is interested in the interrelation between the various geometric
quantities (such as distances, geodesics, curvatures) resulting from the choice of a
Riemannian metric g on Σ , i.e. from the smooth assignment of a positive-definite
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bilinear form gp to each tangent space TpΣ . A basic invariant of a Riemannian man-
ifold (Σ,g) is its Gauß curvature Kg : Σ → R. Very briefly, it gives a way to mea-
sure to what extend a Riemannian metric g deviates from the flat euclidean metric
dx2 + dy2. Its definition enters the Levi–Civita connection ∇g which provides for a
way of taking partial derivatives of vector fields on X. We review the basic facts con-
cerning connections on tangent and more general vector bundles in §2.2. The Gauß
curvature is then the function Kg defined by

Kg(p) = 〈∇g
X∇g

Y Y − ∇g
Y ∇g

XY − ∇g
[X,Y ]Y,X〉g

for a local orthonormal frame {X,Y } about p.
We denote by M the space of all Riemannian metrics on a fixed surface Σ . A

very basic question concerns the existence of a Riemannian metric g ∈ M such that
its Gauß curvature is as uniformly distributed as possible, meaning that Kg ≡ K for
some constant K . The Gauß–Bonnet identity

∫
Σ

Kg volg = 2πχ(Σ)

establishes a link between the geometry and topology of Σ and implies a sign re-
striction on the possible values of K . Indeed, if g satisfies Kg ≡ K then K > 0 if
γ (Σ) = 0, K = 0 if γ (Σ) = 1, and K < 0 if γ (Σ) ≥ 2. In particular, hyperbolic
metrics corresponding to K ≡ −1 may only exist in the latter case, for which we
define

M−1 = {g ∈ M | Kg ≡ −1}.
The Poincaré–Koebe uniformization theorem settles the question of existence of hy-
perbolic metrics. Indeed, it states that the conformal class

P(g) = {e2ug ∈ M | u ∈ C∞(Σ)}
intersects M−1 in exactly one point. So each conformal class of Riemannian metrics
on Σ has a unique hyperbolic representative.

With the question of existence being settled we consider the structure of M−1
more closely. The first observation is that the group D of orientation preserving dif-
feomorphisms of Σ acts on M by pullback, leaving the Gauss curvature invariant. It
hence descends to an action on M−1. To obtain a quotient space with good properties,
we consider the restriction of the action to the subgroup D0 of D of diffeomorphisms
homotopic to the identity. This restricted action is free. Furthermore, a basic theorem
due to Ebin and Palais shows that (after imposing suitable topologies) the map

D0 × M−1 → M−1 × M−1, (F,g) 
→ (F ∗g,g)

is proper. As a consequence, the quotient space

Tγ = M−1/D0

of equivalence classes of hyperbolic metrics is a Hausdorff space. In fact, it inherits
a smooth structure. This requires to work with a suitable functional analytic setup,
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Fig. 1 Local structure of the Banach manifold M−1 with local slice S(g0). The submanifold P(g0)

of conformally related metrics (the dotted line “sticking out” of the plane of drawing) intersects M−1
transversally in the point g0

where the action of the group D0 becomes the smooth action of a Banach Lie group
on the Banach manifold M . Working with metrics in this Banach manifold setup
rather than with smooth metrics has the advantage that tools such as the implicit
function theorem are at our disposal. For instance, the uniformization theorem may
in this setting be used to show that M−1 is an (infinite-dimensional) Banach subman-
ifold of M . For the time being, we suppress this technical point and refer to [129]
for details.

The quotient manifold Tγ is called Teichmüller moduli space of hyperbolic sur-
faces of genus γ . It and the related (non-Hausdorff) quotient M−1/D were the first
instances of moduli spaces to be studied in geometry. In contrast to M−1, this quo-
tient is finite-dimensional. Riemann [119] gave a heuristic argument that the number
of free parameters equals 6γ − 6 (in his notation, 3p − 3 complex parameters). In his
own words:

... es hängt also eine Klasse von Systemen ... von 3p − 3 stetig veränderlichen
Größen ab, welche die Moduln dieser Klasse genannt werden sollen.1

In particular, a given hyperbolic metric g0 is not rigid in M−1 but allows for
“many” (depending on the genus γ ) local deformations. Notice that this phenomenon
is in sharp contrast to, for instance, the sphere with its standard round metric of posi-
tive Gauss curvature Kg ≡ 1, which is rigid. The following slice theorem clarifies the
local structure of M−1. Figure 1 shows a schematic depiction of its setup.

1Cited from B. Riemann, Gesammelte mathematische Werke, Wissenschaftlicher Nachlass und Nachträge
– Collected Papers. Nach der Ausgabe von Heinrich Weber und Richard Dedekind, neu herausgegeben
von Raghavan Narsimhan. Springer Collected Works in Mathematics. Springer, Berlin (1990) [119].
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Theorem 1 Let g0 ∈ M−1. There exists a smooth submanifold S(g0) of M−1 of
dimension 6γ − 6 which contains g0 and has the following significance. Each D0
orbit of hyperbolic metrics close to g0 intersects S(g0) in exactly one point. The
tangent space Tg0S(g0) equals the vector space

Stt(g0) = {h ∈ Sym2(Σ) | Trg0h = divg0 h = 0}
of symmetric 2-tensors which are trace-free and divergence-free with respect to g0
(transverse-traceless 2-tensors).

Using this theorem it is not hard to show that the individual local slices S(g0)

patch together nicely and endow Tγ with a smooth atlas. With the local structure of
Tγ being clarified, we turn to the description of its global shape.

Theorem 2 (Teichmüller) Teichmüller moduli space Tγ is diffeomorphic to R
6γ−6.

This theorem is considerably harder to show. A geometric-analytic proof (cf.
[129]) builds on the existence of a unique harmonic diffeomorphism F : (Σ,g0) →
(Σ,g1) between any two hyperbolic surfaces, which is homotopic to the identity
map. Each such map F has Hopf differential q = (F ∗g1)

2,0, a quadratic differential
on Σ which is holomorphic with respect to the complex structure induced by g0. The
vector space of holomorphic quadratic differentials is of complex dimension 3γ − 3
(and naturally isomorphic to the vector space Stt(g0) in Thm. 1) and can be shown to
parametrize the set of harmonic diffeomorphisms.

At this point, the reader might miss a comment on the close relationship between
uniformization and Fuchsian groups, i.e. discrete subgroups of PSL(2,R), and a dis-
cussion of the Teichmüller moduli space from this more group theoretical point of
view. We take up this point in §5.1.

2.2 Moduli Spaces in Gauge Theory: A Zoo of Examples

We review some prominent examples of moduli spaces which appear in gauge theory
together with their defining PDEs, and take a glimpse at their role in geometry. Before
doing so, we introduce in a condensed form some basic concepts and definitions from
gauge theory. For a more thorough treatment, we refer to the textbook [83].

The ABC of Gauge Theory In this paragraph, X denotes a complex manifold of
any dimension. A complex vector bundle over X is a smooth manifold E together
with a smooth projection map πE : E → X such that every fibre π−1

E (x) is a finite-
dimensional complex vector space and which is locally trivial in the following sense.
For every x ∈ X there is a neighborhood U ⊂ X of x and a diffeomorphism ϕ : U ×
C

r → π−1
E (U) such that (πE ◦ ϕ)(y, v) = y for all (y, v) ∈ U × C

r and the map
v 
→ ϕ(y, v) is complex-linear. The dimension r of each fibre is called the rank of the
vector bundle. The most basic example of a complex vector bundle is the cartesian
product E = X ×C

r , the so-called trivial vector bundle of rank r .
A section of E is a smooth map s : X → E such that πE ◦ s = IdE . We de-

note the vector space of sections of E by Γ (X,E) and also introduce the notation
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Ωk(X,E) := Ωk(X,C) ⊗ Γ (X,E) for the space of differential k-forms with values
in E. With respect to a local trivialization of E over some chart U ⊂ X, a section
may (locally) be identified with a smooth map s : U → C

r . Since there is in general
no consistent way of identifying the fibres Ex = π−1

E (x) with C
r it is not possible

to make sense of derivatives of sections. This is where the concept of a connection
enters.

Definition 1 A connection on the complex vector bundle E is a smooth map

∇ : Γ (X,E) → Ω1(X,E)

which satisfies the Leibniz rule

∇(f s) = f ∇s + df ⊗ s

for all s ∈ Γ (X,E) and f ∈ C∞(X).

It is easy to check that if ∇ is a connection on E then so is ∇ + A for any A ∈
Ω1(X,End(E)), where End(E) ∼= E∗ ⊗ E denotes the bundle of endomorphisms of
E. The space A (E) of connections on E is thus an affine space over Ω1(X,End(E)).
One furthermore notices that every connection ∇ on E induces a connection on vector
bundles canonically associated with E, such as the dual bundle E∗ etc. For ease
of notation, we use the same notation ∇ for these induced connections. By skew-
symmetrization, these give rise to a covariant exterior derivative d∇ : Ωk(X,E) →
Ωk+1(X,E).

A connection permits us to take directional derivatives. In general, unlike in the
vector calculus of Cr valued functions, the order in which directional derivatives are
taken plays a role. One is therefore led to consider the quantity

F∇(V ,W) : Γ (X,E) → Γ (X,E), s 
→ ∇V ∇Ws − ∇W∇V s − ∇[V,W ]s

for vector fields V and W on X. As it turns out, F∇(V ,W) is C∞-linear and skew-
symmetric in its arguments, and hence defines a two-form F∇ ∈ Ω2(X,End(E)).
We call this two-form the curvature form of the connection ∇ . It satisfies the Bianchi
identity d∇F∇ = 0. The connection ∇ is called flat if F∇ = 0. A concrete example
of an interesting non-flat connection is given in Eq. (2) below.

A geometric interpretation of the curvature form F∇ is through the horizontal
distribution H associated with ∇ . For every point p ∈ Ex , the horizontal subspace
Hp of TpE is defined as the space of tangent vectors ˙̃c(0) of horizontal lifts of paths
c : I → X such that c̃(0) = p. Here the curve c̃ : I → E is called a horizontal lift of c

if πE ◦ c̃ = c and ∇ċ c̃ = 0. The horizontal subspace Hp is a vector space complement
in TpE of the vertical subspace Vp defined (without reference to the connection ∇) as
the subspace of vectors tangential at p to the fibre Ex . An application of the Frobenius
integrability theorem shows that the horizontal distribution H is integrable if and only
if the connection ∇ is flat. Hence the curvature form is a measure to which extend H

fails to be integrable.
In the sequel, we will often consider a complex vector bundle E together with the

additional geometric datum of a hermitian metric h, i.e. a hermitian inner product
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hEx on each fibre Ex which depends smoothly on the base point x. One may then
demand a connection ∇ to be compatible with h in the sense that

dh(s1, s2) = h(∇s1, s2) + h(s1,∇s2)

for all sections s1 and s2 of E. A connection with this property is called a h-unitary
connection. The curvature F∇ then takes values in the subbundle u(E) of endomor-
phisms of E which are skew-hermitian with respect to h.

A gauge transformation is a bundle automorphism of E. We denote the group
of gauge transformations of E by Gc(E) or GL(E), and the subgroup of h-unitary
gauge transformations as G(E,h) (and think of the former as the complexification of
the latter). The group Gc(E) acts on the space of connections by conjugation

g · ∇ = g−1 ◦ ∇ ◦ g;
the subgroup of h-unitary connections acts likewise on the space A (E,h) of h-
unitary connections. Most equations we will encounter are gauge invariant, thus
spaces of solutions are usually considered modulo gauge equivalence. The setup out-
lined so far we can also be phrased in the language of principal fibre bundles with
structure group (or gauge group) G = GL(r,C). Any complex vector bundle E is
then associated with a principal fibre bundle P through some representation of G on
C

r . A hermitian vector bundles (E,h) arises similarly from a principal fibre bundle
with structure group G = U(r) and some unitary representation. We shall not make
extensive use of vector bundles and principal G-bundles with more general structure
groups, apart from the groups G = SL(r,C) and G = SU(r).

A holomorphic vector bundle over a complex manifold X is a complex vector bun-
dle E with the additional property that all changes of trivializations are holomorphic
(rather than just smooth). In this case, the total space E is itself a complex manifold
and the canonical projection πE : E → X is a holomorphic map. The prime example
of a holomorphic vector bundle is the holomorphic tangent bundle of a complex man-
ifold. Whether or not a given complex vector bundle admits a holomorphic structure
seems to be difficult to answer in general. Every holomorphic vector bundles comes
equipped with a Dolbeault operator

∂̄E : Γ (X,E) → Ω0,1(X,E)

which satisfies the Leibniz rule together with ∂̄E ◦ ∂̄E = 0 (the latter condition be-
ing automatically satisfied if dimX = 1). Conversely, the holomorphic structure of a
complex vector bundle E is uniquely defined by its Dolbeault operator. In the follow-
ing, we mostly adopt this second point of view when dealing with holomorphic vector
bundles. Similarly as for connections, the space of Dolbeault operators on a complex
vector bundle E (if not empty) is an affine space over Ω0,1(X,End(E)) and is acted
on by the group Gc(E). Any connection ∇ on E decomposes as ∇ = ∇1,0 + ∇0,1

with respect to the splitting

Ω1(X,E) ∼= Ω1,0(X,E) ⊕ Ω0,1(X,E).

We call the connection ∇ adapted to the holomorphic vector bundle (E, ∂̄E) if ∇0,1 =
∂̄E . For a given holomorphic vector bundle E with hermitian metric h there exists
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a unique connection ∇E
h which is both h-unitary and adapted, the so-called Chern

connection.

Example 1: Yang–Mills Equations We focus here on the origin of the Yang–Mills
equations in physics and the basic analytical aspects of the moduli spaces of their
solutions. These are prototypical for various other moduli spaces in gauge theory,
including that of Higgs bundles. As it would lead us too far away, we completely
omit a review of the deep impact of Yang–Mills theory on low-dimensional topology,
starting with Donaldson’s work [32] which yielded the existence of four-dimensional
topological manifolds which do not carry a smooth structure, to mention only one
result. Another omission concerns the vast body of literature on the analysis of the
Yang–Mills equations, which involves questions about existence, uniqueness and reg-
ularity on both Riemannian and Lorentzian manifolds.

Our main reference for the material in this section is the textbook [6] along with
the article [71]. To keep the presentation simple, we restrict the discussion to compact
manifolds of dimension four and gauge group G = U(r) or G = SU(r), though the
setup may easily be modified to include more general manifolds and gauge groups.
We in addition fix a Riemannian metric g on the manifold M which plays the role of
an auxiliary datum. The Yang–Mills functional on a hermitian rank-r vector bundle
(E,h) over M is

YM : A (E,h) → R, YM (A) = 1

2

∫
M

|FA|2g volg .

(Note the change of notation from ∇ to A.) To make sense of the integrand, an Ad-
invariant inner product needs to be fixed on the Lie algebra g, which may be taken
to be 〈ξ, η〉 = Tr ξη∗. Thus |FA|2g volg = −TrFA ∧ ∗FA. The Riemannian metric
g thus enters the definition of the Yang–Mills functional only through the Hodge
duality operator on Ω2(M). As a consequence, the functional is most interesting if
dimM = 4 since then it is invariant under conformal changes of g.

We are interested in minimizing the functional YM over the space of h-unitary
connections or, slightly more generally, in finding its critical points. These are the
solutions of the Euler–Lagrange equation, obtained as the first variation

d

ds

∣∣∣∣
s=0

YM (A + sα) =
∫

M

〈FA,dAα〉g volg .

This variation vanishes for all α if and only if the connection A satisfies the Yang–
Mills equations

d∗
AFA = 0. (1)

This is a system of second-order, semilinear (if r ≥ 2) PDEs for A. A solution is
called a Yang–Mills connection.

The Yang–Mills equations on a hermitian vector bundle of rank r = 2 and with
structure group G = SU(2) have been introduced in [141] as nonabelian analogues
of Maxwell’s equations of electrodynamics, which we review below. Prior to that,
quantum electrodynamics had been established as a quantum field theory capable of
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describing the interaction of electrically charged elementary particles. Gauge theo-
ries based on nonabelian gauge groups were then formulated with the aim of includ-
ing the other known fundamental forces of nature, i.e. besides electromagnetism, the
weak and strong force and gravity. This subsequently led to the development of the
standard model of particle physics, which by now is firmly established and yields
a unified treatment of the first three of the fundamental forces. It is a gauge theory
based on the structure group G = SU(3) × SU(2) × U(1). The book [59] give a very
readable introduction to gauge theory and the standard model of particle physics from
a mathematical viewpoint.

We briefly explain the relationship with classical electrodynamics in the case of the
abelian gauge group G = U(1). In its most basic setup, electrodynamics is formulated
on Minkowski spacetime R1,3 with Lorentzian metric g = −dt2 + dx2

1 + dx2
2 + dx2

3 .
The physical quantities involved are the electric field E = (E1,E2,E3) and the mag-
netic field B = (B1,B2,B3). These may be combined into the electromagnetic field
vector (the constant c denoting the speed of light)

F =
(
E1 dx1 + E2 dx2 + E3 dx3

)
∧ c dt

+ B1 dx2 ∧ dx3 + B2 dx3 ∧ dx1 + B3 dx1 ∧ dx2.

Maxwell’s equations are

dF = 0 and d∗F = 4πJρ.

The first equation expresses that the two-form F is closed. Hence it is exact and can
be written as F = dA, where the one-form A is called a magnetic potential of F . The
second of Maxwell’s equations therefore is the inhomogeneous Yang–Mills equation
for A with right-hand side the one-form 4πJρ . It is given by

Jρ = c−1J1 dx1 + c−1J2 dx2 + c−1J3 dx3 − ρc dt

and combines the electric current density J = (J1, J2, J3) and the electric charge
density ρ.

Turning back to the mathematical content of the Yang–Mills equations, we now
focus on the narrower class of unitary connections A on a hermitian vector bundle
(E,h) over an oriented Riemannian four-manifold (M,g) which satisfy the first-
order PDE

∗FA = ±FA.

Depending on the sign, these are called (anti-) self-dual. Since the Hodge duality
operator satisfies ∗ ◦ ∗ = Id on Ω2(M), it has eigenvalues +1 and −1 and gives rise
to the decomposition

Ω2(M) ∼= Ω2,+(M) ⊕ Ω2,−(M)

into the subbundles of self-dual, respectively anti-self-dual two-forms. Thus with re-
spect to the corresponding decomposition of Ω2(M, su(E)), it follows that

FA ∈ Ω2,±(M, su(E))
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for an (anti-) self-dual connection A. Since

d∗
AFA = − ∗ dA ∗ FA = ∓ ∗ dAFA = 0

by the Bianchi identity, an (anti-) self-dual connection is automatically a solution of
the Yang–Mills equations Eq. (1). Though not every Yang–Mills connection is self-
dual or anti-self-dual, the latter are an interesting and somewhat easier to describe
subclass. Part of their significance comes from the fact that they arise as the absolute
minima of the Yang–Mills functional as follows from the identity

YM (A) = 1

4

∫
X

|∗FA ± FA|2g volg ∓1

2

∫
X

Tr(FA ∧ FA)

for a general unitary connection A. Here the latter integral equals (up to a factor of
8π2) the second Chern number of the vector bundle E, and hence is a topological
invariant which does not depend on the connection A. This observation immediately
implies an obstruction to the existence of (anti-) self-dual connections on E. Since
YM (A) ≥ 0 one necessarily has

c2(E) < 0 respectively c2(E) > 0

if E carries a self-dual, respectively anti-self-dual connection. In the case where
c2(E) = 0, the vector bundle E is trivial and an (anti-) self-dual connection is au-
tomatically flat.

Like the Yang–Mills equations, the (anti-) self-duality equations are gauge invari-
ant, so one is led to study the moduli space of solutions

M sd = {A ∈ A (E,h) | ∗FA = FA}
G(E,h)

,

and similarly for anti-self-dual connections. There are both local and global aspects
of this problem. To gain some information about the local structure of M sd near a
given [A] ∈ M sd we describe the set of gauge orbits close to the orbit through [A] by
representatives B satisfying the local slice condition

d∗
A(B − A) = 0.

It requires the difference B − A to be orthogonal in the L2 sense to the gauge orbit
through [A]. This setup is formally very similarly to the one considered in Thm. 1
which describes the local structure of Teichmüller moduli space Tγ . The linearization
of the self-duality equations and the local slice condition at the point A is the operator

LA : Ω1(M, su(E)) → Ω0(M, su(E)) ⊕ Ω2,−(M, su(E)),

LAα = (d∗
Aα,dAα − ∗dAα).

This operator is elliptic and hence a Fredholm operator between suitable Banach
spaces. Moreover, an implicit function theorem is available and shows that the set
of solutions of the self-duality equations near A which in addition satisfy the local
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slice condition is a finite-dimensional smooth manifold. It is parametrized by the
nullspace of the operator LA which thus gives rise to a local coordinate system on
M sd near the point [A]. The argument requires the operator LA to be surjective,
which however is satisfied for a generic choice of the background Riemannian metric
g. In this unobstructed situation, the dimension of M sd equals the Fredholm index
of LA and can be computed from the Atiyah–Singer index theorem, leading (for
G = SU(2)) to the formula

indLA = 8 |c2(E)| − 3

2

(
χ(M) − sign(M)

)
.

The topological quantities appearing on the right-hand side are the absolute value
of the second Chern number of E, the Euler characteristic and the signature of the
manifold M , respectively.

Due to the nonlinearity of the equations, it is considerably harder to approach the
global structure of the moduli space M sd. We only discuss one sample result. Self-
dual and anti-self-dual SU(2) Yang–Mills connections on euclidean four-space R4 of
finite Yang–Mills energy, so-called Yang–Mills instantons, have been classified in [4]
following the earlier work [7]. Identifying R

4 with the R-vector space H of quater-
nions and the Lie algebra su(2) with the subspace of purely imaginary quaternions

{x = bi + cj + dk | b, c, d ∈R} ⊂ H,

a basic example of a self-dual Yang–Mills instanton is given by

A = Im
xd x̄

1 + |x|2 . (2)

Its Yang–Mills energy is 16π2 and its curvature is the self-dual two-form

FA = dx ∧ dx(
1 + |x|2)2 .

The conformal transformations x 
→ λ(x− ξ), where λ > 0 and ξ ∈ H, are a “hidden”
symmetry of the equations and give rise to a five-dimensional family of self-dual
Yang–Mills instantons of the same energy. One may check that they are pairwise
gauge inequivalent. Uhlenbeck’s removable singularity theorem [130] implies that
every Yang–Mills instanton A on R

4 admits an extension to a complex vector bundle
E over its compactification S4 (possibly after applying a suitable gauge transforma-
tion). The isomorphism type of E is determined by the so-called instanton number
k(A) ∈ Z of A (which in turn relates to the second Chern number of E). The self-
dual instanton in the above example has instanton number k(A) = 1. The connected
component of M sd formed by Yang–Mills instantons of instanton number k(A) = 0
consists of the single point [0]. If k �= 0, the above formula for the Fredholm index of
the operator LA reduces to indLA = 8|k|−3. The Yang–Mills instantons with instan-
ton number k(A) = 1 form a connected component of dimension five, which equals
the set of gauge equivalence classes of conformal transformations of the prototypical
instanton A in Eq. (2).
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We finally remark that the conformal invariance of the Yang–Mills equations is a
crucial feature also in the study of global aspects of the moduli space M sd for more
general compact Riemannian four-manifolds M . This is related to the so-called bub-
bling phenomenon, which states that a sequence of solutions of the Yang–Mills equa-
tions with uniformly bounded energy either converges to a smooth limit or develops
singularities in a finite number of points, which each takes away a finite “quantum”
of energy according to their instanton number. The above Yang–Mills instantons on
S4 serve as local models which are capable of describing the development of such
singularities. On the complement of the singular set one can show smooth conver-
gence to a Yang–Mills connection. This analysis builds crucially on the compactness
theorem due to Uhlenbeck [131] which ever since then has become a powerful tool
in many related situations.

Example 2: Bogomolny Equations There are many more partial differential equa-
tions in gauge theory which lead to geometrically interesting moduli spaces. We
briefly discuss some further ones and give pointers to the relevant references. Closely
related to the Yang–Mills equations are the Bogomolny equations on R

3. This is the
system of first-order nonlinear PDEs

FA = ∗dAϕ

for a unitary connection A ∈ A (E,h) and section ϕ ∈ Ω0(R3, su(E)). It arises by
dimension reduction from four to three dimensions of the self-dual Yang–Mills equa-
tions. Solutions (A,ϕ) are called magnetic monopoles. The corresponding moduli
space is a noncompact hyperkähler manifold, the large scale structure of which is
the subject of ongoing investigations (cf. [8] and the references therein). Hitchin’s
self-duality equations and Nahm’s equations together with their respective moduli
spaces of solutions also fit into this scheme. Both may uniformly be derived from
the self-dual Yang–Mills equations by dimension reduction to two and one dimen-
sions, respectively. While the discussion of moduli spaces of Hitchin’s self-duality
equations will be taken up in §4, the reader is referred to [78] for a review of results
concerning Nahm’s equations.

Example 3: Seiberg–Witten Equations The Seiberg–Witten equations are another
set of first-order nonlinear PDEs. These are defined on a Riemannian four-manifold
(M,g) with spinc structure σ . Associated with σ is the spinor bundle Sσ = S−

σ ⊕
S+

σ . The configuration space for the Seiberg–Witten equations is the product space
Γ (M,S+

σ ) × A of right-handed spinors and unitary connections on the determinant
line bundle detSσ . The equations then read

{
/DAϕ = 0

F+
A = q(ϕ)

(3)

for a pair (ϕ,A) ∈ Γ (M,S+
σ ) × A . Here /DA : Γ (M,S+

σ ) → Γ (M,S−
σ ) is the Dirac

operator associated with σ and A, the symbol F+
A denotes the self-dual part of the

curvature form, and q is some bilinear map in ϕ. The Seiberg–Witten moduli space
is the space of unitary gauge equivalence classes of irreducible solutions of Eq. (3).
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It is a (possibly empty) finite-dimensional, compact, orientable manifold. If the mod-
uli space is of dimension zero, an oriented count of its elements gives rise to the
Seiberg–Witten invariant, an integer invariant of the spinc manifold M . A defini-
tion of this invariant in the case of positive dimension is possible but more involved.
Seiberg–Witten theory has found applications in algebraic geometry (Kronheimer
and Mrowka’s proof of the Thom conjecture [87]), in differential geometry (obstruc-
tions to the existence of Riemannian metrics of positive scalar curvature) as well as in
symplectic geometry. We refer to the textbook [113] for an introduction and further
references.

Example 4: Kapustin–Witten Equations A rather different set of equations which
has attracted attention recently are the θ–Kapustin–Witten equations as first consid-
ered in [80]. These are defined on a hermitian vector bundle (E,h) over an oriented
Riemannian four-manifold (M,g) and take the form

{
eiθFA+iϕ = ∗eiθFA+iϕ

d∗
Aϕ = 0

for a complex connection A + iϕ. Here θ ∈ R is a fixed parameter. Notice that the
values θ and θ + π lead to the same equations. In analogy to the (anti-) self-dual
Yang–Mills equations, the first of the two equations is satisfied by the absolute min-
ima of the complex Yang–Mills functional

YMC(A + iϕ) = 1

2

∫
M

|FA+iϕ |2g volg .

Since it is not elliptic, even not up to unitary gauge transformations, one needs to
augment it by the second equation to obtain an elliptic system.

In the special case where ϕ = 0, the θ–Kapustin–Witten equations interpolate be-
tween the self-dual Yang–Mills equations corresponding to θ = 0 and the anti-self-
dual Yang–Mills equations corresponding to θ = π

2 . In fact, a Weitzenböck formula
expresses the Laplace term �g |ϕ|2g as a sum of positive terms and a geometric term
involving the Ricci tensor of g. In the case where M is compact and the Riemannian
metric g has positive Ricci curvature, this observation may be used to conclude that
ϕ vanishes identically. Hence the study of the Kapustin–Witten equations reduces es-
sentially to that of the (anti-) self-dual Yang–Mills equations. The article [47] gives
a more detailed account on the geometry of the Kapustin–Witten equations and their
relationship with various other equations in gauge theory.

Another reduction arises in the case where the value of the parameter θ is not
an integer multiple of π

2 . If M is compact, then it follows that any solution A + iϕ

is flat. It is for this reason that the θ–Kapustin–Witten equations are mostly consid-
ered on noncompact manifolds such as M4 = R × N , where N is some compact
orientable three-manifold. To obtain an elliptic problem in this setup, one then needs
to impose certain nonstandard asymptotic conditions at “infinity” {±∞} × N , the
so-called Nahm pole boundary conditions and Nahm pole boundary conditions with
knots. The study of the resulting moduli spaces of solutions has been initiated in
[103, 104]. One motivation here is to find new three-manifold invariants by count-
ing the elements of these moduli spaces. A prominent conjecture due to Gaiotto and



Moduli Spaces of Higgs Bundles – Old and New 79

Witten [49, 138] predicts a relationship between these gauge theoretically defined in-
variants and the Jones polynomial and the Khovanov homology of knots embedded
in the three-manifold N . This picture is still not complete and poses some very inter-
esting problems in geometric analysis such as on the compactness properties of the
moduli spaces. Recent progress in this program is due to He [67] and He–Mazzeo
[68, 69] who study a reduced version of the full Kapustin–Witten equations, the ex-
tended Bogomolny equations, on X ×R

+ (X a Riemann surface). The moduli spaces
arising in this setup are shown to be closely related to that of SL(2,R) Higgs bundles
and real representation varieties, a topic which will be taken up in §5.3.

3 Moduli Spaces of Holomorphic Vector Bundles

In the geometric setup of a complex vector bundle πE : E → X, we review the most
prototypical instance of what is now known as a Kobayashi–Hitchin correspondence:
a map between the moduli space of holomorphic structures on E on the one hand
and the moduli space of hermitian metrics on E satisfying a certain “interesting”
PDE on the other. The latter in turn is related to spaces of unitary representations into
certain Lie groups. We here encounter the first example of an ongoing theme: moduli
spaces of interest often appear in quite different incarnations, such as holomorphic,
differential geometric or topological objects.

3.1 The Hermitian Einstein Equations

In view of later applications and to keep the presentation as simple as possible, we
only consider the case dimX = 1, i.e. that of a closed Riemann surface. We denote its
complex structure by J and in addition assume that its genus γ is at least two. Notice
at this point that for notational convenience we do not distinguish between the Rie-
mann surface X and the underlying smooth surface. As an auxiliary datum, we fix a
Kähler form ωX ∈ Ω1,1(X,C) on X. Thus ωX is compatible with the complex struc-
ture J and gives rise to a Riemannian (i.e., positive-definite) metric g = ωX(·, J ·).
We assume the Kähler form ωX to be normalized such that

∫
X

ωX = 1.
Let πE : E → X be a holomorphic vector bundle with Dolbeault operator

∂̄E : Γ (X,E) → Ω0,1(X,E). Let rE and dE denote the rank and degree of the un-
derlying complex vector bundle. We seek for “interesting” hermitian metrics on E.
For instance, interesting might mean that we are looking for a hermitian metric h

such that the associated Chern connection ∇E
h is flat, or, if dE �= 0 and the bundle

E does not allow for flat connections, has curvature as evenly distributed on X as
possible. This question is in close analogy with the Riemannian geometric problem
of finding a Riemannian metric g such that the associated Levi–Civita connection ∇g

on T X has “interesting” curvature properties, such as constant Gauß curvature (cf.
§2.1). A PDE way of phrasing it is to seek for a solution h of the hermitian Einstein
(or hermitian Yang–Mills, or constant central curvature) equation

F∇E
h = −2πiμEIdE · ωX, (4)



80 J. Swoboda

where μE = dE

rE
denotes the slope of the complex vector bundle E. The numerical

constant −2πiμE here is chosen to be in line with Chern–Weil theory. Namely, tak-
ing traces and integrating both sides we must have that

∫
X

Tr(−2πiμEIdE)ωX =
∫

X

−2πi dE ωX = −2πi dE,

which equals
∫
X

TrF∇E
h .

Equation (4) is a second order semilinear PDE for h. It admits a variational for-
mulation as the Euler–Lagrange equation of the functional

J (h) =
∫

X

∣∣∣F∇E
h + 2πiμEIdE

∣∣∣2
g

ωX,

with metrics h satisfying Eq. (4) appearing as the absolute minima of J . The search
of solutions can therefore be done by variational methods, i.e. by showing the exis-
tence of a minimizer of J . A related but finer question concerns the structure of the
set of all solutions. The key concept which underlies the treatment of both questions
is that of stability. It relates holomorphic properties of the vector bundle E to analytic
properties of the functional J .

3.2 Stability and the Theorem of Narasimhan–Seshadri

In this section we explain how the stability of the holomorphic vector bundle E en-
ters as a necessary condition for the existence of a minimizer of the functional J .
The argument is due to Donaldson and [31] builds crucially on Chern–Weil theory
of characteristic classes. We start with some proper holomorphic subbundle F of E

(i.e. F �= 0 and F �= E). Its Dolbeault operator ∂̄F is the restriction of ∂̄E . The quo-
tient bundle Q = E/F arises as a further holomorphic vector bundle in a natural
way. One notices the isomorphism E ∼= F ⊕ Q of complex (though, in general, not
holomorphic) vector bundles. There is a corresponding decomposition

∂̄E =
(

∂̄F β

0 ∂̄Q

)

of the Dolbeault operator ∂̄E , where β ∈ Ω0,1(X,Hom(Q,F )). Fixing a hermitian
metric h on E one has induced hermitian metrics on F and Q which we also denote
by h. The resulting Chern connections ∇E

h , ∇F
h and ∇Q

h are then related through

∇E
h =

( ∇F
h β

−β∗h ∇Q
h

)
.

The curvature two-forms involved satisfy

F∇E
h =

(
F∇F

h − β ∧ β∗h ∂β

−∂̄β∗h F∇Q
h − β∗h ∧ β

)
.
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Assume now that β �= 0, and hence
∫
X

|β|2g ωX > 0. Elementary estimates yield the
lower bound

J (h)
1
2 ≥

∣∣∣∣
∫

X

Tr
( ∗ F∇F

h + 2πiμEIdF

)− |β|2g ωX

∣∣∣∣
+
∣∣∣∣
∫

X

Tr
( ∗ F∇Q

h + 2πiμEIdQ

)+ |β|2g ωX

∣∣∣∣ .
By Chern–Weil theory,

∫
X

Tr(F∇F
h ) = −2πi dF and

∫
X

Tr(F∇Q
h ) = −2πi dQ,

from which it follows that

J (h)
1
2 > 2πrF (μF − μE) + 2πrQ(μE − μQ).

Thus J (h) = 0 can only be satisfied if μF < μE (equivalently, μQ > μE). Since the
proper holomorphic subbundle F was chosen arbitrarily, this condition must hold for
all F . In the case where β = 0 (in other words, where E ∼= F ⊕ Q is a holomorphic
splitting), the same estimate shows that J (h) = 0 can only hold if μF = μQ = μE .

Definition 2 (Mumford) The holomorphic vector bundle E is called stable if the
inequality μF < μE is satisfied for every proper holomorphic subbundle F of E, and
semistable if the weaker inequality μF ≤ μE holds. It is called polystable if there is a
decomposition of E into a direct sum of stable holomorphic subbundles of the same
slope.

Notice that the property of stability is preserved under complex gauge transforma-
tions. To familiarize the reader with this concept, we include a basic example.

Example 1 (cf. [77]) Evidently, a holomorphic line bundle πL : L → X is al-
ways stable. Concerning holomorphic vector bundles πE : E → CP1, the Birkhoff–
Grothendieck theorem yields a decomposition of E into a direct sum of line bundles
Li of degrees di . Since d1 + · · · + drE = dE = rEμE it follows that for at least one
index j one has dj ≥ μE . The holomorphic vector bundle E is therefore never stable,
and semistable if and only if all the line bundle Li have the same degree di . Examples
of stable vector bundles of rank 2 are furnished by nontrivial extensions

0 −→ L1
i−→ E

j−→ L2 −→ 0

of holomorphic line bundles L1 and L2 of degrees d1 and d2, where we assume
that d1 < d2. Then dE = d1 + d2 and μE = 1

2 (d1 + d2). If L ⊂ E is some further
holomorphic line subbundle, then the bundle map j : L → L2 is zero or injective.
In the first case, L ∼= L1 by exactness and hence μL = d1 < μE . In the second case
L ∼= L2, and hence it would provide for a splitting E ∼= L1 ⊕ L2, in contrast to the
assumption. It follows that E is stable.
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Returning to the discussion of solvability of the hermitian Einstein equation (4),
we have seen that polystability is a necessary condition for existence of a solution.
Remarkably, it is also a sufficient condition. This is the content of the Narasimhan–
Seshadri theorem.

Theorem 3 (Narasimhan–Seshadri [110]) A holomorphic vector bundle E carries
a hermitian metric h satisfying the hermitian Einstein equation if and only if it is
polystable. The solution h is unique up to multiplication by a positive scalar.

The first proof due to Narasimhan and Seshadri was algebraic in nature and relates
stable vector bundles with unitary representations of the fundamental group π1(X).
Donaldson [31] presented a shorter analytic proof which is based on variational ar-
guments involving the functional J . We remark in passing that the Narasimhan–
Seshadri theorem continues to hold for holomorphic vector bundles over compact
Kähler manifolds of arbitrary dimension. This is the content of the Donaldson–
Uhlenbeck–Yau theorem [33, 132]. In this situation the notion of (poly)stability has
to be replaced by a modified stability concept where (poly)stability of a holomorphic
vector bundle is tested against all proper OX-subsheafs (rather than holomorphic sub-
bundles).

Let us elaborate a bit further on the central role played by stability. We presented
it here from an analytic point of view – as a necessary condition for a holomorphic
vector bundle to carry a solution to the hermitian Einstein equation. The initial moti-
vation due to Mumford originated in the problem of providing the set of equivalence
classes of holomorphic vector bundles with a “good” topology. The principle ob-
stacle to overcome is the fact that endowing the set of all equivalence classes with
the quotient topology results in a non-Hausdorff topological space. This behavior is
caused precisely by the presence of unstable holomorphic subbundles, as is illustrated
through the following simple example which we have taken from [14].

Example 2 Let the trivial rank-2 complex vector bundle πE : E → X be endowed
with the standard holomorphic structure with Dolbeault operator ∂̄ . Consider further
the Dolbeault operator ∂̄ + η, where

η =
(

0 η1
0 0

)
∈ Ω0,1(X,End(E))

for some η1 �= 0. It acts on sections s = (s1, s2) of E as

(∂̄ + η)s = (∂̄s1 + η1s2, ∂̄s2).

Clearly, the two Dolbeault operators are gauge inequivalent. For both holomorphic
structures, the vector bundle E is unstable, the unstability being caused by the holo-
morphic line subbundle spanned by the section (1,0) (with Dolbeault operator ∂̄).
Consider now the one-parameter subgroup of complex gauge transformations

gt =
(

t 0
0 t−1

)
(t > 0).
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Then

g∗
t (∂̄ + η) = ∂̄ +

(
0 t−2η1
0 0

)
.

Passing to the limit t → ∞, one finds that the Dolbeault operator ∂̄ is contained in
the closure of the complex gauge orbit of ∂̄ + η.

To obtain a “good” (i.e., Hausdorff) quotient one needs to restrict the set of all
holomorphic vector bundle structures on the fixed complex vector bundle E (of rank
r and degree d) to the subclass

C s(r, d) = {∂̄E | (E, ∂̄E) is a stable holomorphic vector bundle
}
.

We then define the moduli space of stable vector bundles as the quotient M s(r, d) of
C s(r, d) by the group of complex gauge transformations. Using standard analytical
methods one can show:

Theorem 4 The moduli space M s(r, d) has the structure of a complex manifold of
dimension 1 + r2(γ − 1).

The complex manifold M s(r, d) is in general not compact. It admits a natural
compactification by adding the gauge equivalence classes of semistable vector bun-
dles of the same rank and degree. In the particular case where the integers r and
d are coprime, bundles which are semistable but not stable do not exist, and hence
M s(r, d) is already compact.

The Narasimhan–Seshadri theorem can be used to obtain a diffeomorphism be-
tween M s(r, d) and the similarly defined moduli space of (irreducible) hermitian
metrics satisfying the hermitian Einstein equation (4). By taking the holonomy of
the Chern connection ∇E

h along loops in X, one obtains a further map into the space
of representations of the fundamental group π1(X) into the unitary group U(r). The
discussion of this last aspect will be taken up again in §4.4, where a very similar
correspondence is described in the context of moduli spaces of Higgs bundles. There
we will also have to say more about the various geometric structures these moduli
spaces carry. As for the space M s(r, d), let us only remark here that it carries a nat-
ural Kähler metric. This metric arises, after identifying M s(r, d) with the moduli
space of solutions of Eq. (4), as a so-called Kähler quotient. Its construction relies
on the observation that the curvature term F∇E

h is a moment map for the action of
the (infinite-dimensional) Lie group of gauge transformations on the affine space of
unitary connections. The method of Kähler reduction provides for a uniform way of
constructing interesting Riemannian metrics on many other moduli spaces as well.

4 Higgs Bundles

The terms Higgs field, respectively Higgs bundle were coined by Hitchin and Simp-
son. This terminology indicates the formal analogy of this geometric structure to the
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mathematical formulation of the Higgs mechanism in the standard model of particle
physics due to P. W. Higgs [70]. There were several initial motivations to study Higgs
bundles in geometry. Part of the interest results from the observation that the resulting
moduli spaces closely relate to a broad range of topics in low-dimensional topology,
variations of Hodge structures, Teichmüller theory and completely integrable sys-
tems. We shall explain these relations below, in this way providing for an illustration
of some, yet by far not all of the mathematical aspects which are alluded to in the
following quotation:

There are in fact solutions, as we shall show, and the moduli space of all so-
lutions turns out to be a manifold with an extremely rich geometric structure
which will be the focus of our study. It brings together in a harmonious way the
subjects of Riemannian geometry, topology, algebraic geometry, and symplec-
tic geometry.2

The scope of this section is to introduce the central mathematical object of this
review: the moduli space of stable Higgs bundles over a Riemann surface. We then
move on to summarize the basic aspects of the theory, emphasizing the relation with
Hitchin’s self-duality equations, which themselves have their origin in the self-dual
Yang-Mills equations in four dimensions.

4.1 Higgs Bundles and the Self-Duality Equations

Throughout we keep the notation that E is a complex vector bundle of rank rE and
degree dE over some Riemann surface X of genus γ ≥ 2.

The Moduli Space of Stable Higgs Bundles The definition of a Higgs bundle
extends that of a holomorphic vector bundle in a natural way:

Definition 3 A Higgs bundle is a pair (∂̄E,Φ), where ∂̄E is the Dolbeault operator
associated with a holomorphic structure on the complex vector bundle E and Φ ∈
Ω1,0(X,End(E)) such that ∂̄EΦ = 0. The section Φ is called a Higgs field.

In other words, the defining equation ∂̄EΦ = 0 requires that the Higgs field Φ is
a holomorphic section of the vector bundle End(E) ⊗ KX , endowed with the holo-
morphic structure coming from T X and E. We also notice right away that the group
Gc(E) of complex gauge transformation acts diagonally on the set of Higgs bundles,
i.e.

g · (∂̄E,Φ) = (g−1 ◦ ∂̄E ◦ g,g−1Φg).

We let

M Higgs(r, d) =
{
(∂̄E,Φ) | ∂̄EΦ = 0

}
Gc(E)

(5)

2Cited from N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc., 55,
59–126 (1987) [72].
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denote the moduli space of Higgs bundles on the complex vector bundle E.
The definition of Higgs bundles includes as a special case that of a vanishing Higgs

field Φ ≡ 0, where it reduces to the above definition of holomorphic vector bun-
dles. Just as the notion of stability of vector bundles is essential for the Narasimhan–
Seshadri correspondence to hold, it is of no surprise that a similar stability concept
plays a key role also in the realm of Higgs bundles. The following definition gives
the appropriate extension of stability as introduced for holomorphic vector bundles
in Def. 2.

Definition 4 A Higgs bundle (∂̄E,Φ) is called Higgs-(semi)stable (for short,
(semi)stable) if for every proper Φ-invariant holomorphic subbundle F of E it holds
that μF < μE , respectively μF ≤ μE .

We let

M Higgs,s(r, d) ⊂ M Higgs(r, d)

denote the moduli space of stable Higgs bundles. In analogy to Thm. 4 one can show
that M Higgs,s(r, d) is a smooth complex manifold. In contrast, the set M Higgs(r, d)

of all equivalence classes of Higgs bundles is not even a Hausdorff space in a natural
way. Its complex dimension is

dimM Higgs,s(r, d) = 2 + 2r2(γ − 1), (6)

thus twice the dimension of the moduli space of stable vector bundles. In fact, there is
a natural inclusion of the cotangent bundle of M s(r, d) into M Higgs,s(r, d) as an open
subset, cf. [134] for details. The latter in turn is an open subset of the set of semistable
Higgs bundles, which by a result due to Nitsure [114], is a complex quasi-projective
variety. In the case where dE and rE are coprime, Higgs-semistability implies Higgs-
stability and therefore both spaces coincide. For some purposes it is convenient to
consider the narrower class of Higgs bundles (∂̄E,Φ) where TrΦ = 0 and ∂̄E induces
some fixed holomorphic structure on the determinant line bundle detE over X. In this
so-called fixed determinant or SL(r,C)-case the concept of stability remains the same
and we shall keep the notation M Higgs,s(r, d) for the resulting moduli space of stable
Higgs bundles. The main difference here is that the quotient in Eq. (5) is taken with
respect to the subgroup SL(E) of gauge transformations of fibrewise determinant one.
The dimension formula stated in Eq. (6) changes into 2r2(γ − 1) on its right-hand
side.
Example 3 (a) Let (E, ∂̄E) be a holomorphic vector bundle of rank rE = 2 and de-

gree d on X = CP1. By a basic result due to Grothendieck E decomposes into
a direct sum of holomorphic line bundles L1 and L2. Their degrees di satisfy
d1 + d2 = d . Suppose that (∂̄E,Φ) is a Higgs bundle. Then with respect to the
decomposition E ∼= L1 ⊕ L2 we can write

Φ =
(

φ11 φ12
φ21 φ22

)
,
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where φ11 is a holomorphic section of Hom(L1,L1) ⊗ KX
∼= O(−2), and

similarly for the other entries. Since holomorphic line bundle of negative de-
gree do not admit any nontrivial holomorphic sections it follows that φ11 = 0,
and analogously that φ22 = 0. Furthermore, φ12 ∈ H 0(d1 − d2 − 2) and φ21 ∈
H 0(−d1 + d2 − 2). Assuming without loss of generality that d1 ≤ d2 it fol-
lows that d1 − d2 − 2 < 0 and hence φ12 = 0. Thus Φ(L2) = 0 and so L2 is
in particular a Φ-invariant holomorphic subbundle of E. On the other hand,
degL2 = d2 ≥ 1

2 (d1 + d2) = d
2 , from which we conclude that E is not stable.

Hence X does not carry any stable Higgs bundles of rank two.

(b) We fix a line bundle K
1
2
X (which is equivalent to choosing a spin structure on X)

together with its holomorphic structure induced by KX and let E = K
− 1

2
X ⊕ K

1
2
X .

The Higgs bundle (∂̄E,Φq) with Higgs field Φq given by

Φq =
(

0 1
q 0

)
(7)

is Higgs-stable. Yet, it is clearly not stable as a holomorphic vector bundle. To
check stability in the sense of Higgs bundles, we note that for q = 0 the only

invariant holomorphic subbundle is K
− 1

2
X which has degree −γ − 1 < 0 = dE .

Stability is an open condition, so the Higgs bundle corresponding to q sufficiently
close to 0 is stable as well. If q is arbitrary the corresponding Higgs bundle
may be conjugated to one where this component is small by a complex gauge
transformation g of the form

g =
(

1 0
0 δ

)

for a suitable constant δ. Since stability is also preserved under complex gauge
transformations the claim follows. We shall come back to this examples several
times later on.

Hitchin’s Self-Duality Equations As a second key ingredient, we introduce the
proper replacement of the hermitian Einstein equation (4) in the new setup of Higgs
bundles. Such a replacement is found in Hitchin’s self-duality equation

F∇E
h + [Φ ∧ Φ∗h] = −2πiμEIdE · ωX (8)

for a hermitian metric h on E. Here, (∂̄E,Φ) is a fixed Higgs bundle. As before,
∇E

h denotes the Chern connection for the pair (∂̄E,h). The Higgs field enters Eq. (8)
through the commutator term [Φ ∧ Φ∗h], where Φ∗h is a differential form of type
(0,1) with values in End(E), its endomorphism part being the hermitian adjoint of
that of Φ . Thus if Φ = ϕ dz with respect to some local trivialization of E over a
complex coordinate patch, then Φ∗h = φ∗h dz̄ and

[Φ ∧ Φ∗h] = [φ ∧ φ∗h]dz ∧ dz̄.
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Just as the hermitian Einstein equation, Hitchin’s self duality equations arise as the
Euler–Lagrange equation of a suitable energy functional, in this case the Yang–
Mills–Higgs functional

YMH (h) =
∫

X

∣∣∣F∇E
h + [Φ ∧ Φ∗h] + 2πiμEIdE

∣∣∣2
g

ωX.

This variational point of view has been used in [72] to establish a version of the
Narasimhan–Seshadri correspondence for Higgs bundles, to which we come back in
§4.2 below.

It is sometimes more natural to fix a background hermitian metric h0 on E and to
consider the related system of PDEs

{
∂̄AΦ = 0

FA + [Φ ∧ Φ∗h0 ] = −2πiμEIdE · ωX

(9)

now for a unitary connection A ∈ A (E,h0) and a Higgs field Φ . These are also
called Hitchin’s self-duality equations, and appear in this version in [72]. Any solu-
tion (A,Φ) of (9) gives in particular rise to the Higgs bundle (∂̄A,Φ) and a solution
of Eq. (8) with h = h0. Conversely, assume that Eq. (8) is satisfied by the hermi-
tian metric h with respect to some fixed Higgs bundle (∂̄E,Φ). Write h = h0B for
a positive-definite endomorphism field B and let the complex gauge transformation

g be defined by g = B
1
2 . Then the gauge transformed pair (g−1 ◦ ∂̄E ◦ g,g−1Φg) is

a solution of the system (9). Hence both points of view are equivalent, and we may
often switch back and forth between either of them.

Both Eq. (8) and Eq. (9) are systems of first order nonlinear PDEs. While Eq. (8)
is an elliptic equations, this holds true for Eq. (9) only upon imposing an additional
gauge-fixing condition. The reason for this is that both equations in (9) are invari-
ant under the infinite-dimensional group of h0-unitary gauge transformations, acting
diagonally on pairs (A,Φ), as one can easily check.

Hitchin Moduli Space Along with the moduli space M Higgs,s(r, d) of stable Higgs
bundles, our main focus is on the moduli space

M sd(r, d) = {(A,Φ) | irreducible solution of Eq. (9)}
G(E,h)

of unitary gauge equivalence classes of irreducible solutions to the self-duality equa-
tions. Here the attribute irreducible refers to solutions which do not split into solutions
on any nontrivial decomposition of (E,h) as a direct sum of hermitian subbundles.
It is a routine manner to proceed similarly to the examples discussed in §2 (i.e. to
employ a version of the implicit function theorem in the realm of Banach manifolds)
to show that M sd(r, d) is a finite-dimensional smooth manifold and to compute its
dimension in terms of the genus of the surface X and the rank of the vector bundle E.

From Yang–Mills to Higgs As an interlude, we include Hitchin’s initial derivation
of Eq. (9) starting from the self-dual Yang–Mills equation on R

4 (cf. [72]). In a sim-
ilar manner, Eq. (8) can be obtained as a special instance of the Hermitian–Einstein
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equation in four dimensions (cf. [35]). So already from the point of view of nonlinear
PDEs in vector bundles these equations appear to be very natural objects of study.

We now provide the details of this derivation. On euclidean space R
4 endowed

with the standard coordinates (x1, x2, x3, x4), the self-dual Yang–Mills equations

∗FA = FA (10)

for unitary a connection A =∑4
i=1 Ai dxi with curvature form

FA =
4∑

i,j=1

Fij dxi ∧ dxj ,

where

Fij = −∂Ai

∂xj

+ ∂Aj

∂xi

+ 1

2
[Ai,Aj ],

take the form

F12 = F34, F13 = −F24, F14 = F23. (11)

Now assume that the connection A is invariant under translations in the x3- and x4-
directions, i.e. that the coefficients Ai are functions in (x1, x2). Then a unitary con-
nection A on R

2 ∼= C (with standard complex coordinate z = x1 + ix2) is defined by
A = A1 dx1 +A2 dx2. Combining A3 and A4 into the single endomorphism field Φ =
(A3 − iA4) dz, the set of equations (11) reduces to the self-duality equations on R

2.
We remark in passing that the reduction of the self-dual Yang-Mills equations by

only one dimension provides for another interesting direction of study. The resulting
PDE is the magnetic monopole or Bogomolny equation as already encountered briefly
in §2.2. The geometry and asymptotic structure of its noncompact moduli space of
solutions is a topic of current interest (cf. for instance [5, 8, 85]). Most of the results in
that direction are concerned with monopoles on R

3. In contrast, the self-duality equa-
tions do not admit any nontrivial solutions (e.g. bounded with nonvanishing Higgs
field) on the complex plane. It is their conformal invariance, manifest from Eq. (9),
which allows them to be studied in the realm of Riemann surface (of higher genus),
leading to a wealth of interesting solutions.

4.2 The Kobayashi–Hitchin Correspondence for Higgs Bundles

As noted above, the definitions of (stable) Higgs bundles and Hitchin’s self-duality
equations include as a special case that of a vanishing Higgs field Φ ≡ 0. The setup
then reduces to that of (stable) holomorphic vector bundles, respectively the hermi-
tian Einstein equations. As we have seen, a link between both is furnished by the
Narasimhan–Seshadri theorem (Thm. 3). Naturally, one therefore seeks for an ex-
tension of that result to the realm of Higgs bundles. Such a link indeed exists and
is provided by the theorem of Hitchin below which is a precise analogue of the
Kobayashi–Hitchin correspondence. Just as before, the notion of stability plays an
essential role.
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Theorem 5 (Hitchin [72]) The Higgs bundle (∂̄E,Φ) carries a hermitian metric h

satisfying Eq. (8) if and only if it is Higgs-polystable. In this case, the metric h is
unique up to multiplication by a positive scalar.

There is also a higher-dimensional analogue of this theorem due to Simpson [123]
paralleling the Uhlenbeck–Yau theorem. The appropriate notion of Higgs bundle in
this more general context requires in addition that Φ ∧ Φ = 0. It can be viewed as a
stability condition and holds automatically for a Riemann surface.

4.3 Rank-1 Higgs Bundles

We illustrate the theory developed so far in the simplest case of Higgs bundles of
rank rE = 1, where it mostly reduces to classical Hodge theory. For a more extensive
treatment we refer the reader to Goldman and Xia’s work [53]. As a slight simpli-
fication we assume here that the underlying complex vector bundle E has degree
dE = 0. Hence E ∼= X × C is the trivial complex line bundle which we endow with
its standard holomorphic structure with Dolbeault operator ∂̄ . Any other holomorphic
structure on E corresponds to ∂̄ +β for some form β ∈ Ω0,1(X,C). For 0 ≤ p, q ≤ 1
we introduce the vector space

Hp,q(X) := {α ∈ Ωp,q(X,C) | dα = d∗α = 0
}

of harmonic forms of type (p, q) on X. The defining equation for a Higgs bundle
reduces then to

∂̄Φ + [β ∧ Φ] = ∂̄Φ = 0,

i.e. is equivalent to Φ ∈H1,0(X) being harmonic. A complex gauge transformation in
this setup is a smooth map g ∈ GL(E) = C∞(X,C∗). The action by complex gauge
transformations factors into that of the connected component of the identity, denoted
GL0(E), and a residual action of the group π0(GL(E)) ∼= H 1(X;Z). Elements of
GL0(E) can be written in the form g = exp(f ) for some complex-valued function f

on X. It acts on a Higgs pair as

g · (∂̄ + β,Φ) = (∂̄ + β + ∂̄f,Φ).

Hodge theory yields the decomposition

Ω0,1(X,C) ∼= H0,1(X) ⊕ im
(
∂̄ : Ω0(X,C) → Ω0,1(X,C)

)
.

It follows that the space of Higgs bundles modulo the action by GL0(E) naturally
identifies with the vector space H0,1(X) ⊕H1,0(X). Dividing out the residual action
of π0(GL(E)) reveals the moduli space of Higgs bundles as the space

M Higgs(1,0) ∼= Jac(X) ×H1,0(X), (12)

with Jac(X) = H 0,1(X)/H 1(X;Z) the Jacobian torus of the Riemann surface X (a
complex torus of dimension γ ).
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We now turn to the self-duality equations in this rank-1 setting. Fixing a hermitian
metric h on E, these reduce to the set of decoupled linear equations

∂̄Φ = 0, FA = dA = 0 (13)

for a Higgs field Φ and a h-unitary connection A on E. Assuming for simplicity
that h equals the standard hermitian inner product on each fibre of E, then the set of
unitary connections identifies with the space of iR-valued one-forms on X. Hodge
theory in this case yields the identification

M sd(1,0) ∼= H1(X, iR)

Λ
×H1,0(X). (14)

Here Λ ∼= H 1(X;Z) is the lattice of forms in H1(X, iR) with integral periods
∫

c

A ∈ 2πiZ

for every cycle [c] ∈ H1(X;Z). The canonical projection H1(X, iR) → H0,1(X)

combined with the identity map on the second factor in (14) identifies the moduli
spaces M sd(1,0) and M Higgs(1,0) as complex manifolds. We have therefore recov-
ered the Kobayashi–Hitchin correspondence in the most basic case of the abelian Lie
group C

∗ as a direct consequence of Hodge theory on the Riemann surface X.
Classical Hodge theory gives rise to one other basic correspondence relating to

representations of the fundamental group π1(X). Suppose that (A,Φ) is a solution
to the self-duality equations as in Eq. (13) and form the flat complex connection
B = A + Φ + Φ∗h on E. The holonomy of B along any loop c : S1 → X (with
respect to some fixed base point p ∈ X) thus only depends on the homotopy class of
c and therefore defines a representation

ρB : π1(X) → C
∗.

Conversely, any such representation of the fundamental group defines a flat rank-1
vector bundle E (of some degree dE). We next see how one in turn obtains a solu-
tion to the self-duality equations. Assume dE = 0 for simplicity and let B be a flat
connection on E. Then every hermitian metric h on E gives rise to a decomposition
of B as B = A + Ψ , where the connection A is the h-unitary part of B and Ψ is
h-hermitian. Slightly more explicitly,

A = 1

2

(
B − B∗h + h−1dh

)
, Ψ = 1

2

(
B + B∗h − h−1dh

)
.

Then dA = 0 by flatness of B . It follows that (A,Φ) satisfies Eq. (13) if in addition

∂̄
(
h−1∂h

)= ∂̄
(
B + B∗h

)
.

Writing h = ef for some smooth function f : X → R (which is permitted since dE =
0) this condition is equivalent to

∂̄∂f = ∂̄
(
B + B∗h

)
.
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Fig. 2 The rank-1 case

This linear PDE has a solution f which is unique up to adding a constant. The result-
ing hermitian metric h = ef is called harmonic (with respect to the flat connection
B). Thus any flat complex vector bundle admits a unique (up to rescaling by a positive
constant) harmonic metric; these setup a bijection between the spaces of flat vector
bundles (respectively, C∗ representations) and gauge equivalence classes of solutions
of the self-duality equations.

Figure 2 summarizes the discussion of this section. We have characterized the
spaces M Higgs(1,0) and M sd(1,0) in a cohomological way and have reduced the
Kobayashi–Hitchin correspondence in this setup to ordinary Hodge theory. The hor-
izontal arrow indicates the correspondence with the space of surface group represen-
tations into C

∗, the so-called abelian Hodge correspondence.

4.4 Representations into Noncompact Lie Groups and the Nonabelian Hodge
Correspondence

The discussion of the model case rE = 1 suggests to relate stable Higgs bundles
with representations of π1(X) into GL(r,C) or SL(r,C), where r = rE ≥ 2, and
other nonabelian and noncompact Lie groups. Such a relationship would at the same
time complement the theory of Narasimhan–Seshadri (cf. §3.2) which gives a link
between stable holomorphic vector bundles and representations into the compact Lie
group U(r). One direction of the above abelian Hodge correspondence carries over
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immediately: Fix a pair

(A,Φ) ∈ A (E,h) × Ω1,0(X,End(E))

(not assuming an equation) and consider as before the complex connection B = A +
Φ + Φ∗h in the vector bundle E. Its curvature is

FB =d(A + Φ + Φ∗h) + 1

2
[(A + Φ + Φ∗h) ∧ (A + Φ + Φ∗h)]

=dA + 1

2
[A ∧ A] + [Φ ∧ Φ∗h] + ∂̄AΦ + ∂AΦ∗h

=FA + [Φ ∧ Φ∗h] + ∂̄AΦ + ∂AΦ∗h .

If the pair (A,Φ) satisfies the self-duality equations (9) it follows that the complex
connection B is flat (at least if d = dE = 0; in general only the trace-free part of FB

vanishes, whence B is only projectively-flat). If the solution (A,Φ) of the self-duality
equations is irreducible, then this is the case for the associated complex connection.
We thus obtain a map

F : M sd(r, d) → M dR(r), [(A,Φ)] 
→ [A + Φ + Φ∗h]
into the de Rham moduli space M dR(r) of irreducible projectively-flat connections
on E. We remark in passing that if one replaces the term A+Φ+Φ∗h by A+ζ−1Φ+
ζΦ∗h one likewise obtains a mapping M sd(r, d) → M dR(r), for every ζ ∈ C

∗.
The construction of an inverse map is guided by the reasoning in the case r = 1.

To describe it, we start with the choice of some hermitian metric h on E and let B

be a flat connection on the complex vector bundle E (assuming for simplicity that
d = 0). As before, the connection B decomposes uniquely as B = A + Ψ , where
A is a h-unitary connection and Ψ is the h-hermitian part of B . The hermitian and
skew-hermitian components of FB must vanish simultaneously, leading to the set of
equations

dAΨ = 0 and FA + [Ψ ∧ Ψ ∗h ] = 0.

One notices that only the second of the two equations in Eq. (9) is automatically
satisfied – as a direct consequence of the flatness of B . It does not imply the remaining
equation ∂̄AΦ = 0; only the weaker equation

0 = dAΨ = ∂̄AΦ + ∂AΦ∗h (15)

holds true. The question then is to find a “best” or “harmonic” hermitian metric h

on E which forces the remaining equation to be satisfied as well. This had been
the role of the harmonic metric in §4.3 which was obtained there as a solution of
a linear PDE. In the more general context here it is useful to cast the search for a
harmonic metric into a variational problem on X. Before we introduce the relevant
energy functional, we briefly recall that the flat connection B on the vector bundle E

determines a representation

ρB : π1(X) → SL(r,C).
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Let X̃ denote the universal cover of X. The group π1(X) acts on X̃ by deck trans-
formations. The flat vector bundle E may be reconstructed from ρB as the vector
bundle

E = X̃ ×ρB
C

r

associated with ρB . This is part of the classical Riemann–Hilbert correspondence
between the Betti moduli space of conjugacy classes of irreducible representations
and the de Rham moduli space M dR(r) of gauge equivalence classes of irreducible
projectively-flat connections on E.

We further introduce the space

N := {A ∈C
r×r | A∗ = A,A > 0,detA = 1

}

of positive-definite hermitian matrices of determinant 1. The Lie group SL(r,C) acts
transitively on N via g · A = g∗Ag; the stabilizer of the identity matrix 1 ∈ N being
the special unitary group SU(r). It follows that N is diffeomorphic to the homoge-
neous space SL(r,C)/SU(r). The latter carries a (up to multiplication by a positive
scalar) unique Riemannian metric for which the action of SL(r,C) is by isometries,
turning SL(r,C)/SU(r) and hence N into a symmetric space (N , gN ) of noncom-
pact type. In this picture, a hermitian metric h on the vector bundle E may be viewed
as a smooth section of the fibre bundle

H = X̃ ×ρB
N

over X. The initially fixed Riemannian metric g on X lifts to a metric g̃ on X̃. It com-
bines with the metric gN to a bundle metric on T ∗X̃ ⊗h∗TH, where h is any smooth
section of H. We then introduce the energy density of the map h as the function

e(h) := 1

2
〈dh,dh〉 : X̃ → R. (16)

Since this map is invariant under the action of π1(X) on X̃ it descends to a map on
X. We call the integral

E (h) :=
∫

X

e(h) volg (17)

the energy of h. The resulting Euler–Lagrange equation is the harmonic map equation

Trg̃ ∇ g̃e(h) = 0, (18)

where ∇ g̃ denotes the Levi–Civita connection for (X̃, g̃). Minimizers of E are there-
fore ρB -equivariant harmonic maps between X̃ and the symmetric space N ; the cor-
responding hermitian metric h is called harmonic metric.

The construction so far depends on the initially chosen flat connection B on the
complex vector bundle E. As before, after fixing a hermitian metric h, it can be de-
composed into its unitary part A and hermitian part Ψ . The crucial observation, which
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establishes the link with Higgs bundles, then is that the Euler–Lagrange equation (18)
is equivalent to the equation

dA ∗ Ψ = 0.

Writing Ψ = Φ + Φ∗h for Φ ∈ Ω1,0(X,End(E)), the latter condition together with
Eq. (15) turns out to be equivalent to the “missing” equation ∂̄AΦ = 0. In conclusion,
every minimizer of E gives rise to a solution of the self-duality equations. The con-
tent of the nonabelian Hodge correspondence due to Donaldson and Corlette is the
existence and uniqueness of such a minimizer. It ties together algebraic properties
of representations with analytic properties of the functional E . To give the precise
formulation, we recall that a representation ρ on some vector space V is called ir-
reducible if there does not exist a proper ρ-invariant subspace W of V . It is called
reductive if V decomposes into a direct sum of subspaces Wi such that the restriction
of ρ to each Wi is an irreducible representation.

Theorem 6 (Donaldson [34], Corlette [23]) Suppose that the representation ρ :
π1(X) → SL(r,C) is reductive. Then the associated flat vector bundle E carries a
harmonic metric h. If ρ is irreducible then h is unique up to multiplication by a
positive scalar.

The proof of this theorem is by analytic methods and employs convergence of a
ρ-equivariant variant of the harmonic map heat flow to a stationary point, the set of
those being exactly the harmonic metrics on E. This result has first been derived in
[34] for vector bundles of rank 2 and has subsequently been extended in [23] to more
general structure groups and also to base manifolds of arbitrary dimension. In this
generalized form it has also found applications to questions concerning the rigidity
of actions of cocompact lattices in certain Lie groups on the unit ball in C

n.
Summing up the discussion so far, we have encountered four basic geometric ob-

jects: the moduli space M Higgs,s(r, d) of stable Higgs bundles (defined in terms of
holomorphic data), the Hitchin moduli space M sd(r, d) of irreducible solutions to
the self-duality equations (a nonlinear PDE involving geometric data), the de Rham
moduli space M dR(r) of irreducible projectively-flat connections on E, and finally
the moduli space of irreducible SL(r,C) representations. The Riemann–Hilbert cor-
respondence, the Kobayashi–Hitchin correspondence (Thm. 5) and the nonabelian
Hodge correspondence (Thm. 6) each furnish a link between two of the four moduli
spaces. These correspondences may be organized in a commutative diagram similar
to the one illustrating the rank-1 case (cf. Fig. 2).

4.5 Geometric and Topological Structure of the Moduli Space

As indicated several times above, the moduli space of stable Higgs bundles is of in-
terest from a number of rather different viewpoints: differential topological, Rieman-
nian and complex geometric, and as a completely integrable system. In this section,
we summarize its basic structural features from each point of view.
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Differential Topological Aspects Morse theory is an efficient tool in the investi-
gation of differentiable manifolds. Starting with the pioneering work by Atiyah and
Bott [3] on the Yang–Mills equation it has by now been applied successfully to the in-
vestigation of various moduli spaces in gauge theory, including of course the moduli
space of Higgs bundles. The general idea of Morse theory (cf. [107, 120] for an intro-
duction to the subject) is to exploit the structure of the set of critical points together
with the negative gradient flow of an appropriate smooth function f : M →R to gain
cohomological information on the underlying manifold M . One thus considers the
flow lines u : R → M of f , i.e. the solutions of the negative gradient flow equation

du

dt
= −∇f (u),

where the gradient is taken with respect to some auxiliary Riemannian metric on
M . Assuming (besides further technical assumptions, including the properness of f )
that the set crit(f ) of critical points of f is discrete, one defines the so-called Morse
complex

CM(M,f ) =
{∑

nixi | xi ∈ crit(f ), ni ∈ Z, ni �= 0 for finitely many i
}

generated by the elements of crit(f ). Each generator xi ∈ crit(f ) is graded by its
Morse index, i.e. by the number of negative eigenvalues of the Hessian Hessf (xi).
A boundary operator ∂ is now obtained by counting the (finite) number of suitably
oriented flow lines connecting pairs of critical points with Morse index difference
one. It satisfies ∂ ◦ ∂ = 0, so that one can define the homology HM(M,f ) of the
complex CM(M,f ). As it turns out, this Morse homology is naturally isomorphic
to the singular homology of the manifold M , and in particular does not depend on
the choice of Morse function f . Morse–Bott theory provides for an extension of
this theory to allow for the case where crit(f ) consists of a disjoint union of closed
submanifolds of M . Here the additional requirement is imposed that the kernel of
the Hessian Hessf (xi) at every critical point is nondegenerate in directions normal to
the corresponding submanifold. Such functions are then said to have the Morse–Bott
property.

In the context of Higgs bundles, there are at least two candidates which may serve
as natural Morse–Bott functions: One is the L2 gradient flow associated with the
Yang–Mills–Higgs functional

YMH : (A,Φ) 
→ 1

2

∫
X

∣∣FA + [Φ ∧ Φ∗h]∣∣2 volg,

defined on the space Y of pairs (A,Φ) satisfying the Higgs bundle condition ∂̄AΦ =
0. One views Y as being equipped with a suitable Banach manifold structure. It is
thus an infinite-dimensional manifold, and the construction of a Morse–Bott complex
in this situation causes a number of nontrivial analytic difficulties. The set of critical
points of the Yang–Mills–Higgs functional includes the solutions of the self-duality
equations as absolute minimizers. In parallel with the work of Atiyah and Bott [3]
on the Yang–Mills functional, the downward gradient flow of the Yang–Mills–Higgs
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functional and the associated Morse–Bott complex have been studied in [26, 136].
We do not discuss this approach further and instead refer to [15] for an overview.

One further natural Morse–Bott function is defined directly on the finite-
dimensional moduli space M Higgs,s(r, d) ∼= M sd(r, d) as

H : M sd(r, d) → R, [(A,Φ)] 
→ 1

2
‖Φ‖2

L2(X)
,

cf. [72]. The map H is proper and admits a nice interpretation as a moment map for
the Hamilton circle action μ given by

μ :
(
eiθ , [(A,Φ)]

)

→ [(A, eiθΦ)].

By this we mean that the vector field X defined through the relation

dH(Y ) = ωI (X,Y )

for all Y is the fundamental vector field of the action μ with generator i ∈ LieS1 ∼=
iR. The symplectic form ωI will be discussed below as part of the hyperkähler ge-
ometry of the moduli space. The set of critical points of H equals the fixed point set
Fix(μ) of the action. In this case, the function H automatically enjoys the Morse–
Bott property by a result due to Frankel [39]. One further consequence is that all
critical points have even Morse index. This facilitates the calculation of the Morse–
Bott complex associated with the negative gradient flow of H substantially, since then
one does not have to take into account flow lines connecting two critical manifolds
of Morse index difference one. The Morse homology of M Higgs,s(r, d) may thus be
computed solely from the topology of each critical submanifold and the correspond-
ing Morse index. We label the finitely many critical submanifolds of H by Fi , i ≥ 0,
such that Fix(μ) is the disjoint union of the sets Fi . One such submanifold (which we
denote F0) is formed by the absolute minima of H . It corresponds to gauge equiv-
alence classes of solutions with vanishing Higgs field Φ , i.e. to equivalence classes
of stable holomorphic vector bundles. The main task is then to determine the data
entering the Morse–Bott complex. Here the difficult part lies in the description of the
topological type of each submanifold Fi , which is currently only possible for small
values of the rank rE .

We outline some of the ideas. Fixed points of μ may be described more closely
as follows. Suppose that [(A,Φ)] ∈ Fix(μ), i.e. that [(A, eiθΦ)] = [(A,Φ)] for all
θ ∈ R. Hence there exists a one-parameter family gθ of unitary gauge transformations
such that

gθ · (A, eiθΦ) = (A,Φ)

for all θ . Differentiation at θ = 0 yields the set of conditions

dAΓ = 0, (19)

[Φ ∧ Γ ] + iΦ = 0, (20)
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where Γ = d
dθ

∣∣
γ=0 gθ ∈ Ω0(X,u(E)). The first condition implies that the vector

bundle E decomposes as the direct sum

E ∼=
⊕

λ

Eiλ (λ ∈ R) (21)

of holomorphic eigenbundles Eiλ with respect to the skew-hermitian endomorphism
field Γ . The second condition yields a relation between the eigendata of Γ :

adλ(Φ) : Eiλ → Ei(λ+1) ⊗ KX, v 
→ [Φ ∧ v]
for all λ. This can be checked as follows:

Γ [Φ ∧ v] = −iΓ Φv

= −iΦΓ v + i[Φ ∧ Γ ]v
= λΦv + i[Φ ∧ Γ ]v
= iλ[Φ ∧ Γ ]v + i[Φ ∧ Γ ]v
= i(λ + 1)[Φ ∧ Γ ]v

for every Γ -eigensection v of Eiλ. Both conditions together define on E a variation
of Hodge structures, an object frequently encountered in complex geometry, cf. e.g.
[123] and also §5.2. In our setup, the study of all possible decompositions of E satis-
fying Eqns. (19) and (20) can in turn be exploited to describe the topological structure
of each critical submanifold Ni . This method works particularly well for Higgs bun-
dles of small rank. The case rE = 2 and dE = 1 has been carried out by Hitchin [72].
In this case, there are critical submanifolds F0, . . . ,Fγ−1, where γ is the genus of
X. Except for F0, the decomposition in (21) is into a direct sum of two line bundles
E ∼= L1 ⊕ L2, where the degree of L1 equals i. The submanifold F0 corresponds to
stable holomorphic vector bundles of degree 1. The submanifolds Fi , i ≥ 1, can be
described as the set of gauge equivalence classes of stable Higgs bundles (E,Φ) of
the form

{
(E ∼= L1 ⊕ L2,Φ) | degL1 = i,degL2 = 1 − i,

Φ =
(

0 0
ϕ 0

)
,0 �= ϕ ∈ H 0(L−1

1 L2KX)
}
. (22)

Note that each such pair (E,Φ) is indeed stable since the only Φ-invariant holo-
morphic line subbundle is L2 which satisfies degL2 = 1 − i < dE/2. Using these
observations, Hitchin [72] showed:

Theorem 7 The map H has critical values 0 and (d − 1
2 )π , where d = 1, . . . , γ − 1

corresponds to the degree of the line bundle L1 in (22). The preimage Fi of any crit-
ical value is a connected submanifold of M

Higgs
2,1 , where F0 equals the submanifold

of stable holomorphic vector bundles of degree 1. For i ≥ 1, Fi is diffeomorphic to
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a 22γ -fold covering of the (2γ − 2d − 1)-fold symmetric product S2γ−2d−1X of the
Riemann surface X. In addition, there are explicit expressions for the Betti numbers
of M

Higgs
2,1 .

A similar result for rE = 3 has been obtained by Gothen [54], while the general
case rE ≥ 4 is still not completely understood. Here one currently lacks a description
of the topological types of the critical manifolds. In the cases rE = 2 Hausel and
Thaddeus succeeded in giving a complete description of the rational cohomology
ring of the moduli space in terms of generators and relations, cf. [64, 65]. More
generally, a set of generators for arbitrary rE has been described by Markman in
[99], while currently there seem to be no good conjectures concerning the relations
in the cohomology ring in general. The survey article by Hausel [62] gives a detailed
overview on the current research status.

The Moduli Space as a Hyperkähler Manifold A common feature of many gauge
theoretically defined moduli spaces is that they carry a natural L2 metric (or Weil–
Petersson type metric, to emphasize the similarity to the Weil–Petersson metric on
Teichmüller moduli space, where such metrics have first been discussed). In case of
the moduli space M sd(r, d) this Riemannian metric is constructed as follows. At the
point [(A,Φ)] we set

GL2((α1, ϕ1), (α2, ϕ2)) = Re
∫

X

Tr
(
α1 ∧ α

∗h

2 + ϕ
∗h

1 ∧ ϕ2

)
volg, (23)

where the pair

(αi, ϕi) ∈ Ω0,1(X, sl(E)) ⊕ Ω1,0(X, sl(E))

is a vector tangential to the solution space and L2 orthogonal to the unitary gauge
orbit through (A,Φ). This expression is unitarily gauge invariant and hence descends
to a well-defined positive-definite inner product on each tangent space of M sd(r, d).
This Riemannian metric GL2 has first been considered by Hitchin [72]. One of its
basics features (which stands in contrast to the Weil–Petersson metric on Tγ ) is its
completeness: every geodesic can be extended infinitely, at least in the absence of
reducible solutions to the self-duality equations, corresponding to the integers r and
d being coprime.

One feature, which makes this Hitchin metric GL2 interesting from a Riemannian
point of view, is the fact that it is a hyperkähler metric, i.e. its holonomy group is
contained in the compact symplectic group Sp(m), where 4m = dimM sd(r, d). An
equivalent way to characterize hyperkähler manifolds, i.e. smooth manifolds carry-
ing a hyperkähler metric, is through the presence of three complex structures together
with compatible Kähler forms satisfying the quaternion relation IJK = −Id. There
are not many known examples of compact hyperkähler manifolds, while the noncom-
pact examples often come from constructions in gauge theory similarly to the one dis-
cussed here. A consequence of the holonomy being contained in Sp(m) ⊂ SU(2m) is
that the metric GL2 is a Calabi–Yau metric and thus automatically Ricci-flat Einstein.
The existence of the hyperkähler structure is not immediately apparent from the defin-
ing expression (23). It becomes evident by reinterpreting the self-duality equations as
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hyperkähler moment maps and viewing the moduli space as a hyperkähler quotient.
The starting point of this quotient construction is (a suitable Sobolev completion) of
the infinite-dimensional affine space

C = A (E,h) × Ω1,0(X, sl(E)).

We identify the tangent space of A (E,h) as Ω1(X, su(E)) ∼= Ω0,1(X, sl(E)). Then
C carries three (constant) complex structures I , J and K which under this identifi-
cation are

I (α,ϕ) = (iα, iϕ), J (α,ϕ) = (−ϕ∗h, α∗h),

K(α,ϕ) = (−iϕ∗h , iα∗h), (24)

which together with the L2 metric given by the right-hand side of Eq. (23) turn C
into an infinite-dimensional hyperkähler manifold. We let ω• = GL2(•·, ·), where
• ∈ {I, J,K}, denote the three Kähler forms. The group of unitary gauge transfor-
mations G(E,h) acts diagonally on C by isometries. The crucial observation, due to
Hitchin, is that this group action is tri-Hamiltonian, i.e. for each • ∈ {I, J,K} there
is a moment map μ• : C → (LieG(E,h))∗ generating the action. By definition, this
means that the vector field Xγ defined for each γ ∈ LieG(E,h) through the relation

dμ•(γ )(Z) = ω•(Xγ ,Z)

is a Hamiltonian vector field, i.e. the fundamental vector field for the group action
given by

d

dt

∣∣∣∣
t=0

exp(tXγ ) · p ∈ TpC .

It is convenient to combine the moment maps μJ and μK into the single function
μc = μJ + iμK . Remarkably, one finds that

μI (A,Φ) = FA + [Φ ∧ Φ∗h], μc(A,Φ) = ∂̄AΦ,

and thus precisely recovers the left-hand sides of the self-duality equation (9). From
this point of view, the moduli space can be recovered as the quotient

M sd(r, d) = μ−1
I (−2πμEIdE · ωX) ∩ μ−1

c (0)

G(E,h)

of the joint zero set of the maps μI + 2πμEIdE · ωX and μc by the group action.
By its definition, the Riemannian metric GL2 on M sd(r, d) arises as the restriction
of the metric on C to the above joint zero set, and then passing to the quotient. It
is a less evident but standard fact that this quotient inherits from C also the three
complex structures (which are again compatible with the metric) and hence is itself
a hyperkähler manifold. The metric GL2 is complete in the case where (rE, dE) are
coprime as was also shown in [72]. In view of the noncompactness of the moduli
space it is an interesting problem to ask about asymptotic properties of this metric.
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This question has attracted some attention recently and is also the subject of a number
of interesting conjectures motivated from physics. We shall come back to it in §6.2
below.

We briefly comment on the roles taken by the complex structures I , J and K in the
Kobayashi–Hitchin and the nonabelian Hodge correspondences. The moduli space
M

Higgs
r,d of stable Higgs bundles is itself a complex manifold with complex structure

induced by I (α,ϕ) = (iα, iϕ) as in Eq. (24). Notice that this complex structure, a
priori defined on the configuration space C , is the only one which does not involve
the hermitian metric h and hence descends to a well-defined complex structure on
M

Higgs
r,d . The Kobayashi–Hitchin correspondence clearly preserves I . On the other

hand, the moduli space M dR(r) of projectively-flat complex connections is also a
complex manifold in a natural way and it is therefore an interesting question to ask
which complex structures are preserved by the nonabelian Hodge correspondence

Fζ : M sd(r, d) → M dR(r), [(A,Φ)] 
→ [A + ζ−1Φ + ζΦ∗h], (25)

where ζ ∈ C
∗. The map Fζ fails to be holomorphic with respect to the complex struc-

tures ±I but is holomorphic with respect to any of the other holomorphic structures,
when ζ is chosen appropriately. For instance, setting ζ = i it is not hard to check that
Fi is holomorphic for the complex structure J given by J (α,ϕ) = (−ϕ∗h, α∗h). More
generally, Fζ is holomorphic with respect to the complex structure aI + bJ + cK

(a, b, c ∈R and a2 + b2 + c2 = 1), where

ζ = ib − c

a + 1
.

The Moduli Space as an Algebraically Completely Integrable System One fur-
ther important feature of the Higgs bundle moduli space is that it is an instance of an
algebraically completely integrable system. To explain this concept, we recall that a
Hamiltonian system is a symplectic manifold (M2n,ω) together with a smooth func-
tion H : M → R, called Hamiltonian function. It gives rise to the Hamiltonian vector
field XH on M , which we define, using the nondegeneracy of the symplectic form ω,
as

dH = ω(XH , ·).

For the sake of exposition, let us assume here that the vector field XH is complete,
which is automatically satisfied if for instance the manifold M is compact. The dy-
namics of the Hamiltonian system is then given by the one-parameter group of sym-
plectomorphisms generated by the vector field XH . We remark that along each flow
line of XH the function H is constant since

dH(XH ) = ω(XH ,XH ) = 0

by skew-symmetry of ω. More generally, a smooth function f : M → R is called a
first integral if it is constant along the flow generated by XH . Equivalently, f is a first
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integral if ω(XH ,Xf ) = 0. The Hamiltonian system is called integrable if there is a
proper map

F = (H = f1, f2, . . . , fn) : M →R
n

such that

ω(Xfi
,Xfj

) = 0

holds for all 1 ≤ i, j ≤ n. The last condition implies in particular that every function
fi is a first integral of the system. Every fibre F−1(x) is compact due to the proper-
ness of F . It is preserved by the flow generated by any of the vector fields Xfi

. The
abelian group (isomorphic to R

n) generated by the Xfi
acts transitively on F−1(x),

and hence a generic fibre is diffeomorphic to a real n-torus. Moreover, the dynamics
of an integrable system on the set of generic fibres is an affine motion and therefore
easy to describe. For more details and a discussion of a variety of examples aris-
ing from classical mechanics, we refer to the book [2]. An algebraically completely
integrable system is the adaption of this concept to complex symplectic manifolds.
Here the real symplectic manifold M gets replaced by a complex manifold X2n to-
gether with a holomorphic symplectic form ω. We are then considering Hamiltonian
systems for a complex-valued Hamiltonian function H . Such a system is called al-
gebraically completely integrable if there exists a function F : X → C

n with exactly
the same properties as before. Note that in this case generic fibres are complex tori of
dimension n.

We return to the moduli space M Higgs,s(r, d) of stable Higgs bundles, viewed
as a complex manifold with complex structure I as in Eq. (24). We are assuming
here the SL(r,C)-case, so that in particular all occurring Higgs fields satisfy TrΦ =
0. The moduli space then carries the additional structure of a complex symplectic
manifold with holomorphic symplectic form ωc = ωJ + iωK . The Hitchin fibration
is the holomorphic map

H : M Higgs,s(r, d) → B =
r⊕

i=2

H 0(Ki
X)

which assigns to [(∂̄E,Φ)] the coefficients of the characteristic polynomial

det(λId − Φ)

of Φ . The complex vector space B is called the Hitchin base. By the Riemann–Roch
theorem, its dimension is

dimB =
r∑

i=2

(2i − 1)(γ − 1) = r2(γ − 1), (26)

thus half of the dimension of M Higgs,s(r, d). The map H is surjective and proper. For
an open and dense subset (indeed, subcone) D = B′ ⊂ B the fibre H−1(x), where
x ∈ B′, is a complex Lagrangian torus with respect to ωc. The complement B \ B′
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Fig. 3 Hitchin fibration H : M → B. Tori drawn in black indicate preimages of points in the regular part
B′ , while the torus drawn in red is degenerate and arises as the preimage of some point in the discriminant
locus D indicated by the two red lines (Color figure online)

is sometimes called the discriminant locus. We also set M ′ = H−1(B′) and call this
set the regular part of the Hitchin fibration. This setup is depicted in Fig. 3.

Let {λ1, . . . , λm} be a basis of the dual space B∗.

Theorem 8 (Hitchin [72, 73]) The components λi ◦H of the function

F : M ′ → C
m, F = (λ1 ◦H, . . . , λm ◦H)

are a maximal set of first integrals, giving the complex symplectic manifold
(M ′, I,ωc) the structure of an algebraically completely integrable system.

This algebraically completely integrable system is often called Hitchin integrable
system. Being interesting in its own way, it also offers an alternative description of
the points in M ′ through their spectral data. To the tuple Q = (q2, . . . , qr ) ∈ B′ we
associate in a first step the spectral curve SQ. This is the smooth Riemann surface

SQ = {η ∈ KX | det(η − Q) = 0} .

The restriction of the canonical projection π : KX → X realizes SQ as an r-sheeted
branched cover over X. Clearly, Higgs bundles in the same fibre H−1(Q) lead to the
same spectral curve, which therefore packages “half” of the spectral data. The other
half are the eigenlines of the Higgs field. Due to monodromy these are only locally
defined on X. Their pullback along π gives well-defined eigenline bundles over SQ,
which in turn can be identified with a point in the Prym variety Prym(SQ) of the
Riemann surface SQ. In this way, one obtains a biholomorphic equivalence between
each fibre H−1(Q) and the corresponding Prym variety. The latter is obtained as a
suitable subtorus of the Jacobian variety of degree zero holomorphic line bundles over
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SQ. The reason why one does not obtain the full Jacobian torus is that the condition
TrΦ = 0 imposes further restrictions on the eigenline bundles. For instance, if r = 2
the two eigenline bundles here get interchanged under pullback with respect to the
involution σ : SQ → SQ which switches the two sheets. In this case, the line bundles
in Prym(SQ) are characterized by the condition that σ ∗L ∼= L∗.

Another important aspect of the Hitchin fibration is the existence of a global sec-
tion S such that H ◦ S = IdB , the Hitchin section. It is closely related to real rep-
resentations of the fundamental group π1(X), a topic which we take up in §5.3. We
conclude this section by discussing the Hitchin integrable system from the point of
view of special Kähler geometry.

Definition 5 A special Kähler manifold is a Kähler manifold (M, I,ω) together with
a flat, torsion-free connection ∇ on the tangent bundle T M such that ∇ω = 0 (i.e. ∇
is symplectic) and

(∇XI)Y = (∇Y I )X

holds for all vector fields X and Y .

We remark that apart from the trivial case where M is a flat complex manifold
and the connection ∇ equals the Levi–Civita connection, a special Kähler manifold
is always incomplete. The concept of special Kähler geometry first appeared in the
physics literature [28, 51, 122]. These spaces play a role in N = 2 supersymmet-
ric quantum field theories where the scalar fields are constrained to take values in
a special Kähler manifold. A treatment from a mathematical perspective was given
by Freed [46]. Special Kähler manifolds and algebraically completely integrable sys-
tems are closely related objects. By a result due to Donagi and Witten [30], the base
manifold of an algebraically completely integrable system carries, under some ex-
tra condition, the structure of a special Kähler manifold. Conversely, every special
Kähler manifold M gives rise to an algebraically completely integrable system with
total space X = T ∗M/Λ, where Λ is a bundle of lattices. In addition, the manifold
X comes equipped with a semiflat hyperkähler metric. Here the term “semiflat” indi-
cates that with respect to this metric, each fibre of the torus fibration π : X → M is
flat.

For the semiflat hyperkähler and special Kähler metrics arising from the Hitchin
integrable system π : M ′ → B′, a more explicit description is available. We ex-
plain the case rank rE = 2, following [102]. An extension to the general case can
be found in [43]. As explained above, M ′ is parametrized by the analytic family of
spectral curves Sq together with the Prym variety Prym(Sq). Each Sq is endowed
with a distinguished holomorphic one-form λSW(q) obtained by restricting the Li-
ouville one-form on KX . Let H1(X;Z)odd denote the subgroup of odd homology
classes with respect to the action by the involution σ : Sq → Sq and fix a basis
α1, . . . , αm,β1, . . . , βm. This basis can be taken to be symplectic with respect to the
intersection form. Then we define for i = 1, . . . ,m the period integrals

zi(q) =
∫

αi

λSW(q), wi(q) =
∫

βi

λSW(q).
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As a basic fact, each {zi} and {wi} form a set of complex coordinates on B′ with its
standard complex structure I given by multiplication by i. We endow B′ with the
Kähler form

ωSK =
m∑

i=1

dzi ∧ dwi.

A flat, torsion-free symplectic connection ∇ on T ∗B′ is obtained by putting ∇zi =
∇wi = 0 for all i, and thus (B′, I,ωSK) is a special Kähler manifold. The special
Kähler metric GSK = ωSK( · , I · ) can be expressed as

GSK(q)(q̇, q̇) = 1

4

∫
X

|q̇|2
|q| dA.

Thus the structure of the special Kähler metric in this case is particularly simple.
For instance, the formula shows that B′ is a metric cone with respect to the action
q 
→ t2q by positive scalars. It makes it also clear that GSK does not extend over the
discriminant locus B\B′ since then q has at least one zero of order two or higher and
the above integral diverges. So GSK and the associated semiflat hyperkähler metric
GSF on M ′ are both incomplete. It is currently a topic of intense research to under-
stand the relation between GSF and the Hitchin hyperkähler metric GL2 . We take up
this discussion and provide an overview of the available results in §6.2.

4.6 Extensions

Our focus here lies almost exclusively on holomorphic Higgs bundles and smooth
solutions of the self-duality equations for unitary connections. There exist several
interesting modifications of this setup.

Parabolic Higgs Bundles These provide for an extension the theory of stable
parabolic vector bundles introduced by Mehta and Seshadri [105]. Their main the-
orem relates parabolic vector bundles and spaces of unitary representations of the
fundamental group of a punctured Riemann surface X \D, where D = p1 + · · ·+pn

is some divisor consisting of distinct points pi . As an addition datum one fixes for
each pi ∈ D a so-called weight vector

α(pi) = (α1(pi), . . . , αspi
(pi)),

where the parabolic weight αi(pi) ∈ [0,1) has multiplicity mi(pi).

Definition 6 A (strongly) parabolic Higgs bundle on the complex vector bundle E

is a triple (∂E, {F(p)}p∈D,Φ) consisting of
(i) a holomorphic structure ∂E on E;

(ii) a flag structure F(p) = F•(p) on the fibre Ep such that

Ep = F1(p) ⊃ F2(p) ⊃ · · · ⊃ Fsp(p) ⊃ 0
0 ≤ α1(p) < α2(p) < · · · < αsp(p) < 1

and mi(p) = dimFi(p) − dimFi+1(p);
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(iii) a holomorphic map Φ : E → E ⊗ KX(D). At the points p ∈ D, the
Higgs field Φ is nilpotent with respect to the filtration, i.e. Φ(Fi(p)) ⊂
Fi+1(p) ⊗ KX(D)p . This latter condition is being relaxed in the case of
weakly parabolic Higgs bundles.

Stability of parabolic Higgs bundles is then defined just as in the smooth case, with
the degree of the complex vector bundle E replaced by its so-called parabolic degree
which also involves the parabolic weights αi(p). With this concept in place, most of
the foundational results in the smooth case have parabolic counterparts, such as the
nonabelian Hodge and Kobayashi–Hitchin correspondences. We refer the interested
reader to the extensive literature on this subject, in particular to [9, 11, 84, 118, 124].
Parabolic Higgs bundles play a role in several recent developments such as limit-
ing configurations in the geometric compactification of the moduli space of smooth
Higgs bundles, cf. §6.1 for details. In a different direction, to be discussed in §6.2,
Gaiotto, Moore and Neitzke have developed a remarkable, partially conjectural pic-
ture in which they describe the Hitchin hyperkähler metric on the moduli space of
parabolic Higgs bundles in rather explicit terms. The parabolic setup is crucial for
these predictions. Furthermore, in the parabolic case one has several interesting fam-
ilies of real four-dimensional moduli spaces. The hyperkähler metrics in these cases
are instances of gravitational instantons of type ALG, a connection which is currently
explored, cf. §6.3. In contrast, the moduli spaces of smooth Higgs bundles are of di-
mension 12 or higher.

G-Higgs Bundles In another direction, first studied by Hitchin [74], one replaces
the gauge group G = SU(r) which underlies many of the constructions encountered
so far by the compact real form G of any other complex semisimple Lie group Gc . In
this case, one starts with a principal G-bundle P over X and forms the adjoint bundle
adP = P ×ad g, where ad : G → g denotes the adjoint representation. A Higgs field
in this generalized setting is a holomorphic section of adP ⊗ KX . The role of the
involution Φ 
→ −Φ∗h is then played by the corresponding anti-involution on the
complex Lie algebra gc, which allows to write down the self-duality equations as
before. The fundamental Kobayashi–Hitchin and nonabelian Hodge correspondences
extend to this more general setup, cf. [15, 50, 74] for details.

Twisted Higgs Bundles The Higgs fields so far were defined as holomorphic sec-
tions Φ : E → E ⊗ KX (smooth case) or Φ : E → E ⊗ KX(D) (parabolic case).
A third extension is obtained when the holomorphic line bundles KX and KX(D)

are replaced by some arbitrary holomorphic line bundle L over X. This modification
yields L-twisted Higgs bundles. Nitsure [114] described the moduli space of stable
twisted Higgs bundles as a GIT quotient and showed that it is a quasi-projective vari-
ety. Unlike the previous cases, the moduli space of stable L-twisted Higgs bundles is
in general not a hyperkähler manifold but still carries a natural Kähler metric. Other
analytic and geometric features do persist. There exists a replacement of Hitchin’s
self-duality equations and a corresponding PDE description of the moduli space of
stable L-twisted Higgs bundles due to Lin [96]. Finally, a description of this moduli
space as an integrable system has been obtained in [13, 98].
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5 Applications

We discuss various geometric applications of Higgs bundles. The first of these finds
that the Kobayashi–Hitchin correspondence (Thm. 5) includes as special cases both
the Poincaré–Koebe uniformization theorem and Teichmüller’s theorem. We thus
make contact with §2.1 where we have discussed Teichmüller moduli space as a
prime example of a moduli space in differential geometry. The second application
takes these ideas further to the realm of complex manifolds of arbitrary dimension
and variations of Hodge structures. The last application is an extension of the first one
and illustrates how Higgs bundle methods enter the description of certain connected
components of real representation varieties. The resulting theorem due to Hitchin
stands at the beginning of higher Teichmüller theory, a vast and still growing subject
of which this report can hardly scratch the surface.

5.1 Uniformization and Teichmüller’s Theorem

Our first application falls into classical Riemann surface theory. We start out with

a square root K
1
2
X of the canonical bundle together with its holomorphic structure

induced by KX . There are 2γ such choices, the precise one being immaterial for the

following discussion. We then consider the holomorphic vector bundle E = K
− 1

2
X ⊕

K
1
2
X together with the Higgs field

Φq =
(

0 1
q 0

)
∈ H 0(End(E) ⊗ KX) (27)

as already encountered in Example 3. We fix a hermitian metric H = h−1 ⊕h adapted
to the above splitting and let A denote the Chern connection with respect to H and
∂̄E . Since (∂̄E,Φq) is Higgs-stable, the Kobayashi–Hitchin correspondence applies
and we infer the existence of a unique gauge transformation

g =
(

eu 0
0 e−u

)

such that the pair g · (A,Φq) is a solution of the self-duality equations. In this case,
the system reduces to the single scalar PDE

1

4
�gu = FA + e−4uh−2 − e4uqq̄h2 (28)

for the function u. Here, by a slight abuse of notation, we let FA denote the curvature

of the Chern connection of the line bundle K
− 1

2
X . For q = 0 this equation reduces

further to the well-studied Liouville’s equation (cf. for instance [128]). The geomet-
ric content of Eq. (28) and its solution u is that the symmetric tensor e−4uh−2 may
be viewed as a Riemannian metric on K−1

X
∼= T X of constant negative Gauß cur-

vature Kg ≡ −4 in the conformal class of X. We thus recover the Poincaré–Koebe
uniformization theorem on the existence and uniqueness of such a metric. What about
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solutions corresponding to a general holomorphic quadratic differential q? The fol-
lowing result extends the discussion before:

Theorem 9 (Hitchin [72]) Fix q ∈ H 0(K2
X) and let u be the unique solution of

Eq. (28). Then the symmetric tensor

gq = q + (e−4uh−2 + e4uqq̄h2)+ q̄

defines a Riemannian metric on X of constant Gauß curvature Kg ≡ −4. Every such
metric equals, up to pullback by a diffeomorphism isotopic to the identity map, the
metric gq for some q .

In this way, one recovers another foundational result in Riemann surface theory:
Teichmüller’s theorem. It implies once again that the space of hyperbolic metrics on
X (up to diffeomorphisms isotopic to the identity) is parametrized by the complex
vector space H 0(K2

X) ∼= C
3γ−3.

5.2 Variations of Hodge Structure and Higher-Dimensional Uniformization

As seen above, the Higgs bundle E = K
− 1

2
X ⊕ K

1
2
X with Higgs field

Φ =
(

0 1
0 0

)

leads to a Higgs bundle proof of the uniformization theorem for Riemann surfaces.
This setup can be viewed as a particular instance of the more general concept of a
system of Hodge bundles, which is due to Simpson [123]. By this we understand a
direct sum E =⊕p,q Ep,q of holomorphic vector bundles over a Kähler manifold X

together with holomorphic sections θ : Ep,q → Ep−1,q+1 ⊗ KX such that θ ∧ θ = 0
(this last condition being empty when X is a Riemann surface). Thus a system of
Hodge bundles is in particular a Higgs bundle, and there is also a notion of stability
adapted to this setting. Within the moduli space of stable Higgs bundles these are
characterized as fixed points of the S1 action eiϕ · [(∂̄E,Φ)] = [(∂̄E, eiϕΦ)] as follows
by similar considerations as in the first part of §4.5.

In a quite different context, systems of Hodge bundles arise as variations of Hodge
structures. This concept, due to Griffiths [55, 56], plays a major role in the study of
the monodromy and variation of period integrals in holomorphic families of complex
manifolds. Briefly, a variation of Hodge structure is a graded complex vector bundle

V =
⊕

p+q=w

V p,q

over X together with a flat connection D such that

D : V 
→ A0,1(V p+1,q−1) ⊕ A1,0(V p,q) ⊕ A0,1(V p,q) ⊕ A1,0(V p−1,q+1)

and a polarization (a parallel hermitian form making this decomposition orthogonal,
which is positive-definite on V p,q if p is even, and negative-definite if p is odd).
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The components of type (0,1) of the connection D induce on each V p,q a Dolbeault
operator and hence a holomorphic structure. Here we make use of the flatness of D.
The last component A1,0(V p−1,q+1) yields the above map θ . The condition θ ∧θ = 0
holds again by flatness of D.

The question arises whether a given system of Hodge bundles comes from a varia-
tion of Hodge structures. A complete answer has been given by Simpson [123], both
for compact and certain noncompact Kähler manifolds (M2n,ω). He showed that a
stable system of Hodge bundles carries a flat metric D making it into a variation of
Hodge structures if and only if c1(E) = 0 and c2(E) ∧ [ω]n−2 = 0. Notice that this

condition is of course satisfied in our initial example E = K
− 1

2
X ⊕ K

1
2
X . This result

bears some similarity with the theorems of Donaldson–Corlette and Uhlenbeck–Yau.
A notable difference here is the noncompactness of the structure group which requires
new arguments in the proof.

A nice application concerns a higher-dimensional extension of the classical uni-
formization theorem of Riemann surfaces. In some cases (cf. [123, §9] for details)
the Higgs field θ can be used to obtain a representation ρ : π1(X) → G and an
equivariant holomorphic map from the universal cover X̃ to some bounded sym-
metric domain D ∼= G/K (equivalently: a hermitian symmetric space of noncompact
type). This realizes X as a quotient of D. In the case where X is a Riemann surface,
D ∼= PSU(1,1)/U(1) is the open unit disk. As an easy but already interesting case,
one can choose E = KX ⊕OX together with the identity map θ as a system of Hodge
bundles. In the case where c1(E) = 0 and c2(E) ∧ [ω]n−2 = 0 are satisfied, this sys-
tem is in addition stable and therefore arises from a variation of Hodge structures.
The bounded symmetric domain D in this case is the open unit ball inside C

n.
The theory of Hodge bundles is developed further in Simpson’s article [125],

where as another application he derives certain restrictions for a group to occur as
the fundamental group of a Kähler manifold. For instance, this excludes the group
SL(n,Z), n ≥ 2, to occur as the fundamental group of a smooth projective variety.

5.3 Real Representations and Hitchin–Teichmüller Components

In the previous §2.1 and §5.1 we have emphasized the analytic point of view on
uniformization and the Teichmüller moduli space. Somewhat hidden in this approach
is the role played by representations of surface groups. It becomes apparent in the
following reformulation. Every hyperbolic surface arises as the quotient of the upper
half-plane H with hyperbolic metric

g = dx2 + dy2

y2

by the action of some discrete subgroup Γ of the group PSL(2,R) of orientation
preserving isometries of (H, g), a so-called Fuchsian group. Put slightly differently,
any faithful representation

ρ : π1(X) → PSL(2,R)
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of the fundamental group with discrete image gives rise to a hyperbolic surface, and
vice versa. The set of such representations (considered up to conjugation by elements
in PSL(2,R)) forms a connected component of the PSL(2,R) representation variety

Hom(π1(X),PSL(2,R))/∼

which we equip with its natural topology coming from the topology of the Lie group
PSL(2,R). As we shall see below, there are a number of further connected compo-
nents, which are not as evidently related to geometric structures on X. To generalize
this picture, one takes a more conceptual point of view and considers PSL(2,R) as
the split real form of the complex Lie group PSL(2,C). The real representations are
then the elements of the fixed point set of the anti-holomorphic involution coming
from the complex conjugation

σ : PSL(2,C) → PSL(2,C), A 
→ Ā.

Replacing PSL(2,C) with a general complex simple Lie group Gc with split
real form G, one may ask for the existence and geometric structure of Hitchin–
Teichmüller components of the representation variety Hom(π1(X),Gc)/∼, i.e. real
representations with similar “nice” properties as the classical Teichmüller compo-
nent. This is the subject of higher Teichmüller theory. We restrict our discussion here
to its most basic connections with Higgs bundles and refer the interested reader to the
nice survey [135] for a much more complete account.

The connection we are going to describe comes again through the nonabelian
Hodge correspondence, since it gives a parametrization of the complex representa-
tion variety through Higgs bundles. Thus the question arises how one may detect
those Higgs bundles which lead to real representations. As a key fact, one observes
that the map σ is conjugate via the nonabelian Hodge correspondence to the involu-
tion

[(∂̄E,Φ)] 
→ [(∂̄E,−Φ)]
on the moduli space of stable Higgs bundles. There are two types of fixed points,
firstly the elements of the moduli space of stable Higgs bundles corresponding to
vanishing Φ , and secondly Higgs bundles of the form

E = L−1 ⊕ L, Φ =
(

0 a

b 0

)

for some holomorphic line bundle L and sections a ∈ H 0(L−2 ⊗ KX) and b ∈
H 0(L2 ⊗ KX). Without loss of generality, we may assume that degL ≥ 0. Stability
implies that a �= 0 since otherwise L would be a Φ-invariant holomorphic subbun-
dle of nonnegative degree. It follows that the holomorphic vector bundle L−2 ⊗ KX

has a nontrivial holomorphic section and therefore 2 degL ≤ degKX = 2γ − 2. This
inequality is equivalent to the Milnor–Wood inequality which restricts the possible
values of the Euler number of a flat oriented circle bundle over X [106, 140]. Notice

that the case of maximal degree γ − 1 corresponds to the line bundle L ∼= K
1
2
X and

brings us back to the discussion in §5.1. A refined discussion leads to the following
theorem.
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Theorem 10 (Goldman [52], Hitchin [72]) The connected components of real rep-
resentations within the PSL(2,C) representation variety are parametrized by equiv-
alence classes of triples (L,a, b) as above. For fixed |degL| < γ − 1, it consists of
a single connected component, the diffeomorphism type of which may be described
explicitly. In the maximal case |degL| = γ − 1, there exist 22γ connected compo-
nents (called Hitchin–Teichmüller components), each corresponding to a choice of
holomorphic line bundle L such that L2 ∼= KX . It is in either case parametrized by
holomorphic quadratic differentials q as in Eq. (27) and is therefore diffeomorphic
to the vector space C

3γ−3.

We outline how an extension of this construction detects a Hitchin–Teichmüller
component in the PSL(n,C) representation variety, where n ≥ 3. It generalizes to ar-
bitrary complex simple Lie groups. The starting point is the Hitchin section S which
was already mentioned in the discussion of the moduli space as an algebraically com-
pletely integrable system in §4.5. It is defined on the Hitchin base

Bn =
n⊕

i=2

H 0(X,Ki
X)

as the map

S : Bn → H 0(End(En) ⊗ KX),

S(q2, q3, . . . , qn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
q2 0 n − 1 · · · · · · 0
q3 q2 0 3(n − 3) · · · 0
... q3

. . .
. . .

...

qn−1
...

. . . 0 n − 1
qn qn−1 · · · · · · q2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

where we denote

Bn = Symn

(
K

− 1
2

X ⊕ K
1
2
X

)
= K

− n−1
2

X ⊕ K
− n−3

2
X ⊕ · · · ⊕ K

n−3
2

X ⊕ K
n−1

2
X .

The map S is a right-inverse of the Hitchin fibration H : Mn → Bn and therefore
gives rise to an embedding of the space Bn into the moduli space Mn of stable
Higgs bundles of rank n and degree zero. By similar arguments as in the case n = 2,
the resulting Higgs bundles are fixed points of the involution which is induced from
the anti-holomorphic involution σ : A 
→ Ā of PSL(n,C). The representations de-
fined by the Higgs bundles lying in the image of the map S therefore have holonomy
contained in PSL(n,R). Indeed, the set of these Higgs bundles sweeps out a whole
connected component of the PSL(n,R) representation variety. This follows by stan-
dard arguments, showing that the dimension of the latter space agrees with that of the
complex vector space Bn (cf. Eq. (26) for a similar computation). This connected
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component is called the Hitchin–Teichmüller component of the PSL(n,C) represen-
tation variety. The other connected components may as well be detected by Higgs
bundle methods:

Theorem 11 (Hitchin [74]) Assume n ≥ 3. The PSL(n,R) representation variety
consists of three connected components if n is odd and six connected components if
n is even. In the first case one of the components is diffeomorphic to R

(n2−1)(γ−1), in
the second case two.

That representations belonging to the Hitchin–Teichmüller component are dis-
crete and faithful was shown for G = PSL(n,R) and some other real Lie groups by
Labourie [90] using methods from dynamical systems, and in full generality by Fock
and Goncharov [38]. It seems to be a difficult problem to give a geometric meaning
to the Hitchin–Teichmüller components. Apart from Teichmüller space itself, such an
interpretation is currently available only for the Lie groups PSL(3,R), PSL(4,R) and
PSp(4,R). Choi and Goldman [19] have shown that the Hitchin–Teichmüller com-
ponent in the first case equals the space of convex real projective structures on the
surface. In the second and third case, it parametrizes the spaces of properly convex
foliated projective structures, respectively properly convex foliated projective con-
tact structures on the unit tangent bundle of the surface as shown by Guichard and
Wienhard [57].

6 Recent Developments and Open Questions

In this final section we survey some recent developments in the theory of Higgs bun-
dles and discuss several open questions.

6.1 Large Solutions and Compactification by Limiting Configurations

Hitchin’s equations are completely integrable! Consequently, they can be ap-
proached using twistor theory, which was developed exactly for this situation.
Other approaches include algebraic geometry and non-linear PDE. Hitchin
described the moduli space using algebraic geometric methods in his original
paper. Of all these tools, non-linear PDE hasn’t been used as much. However,
non-linear PDE seems to be precisely the right tool to understand the noncom-
pact part of the moduli space.3

In recent years, the study of the asymptotic structure of Higgs bundle moduli
spaces has attracted considerable attention, starting with the work [101] which for
rank-2 vector bundles clarified the structure of the noncompact part of the moduli
space M sd(r, d) alluded to in the above quotation. Solutions (A,Φ) belonging to
this region are characterized to be “large” in the sense that ‖Φ‖L2(X) → ∞. In ad-
dition, a geometric compactification of a large portion of M sd(r, d) has been ob-
tained. This work was continued and extended in various directions in the articles
[21, 36, 40, 42, 43, 100, 102, 109]. We review some of these results next.

3Cited from K. Uhlenbeck, Equations of gauge theory, Lecture at Temple University, Notes by Laura
Fredrickson (2012) [133].
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Our focus lies on the case rank rE = 2 Higgs bundles, for which the picture is
currently most complete. Here the Hitchin fibration is the proper map

H : M
Higgs
2,d → B = H 0(X,K2

X), H([(A,Φ)]) = detΦ.

It is convenient to consider solutions (A,Φ) of the rescaled self-duality equations
{

0 = ∂̄AΦ

0 = F⊥
A + t2[Φ ∧ Φ∗h] (30)

where we take Φ to be normalized such that

‖detΦ‖L1(X) = 1.

One then studies the behavior of sequences of solutions of Eq. (30) in the limit
t → ∞. The results we outline next have initially been shown under the generic
assumption that the holomorphic quadratic differential q = detΦ has only simple ze-
roes. We assume this condition here and comment below on how the picture changes
once it is removed. We let B′ ⊂ B denote the subset of holomorphic quadratic dif-
ferentials which have only simple zeroes. In the following a key role is played by the
concept of a limiting configuration as introduced in [101].

Definition 7 Let q ∈ B′. A limiting configuration for q is a solution of the decoupled
self-duality equations

⎧⎪⎨
⎪⎩

0 = ∂̄AΦ

0 = F⊥
A

0 = [Φ ∧ Φ∗h]

on the punctured surface X× = X \ q−1(0) with singularities of order one in the
points q−1(0).

As noted by Hitchin, limiting configurations may alternatively be viewed as
parabolic Higgs bundles with fixed parabolic weights at the zero set q−1(0). This
aspect is further discussed in [100].

Theorem 12 (Mazzeo–Swoboda–Weiß–Witt [101]) Every Higgs bundle (∂̄E,Φ)

with q = detΦ ∈ B′ is gauge equivalent, with respect to some singular complex
gauge transformation g∞ on X× = X \ q−1(0), to some limiting configuration for q .
The space of such limiting configurations is a complex torus Tq of dimension 3γ − 3.

The torus Tq has a geometric interpretation in terms of the spectral curve

Sq = {v ∈ KX | πx(v
2) = q(x)}

of q , a two-sheeted branched cover of X, and its associated Prym variety Prym(Sq)

which already appeared in the discussion of the moduli space as an algebraically com-
pletely integrable system in §4.5. Namely, one can show that Tq is biholomorphically
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equivalent to Prym(Sq), cf. [102] for details. The second main result of [101] estab-
lishes a partial compactification of the moduli space M sd(2, d) in terms of limiting
configurations.

Theorem 13 (Mazzeo–Swoboda–Weiß–Witt [101]) Every limiting configuration
(A∞,Φ∞) admits a desingularization by a family (At , tΦt ) of solutions of the
rescaled self-duality equations (30) such that

(At ,Φt ) −→ (A∞,Φ∞)

as t ↗ ∞, locally uniformly on X× along with all derivatives, at an exponential rate
in t .

We now turn to a description of the results available in the case of Higgs bundles of
rank rE ≥ 2. The first of these is due to Mochizuki [109], where he shows that in this
general case solutions (At , tΦt ) of the self-duality equations are again asymptotically
decoupled in the sense that the inequality

∣∣FAt

∣∣+ ∣∣[Φt ∧ Φ
∗h
t ]∣∣≤ C exp(−βt) (31)

holds for all sufficiently large values of t . In the case rE = 2 he in addition shows a
convergence result similarly to Thm. 13 where the assumption that q ∈ B′ is simple
has been removed. Furthermore, a description of the resulting limiting configurations
in terms of parabolic Higgs bundles is given and the parabolic weights are being de-
termined in terms of the orders of the zeroes of the holomorphic quadratic differential
q .

The problem of identifying the correct limiting objects of diverging sequences of
solutions in the general case rE ≥ 2 has been addressed in the PhD thesis of Fredrick-
son [40] and the subsequent article [41]. Related other work in that direction is due
to Collier and Li [21], which we discuss below. Fredrickson obtains a very complete
description of the ends structure for regular polystable Higgs bundles, using gluing
methods similar to those in [101]. By definition, these comprise the set of Higgs bun-
dles lying in some nondegenerate fibre of the Hitchin fibration H : M

Higgs
r,d → B. Her

result relies on a careful construction of suitable local models and the proof that for
sufficiently large values of t every solution of the self-duality equations is asymptotic
to one of these models near the branch points of the associated spectral cover.

A further step towards a generalization of the results in [101] has been taken in
the article [44] which treats the case of rank rE ≥ 2 parabolic Higgs bundles. Part
of the motivation for this work came from the close relationship between some of
these moduli spaces with certain ALG gravitational instantons as became clear only
recently. We discuss this aspect further in §6.3.

The common framework of all of the results described so far is that of a fixed Rie-
mann surface X, representing some point [X] in the Teichmüller moduli space Tγ .
Letting the point [X] vary, one thus obtains a family of moduli spaces. An interest-
ing problem, which is somewhat complementary to the circle of questions discussed
before, is to understand this family in the limit where [X] approaches a boundary
point of the Deligne–Mumford compactification of Tγ . First results in this direction
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have been obtained in [126, 127]. Kydonakis in his PhD thesis [88] (cf. also [89])
extended these significantly and utilized them to give a purely gauge-theoretic proof
of some results originally due to Guichard and Wienhard [58] concerning exceptional
connected components of the Sp(4,R) representation variety.

6.2 Asymptotic Geometry of the Moduli Space

From the point of view of Riemannian geometry, the most significant feature of the
moduli space M sd(r, d) is its hyperkähler L2 metric GL2 which we described in
§4.5. This is particularly interesting if r and d are coprime, since then the metric
GL2 is complete. It is then a natural objective to seek for a better understanding of
the asymptotic structure of this metric and in particular to determine a model which
describes its geometry at infinity. Not much was known about this aspect until very
recently, and to date our understanding of the metric is still far from complete.

This question gained further impetus from the highly precise predictions due to
Gaiotto, Moore and Neitzke [48] motivated by N = 2 supersymmetric quantum field
theories, in which moduli spaces of (parabolic) Higgs bundle serve as important toy
models. We can give here only a brief summary of those aspects which are most
directly related to the theme of this survey. The overview article [111] by Neitzke
offers a broader and far more detailed account.

In [48] a formalism of spectral networks on Riemann surfaces is developed, out
of which the authors construct a hyperkähler metric GGMN on M = M

Higgs
r,d which

they conjecture to equal the Hitchin metric GL2 . In this picture, the easier to describe
semiflat hyperkähler metric Gsf on the regular part M ′ of the moduli space (cf. the
discussion of the Hitchin integrable system in §4.5) appears as the asymptotic model
at infinity of GGMN. The difference between both metrics is given a physical inter-
pretation as an asymptotic sum of quantum correction terms and is expected to decay
to zero at an exponential rate as the radial variable t → ∞.

For parabolic Higgs bundles of rank rE = 2, the construction of the metric GGMN
simplifies significantly and can be expressed in terms of a preferred set of local co-
ordinates on M due to Fock and Goncharov [38]. Since any hyperkähler metric is
uniquely determined through the associated Iζ -holomorphic symplectic structures
Ωζ , where ζ ∈ CP1, it suffices to consider just those. For ζ �= 0 and ζ �= ∞ these
symplectic forms on M are the pullbacks of the Atiyah–Bott–Goldman symplectic
form ΩABG on the moduli space of projectively-flat complex connections under the
nonabelian Hodge correspondence as described in Eq. (25). The exceptional cases
ζ = 0,∞ correspond to the complex structures ±I , where the holomorphic sym-
plectic forms are those coming from the integrable system structure on the moduli
space of Higgs bundles. One of the ideas in [48] is to study all of these holomorphic
symplectic forms simultaneously.

At this point, the work of Fock and Goncharov [38] enters. It provides for a way
of constructing an atlas of holomorphic Darboux coordinates Xγ (ζ ) for each Ωζ

in terms of the combinatorics of an associated triangulation of the surface X. This
triangulation is obtained from a (generic) meromorphic quadratic differential q as
depicted in Fig. 4. The dots drawn in blue indicate the poles of q , while zeroes
are marked by red boxed. At each point p ∈ X which is not a zero or a pole there
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Fig. 4 Jump of coordinates Xγ (ζ ) (Color figure online)

is a preferred one-dimensional subspace of TpX consisting of vectors v such that
ζq(p)(v, v) is real. Integral curves of the resulting line field are called ζ -trajectories;
the set of trajectories connecting two poles of q generically provides for a triangula-
tion of X, in Fig. 4 (left and right part of the figure) drawn in black. Any two adjacent
triangles in that triangulation form a quadrilateral Qγ which contains exactly two
zeroes and a (suitably) oriented homology cycle γ encircling these zeroes. One now
considers the finite-dimensional vector space of sections of E|Qγ which are horizon-
tal with respect to the flat connection

∇(ζ ) = D + ζ−1Φ + ζΦ∗h . (32)

It contains four distinguished lines �i , i = 1, . . . ,4, along which the sections decay
exponentially near the four corners of Qγ . One then defines Xγ (ζ ) as the cross-ratio
of the �i , viewed as four distinct points in CP1. Letting the cycle γ vary over a suit-
able homology basis gives a system of local holomorphic Darboux coordinates with
respect to Ωζ . These local coordinates however do not extend to a global coordinate
system. The reason is the existence of saddle connections for certain choices of the
meromorphic quadratic differential q which causes jumps in the functions Xγ (ζ ).
The middle part of Fig. 4 shows such a situation with a saddle connection connecting
a pair of zeroes and a corresponding change of the triangulation of X. Changes of
this type occur at codimension-one “walls”, and the work [48] gives a “wall cross-
ing formula” describing the resulting change of coordinates. Based on this result and
an analysis of the coordinates in the limits ζ → 0 and ζ → ∞, Gaiotto, Moore and
Neitzke arrive at the following conjectural form of an integral equation satisfied by
the set of local coordinate functions Xγ (ζ ).

Question/Conjecture 1 With X sf
γ (ζ ) denoting a set of local holomorphic Darboux

coordinates for the semiflat hyperkähler metric, one has

Xγ (ζ ) = X sf
γ (ζ )

× exp

⎛
⎝ 1

4πi

∑
μ∈Γ

DT(μ)〈γ,μ〉
∫

ZμR
−

log
(

1 − σ(μ)Xμ(ζ ′)
)ζ ′ + ζ

ζ ′ − ζ

dζ ′

ζ ′

⎞
⎠ .
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Here the integer DT(μ) is a Donaldson-Thomas invariant which counts the number
of saddle connections and σ(μ) = ±1.

In this general form, the conjecture is currently open. It is supported by numerical
calculations which Dumas and Neitzke carried out for X = CP1 [37]. These show
a very good agreement between the numerical solutions of the above integral equa-
tion and the nonabelian Hodge correspondence. Further evidence for this conjecture
comes from studying the asymptotic geometry of the Hitchin metric, i.e. the region
where the underlying meromorphic differential q gets large. In this regime, the inte-
gral formula suggests that the difference between the coordinates Xγ (ζ ) and X sf

γ (ζ )

decays exponentially at rate β‖q‖L1(X), where the constant β is proportional to the
minimum length of a saddle connection of q . This consequence of the conjectured
integral equation is by now supported by a number of results. The first of these shows
a polynomial rather than the predicted exponential asymptotic between the two met-
rics. It builds on the description of “large” solutions of the self-duality obtained in
[101] and reviewed in §6.1 above.

Theorem 14 (Mazzeo–Swoboda–Weiß–Witt [102]) Let GL2 denote the Hitchin met-
ric on the moduli space of smooth rank 2 Higgs bundles. It admits a convergent series
expansion

GL2 = Gsf +
∞∑

j=0

t (4−j)/3Gj +O(e−δt )

as t → ∞, where each Gj is a dilation-invariant symmetric two-tensor. The rate
δ > 0 of exponential decrease of the remainder term is uniform in any closed dilation-
invariant sector disjoint from the discriminant locus.

Very soon after this result was obtained, Dumas and Neitzke succeeded in showing
the asserted exponential decay along the image of the Hitchin section of the smooth
rank 2 moduli space, employing a method quite different from the one in [102].

Theorem 15 (Dumas–Neitzke [36]) Assume that q ∈ B′ and let 2α < M(q) be some
constant, where M(q) > 0 denotes the minimum length of a saddle connection of q .
Then there holds the exponential decay

∣∣∣GL2(t
2q) − Gsf(t

2q)

∣∣∣= O
(
e−4αt

)

as t → ∞.

This result has been improved by Fredrickson [43] to an asymptotic statement of
the same kind including the region of M ′ away from the image of the Hitchin section
as well as to smooth Higgs bundles of rank rE ≥ 2. The subsequent work [44] covers
parabolic Higgs bundles of rank rE = 2. It also contains a result on the optimal rate
of exponential decay in certain cases of strongly parabolic Higgs bundles (i.e. those
satisfying the nilpotency condition in Def. 6), where an additional isometric S1 action
is crucially being used. Here we also refer to the discussion in §6.3 below.
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The results available so far fall short of describing the full asymptotic structure
of the Hitchin metric GL2 , including the discriminant locus D = M \ M ′. On the
regular part, the metric along the ends has some structural similarities with ALG
gravitational instantons in dimension four. For instance, it is fibred by asymptotically
flat tori of half of the dimension of the moduli space. This fibration degenerates at
the discriminant locus. Motivated by the analogy with the class of quasi asymptoti-
cally euclidean (QALE) spaces introduced by Joyce [79], which in a similar manner
generalize ALE spaces, one is led to the following question.

Question/Conjecture 2 The moduli space M together with its Hitchin metric GL2 is
a QALG manifold, to be defined in an appropriate sense.

It might be a more tractable problem to consider the case rE = 2 and the restric-
tion of the metric GL2 to the Hitchin section since then the self-duality equations
reduce to the scalar PDE (28). A crucial step would then be to study the set of so-
lutions (At , tΦt ) in the regime where the parameter t → ∞ and simultaneously the
distance between two or more zeroes of detΦt converges to 0. Here the methods from
geometric microlocal analysis would naturally come into play. This program has not
been carried out so far.

6.3 Higgs Bundles as Gravitational Instantons

Hyperkähler manifolds have most intensively studied in dimension four. For instance,
it follows from Kodaira’s classification of complex surfaces that every compact hy-
perkähler manifold M4 is either a K3 surface or a complex torus. Also, the hyperkäh-
ler condition in this dimension is equivalent to M being a Calabi–Yau manifold by
the accidental isomorphism between the Lie groups Sp(1) and SU(2). Less is known
about general noncompact four-dimensional hyperkähler manifolds. Here the class
of gravitational instantons has received considerable attention. These are complete,
connected noncompact hyperkähler manifolds (M,g) with the additional “tameness”
condition at infinity saying that there is a constant ε > 0 such that the Riemann curva-
ture tensor Rmg decays at some rate O(r−2−ε) as r = distg(o,p) → ∞. This class of
noncompact Riemannian manifolds has first attracted the interest of physicists [66],
and the naming is attributed to their formal connection with self-dual Yang–Mills
connections. Indeed, one consequence of the metric g being hyperkähler is that its
Weyl tensor is self-dual.

There are far too many mathematical results by now available to be reviewed here.
We only mention the classification of the subclass of so-called asymptotically locally
euclidean (ALE) gravitational instantons due to Kronheimer [86], while a complete
classification still seems to be out of reach. On the other hand, examples of gravi-
tational instantons are in large supply, including various different methods of con-
struction. We refer to the lecture notes [112] by Neitzke for a detailed exposition.
Our focus here is to explain how moduli spaces of Higgs bundles together with their
Hitchin metric fit into the picture.

All known examples of gravitational instantons have in common that the volume
growth of balls Br(o) from some fixed point o ∈ M , which a priori is only constrained



118 J. Swoboda

to be of order rα for 1 ≤ α ≤ 4, actually is one of the four types ALE as above (α = 4,
the maximal growth rate), ALF (α = 3), ALG (α = 2) and ALH (α = 1). Here the
abbreviation ALF stands for asymptotically locally flat, while ALG and ALH are just
the alphabetical continuation of ALE and ALF. Each of these four classes reflects a
specific asymptotic structure of the manifold M4, which in the cases ALF, ALG and
ALH is that of a torus fibration over a base manifold of dimension three, two and
one, respectively. Indeed, it has been conjectured for many years that the above are
the only possible volume growth rates. Minerbe [108] has shown that growth rates in
the interval 3 < α < 4 do not occur, while the full conjecture along with a number of
further interesting structural results has recently been proved by Chen–Chen in the
series of articles [16–18]. In particular, the following finer classification result of the
possible geometries at infinity in the ALG case is worth mentioning.

Theorem 16 (Chen–Chen [16]) Suppose β ∈ (0,1] and τ ∈ H = {z ∈ C | Im z > 0}
are parameters in the following table:

Kodaira type regular I ∗
0 II II ∗ III III ∗ IV IV ∗

Dynkin diagram D4 E8 A0 E7 A1 E6 A2

β 1 1
2

1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H ∈H e2π i/3 e2π i/3 i i e2π i/3 e2π i/3

We let E be the torus bundle obtained by identifying the two boundary components
of

{
u ∈ C | arg(u) ∈ [0,2πβ] and |u| ≥ R

}
× Cv

Z+Zτ

via the gluing map (u, v) ∼ (e2π iβu, e2π iβv). We call E together with its flat hyper-
kähler metric Gβ,τ the standard ALG model of type (β, τ ). Then every gravitational
instanton of type ALG is asymptotic to one such standard model.

The connection with Higgs bundles starts with the observation that there are a
number of instances where the resulting moduli spaces are four-dimensional, such as
for rank rE = 2 parabolic Higgs bundles over the punctured Riemann surface X =
CP1 \ {p1, . . . , p4} (sometimes called the toy model), over X = T 2 \ {p}, or for rE =
3 and X = CP1 \ {p1,p2,p3}. More such examples arise from certain moduli spaces
of wild parabolic Higgs bundles in the sense of Biquard–Boalch [10]. In each of these
cases one obtains a whole family of noncompact hyperkähler manifolds, parametrized
by the parabolic weights, the parabolic masses, as well as (in the first mentioned
example) the position of the point p4, once we make the normalization that p1 = 0,
p2 = 1 and p3 = ∞. Concerning the finer geometric structure of these spaces, Hitchin
[76] came up with the following conjecture.

Question/Conjecture 3 Every toy model is a gravitational instanton of type ALG.

Extending the results concerning the asymptotic geometry of Higgs bundle moduli
spaces to the realm of rank rE = 2 parabolic case (including the toy model as a
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special case), this conjecture has recently been confirmed in [44]. As it turns out, all
toy models have asymptotic geometry of Kodaira type I ∗

0 in the above list, while the
modulus τ is determined by the position of the point p4. As in the smooth case, the
results in [44] show that the Hitchin metric GL2 is exponentially close to the semiflat
model metric Gβ,τ . For the subclass of toy models with vanishing parabolic masses
(corresponding to strongly parabolic Higgs bundles in the sense of Def. 6), this result
can be improved to a quantitative one which makes a statement about the precise rate
of exponential decay of the difference GL2 − Gβ,τ . This resolves in this particular
case a more general conjecture due to Gaiotto–Moore–Neitzke which is currently
open and asserts that the exact rate of decay is proportional to the minimum distance
between two different zeroes of the underlying holomorphic quadratic differential.

In view of these results, one is naturally led to ask whether all ALG gravitational
instantons of appropriate Kodaira type come from parabolic Higgs bundles.

Question/Conjecture 4 Every ALG gravitational instanton of Kodaira type I ∗
0 may

be realized as a moduli space of parabolic Higgs bundles of rank rE = 2 over CP1 \
{p1,p2,p3,p4}. These moduli spaces are pairwise non-isometric.

This conjecture is supported by a formal dimension count which shows that the
deformation space of an ALG gravitational instanton of this type is of real dimension
12. This matches the number of parameters (four real parabolic weights together with
four complex mass parameters) determining the moduli space of stable Higgs bundles
over X = CP1 \ {p1,p2,p3,p4}. These moduli spaces cannot be distinguished by
their large scale geometry, which adds some difficulty to this conjecture. An isometry
invariant of hyperkähler manifolds which might be accessible to computations and at
the same time seems to be fine enough to distinguish many or even all members of
this family are the Torelli parameters

(ωI ,ωJ ,ωK) 
→
(∫

S

ωI ,

∫
S

ωJ ,

∫
S

ωK

)
,

where [S] ∈ H2(X;Z) runs over a suitable set of homology classes. The results cur-
rently available [45] cover the subclass of strongly parabolic Higgs bundles as indi-
cated in Fig. 5. Since these spaces carry a Hamiltonian S1 action given by rotating
the Higgs fields, it becomes tractable to compute these integrals using a symplec-
tic localization technique. In this situation the homology classes [S] can be taken to
be represented by the four exterior spheres which together with the depicted central
sphere form the S1 invariant subset H−1(0) of nilpotent Higgs bundles. This fibre
is Lagrangian with respect to the complex symplectic form ΩI = ωJ + iωK which
implies that the second and last component of the above map vanishes. As for the in-
tegral

∫
S
ωI one observes an affine-linear dependency on the four parabolic weights

which can be represented by the matrix

A =

⎛
⎜⎜⎝

1 −1 1 −1
1 1 −1 −1

−1 1 1 −1
1 1 1 1

⎞
⎟⎟⎠ .



120 J. Swoboda

Fig. 5 The moduli space of strongly parabolic Higgs bundles over CP1 \ {p1,p2,p3,p4} as an ALG
gravitational instanton

Since detA = 24 �= 0 it follows that the map to the quadruple of Torelli parame-
ters obtained by integrating ωI over the four exterior spheres is injective. Conse-
quently, the moduli spaces of strongly parabolic Higgs bundles over X are pairwise
non-isometric. As a corollary, this yields an alternative proof of Witten’s formula
[137] for the symplectic volume of the moduli space of stable parabolic vector bun-
dles over X, which is the subset of the moduli space formed by the central sphere (for
a certain range of parabolic weights).

It is an intriguing question to ask how the various other spaces of parabolic and
wild parabolic Higgs bundles which have moduli spaces of dimension four fit into
this picture. Here an open conjecture, attributed to Boalch, is the following.

Question/Conjecture 5 To every Kodaira type of ALG gravitational instantons there
exists a family of moduli spaces of (wild) parabolic Higgs bundles, where the corre-
sponding Hitchin hyperkähler metrics are asymptotic to this model geometry. These
moduli spaces exhaust the class of ALG gravitational instantons.

6.4 High Energy Equivariant Harmonic Maps

The Kobayashi–Hitchin and nonabelian Hodge correspondences (Thms. 5 and 6) are
arguably two cornerstones of the subject of Higgs bundles. Most of the results dis-
cussed in §6.2 are in fact motivated by the aim to better understand the asymptotic
properties of the Kobayashi–Hitchin correspondence. As we explain now, similar
interest has recently emerged concerning the asymptotic aspects of the nonabelian
Hodge correspondence.

Here again the picture is currently most complete in the case of rank rE = 2 Higgs
bundles as studied in [117] by Ott–Swoboda–Wentworth–Wolf. In this situation, the
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nonabelian Hodge correspondence is a bijection to the character variety of PSL(2,C)

representations of the surface group π1(X) and is based on equivariant harmonic
maps into the hyperbolic space H3. The main result of [117] yields an asymptotic cor-
respondence between the analytically defined limiting configurations of sequences of
solutions to the self-duality equations constructed in [101], and the geometric topo-
logical shear-bend parameters of equivariant pleated surfaces due to Bonahon [12],
going back to earlier work by Thurston. Briefly, a pleated surface is an equivari-
ant map f : X̃ → H

3 which is a totally geodesic embedding outside some geodesic
lamination on X̃ along which the surface is allowed to “bend”. This result can be
seen as a generalization to the complex Lie group PSL(2,C) of the harmonic maps
compactification of Teichmüller moduli Tγ space obtained by Wolf [139], which
pertains to the real Lie group PSL(2,R). A related but different extension of Wolf’s
result to PSL(2,C) is due to Daskalopoulos–Dostoglou–Wentworth [25], which uses
measured R-trees rather than pleated surfaces as boundary points at infinity. Beyond
these low-rank cases the picture is far from being complete, leaving open the follow-
ing question.

Question/Conjecture 6 Understand the asymptotic properties of the nonabelian
Hodge correspondence in the general case rE ≥ 3.

A further approach to a compactification of the PSL(r,C) character vari-
ety based on equivariant harmonic maps into the noncompact symmetric space
N = SL(r,C)/SU(r) – still partly on a conjectural level – is due to Katzarkov–
Noll–Pandit–Simpson [81, 82]. Here the measured R-trees in the case r = 2 get re-
placed by certain Bruhat–Tits buildings associated with spectral curves as the proper
limiting objects at infinity. Their work builds on precise asymptotic estimates for the
holonomy of the resulting family of harmonic metrics ht on the vector bundle E, now
known as the Hitchin WKB problem (named after the semiclassical approximation
scheme due to Wentzel–Kramers–Brillouin used in quantum mechanics).

We describe it in the case where the Higgs bundles are contained in the image
of the Hitchin section (cf. §5.3) and dE = 0, r = rE ≥ 2. Then the holonomy of the
resulting flat connection ∇t = A+ tΦ + tΦ∗ht takes values in the Lie group SL(r,R).
The Hitchin WKB problem asks for the asymptotics of the parallel transport operator
induced by ∇t as t → ∞. The results obtained by Collier and Li in [21] include a
solution in a number of special cases. A full solution of the Hitchin WKB problem
has subsequently been achieved by Mochizuki [109]. We describe his result briefly.
We introduce a vector-valued distance on the space of hermitian endomorphisms by
assigning to the pair h1, h2 the vector

�d(h1, h2) = (k1, . . . , kr ) ∈ R
n,

where ki = log |ei |h2 − log |ei |h1 for some common orthogonal basis {e1, . . . , er}. For
a path c : [0,1] → X and a Higgs field Φ with r distinct eigen-one-forms φi , we set
c∗φi = ai ds for some function ai . Then we define the WKB exponent αi as

αi = −
∫ 1

0
Re(ai(s)) ds.
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We call the path c non-critical if for i �= i, Re(ai(s)) �= Re(aj (s)) for all s ∈ [0,1].
In this case, the WKB exponents αi are pairwise disjoint. One then has the following
result, the proof of which relies on Mochizuki’s asymptotic decoupling statement as
discussed after Thm. 13. Here the hermitian endomorphisms ht (c(0)) and ht (c(1))

of different fibres are being compared using the parallel transport operator induced
by ∇t .

Theorem 17 (Mochizuki [109]) Let (∂̄E,Φ) be a stable Higgs bundle and suppose
that Φ is generically regular semisimple. Let c : [0,1] → X be a non-critical path as
above. Then one has the estimate

∣∣∣∣1t �d
(
ht (c(0)), ht (c(1))

)
− 2(α1, . . . , αn)

∣∣∣∣≤ Ce−δt ,

where the positive constants C and δ only depend on Φ and γ .

6.5 Further Directions and Some More Open Questions

We collect here a selection of further research topics and currently open problems.

Sen’s Conjecture For a compact Riemannian manifold (M,g) Hodge theory pro-
vides for a natural isomorphism between the spaces of harmonic differential forms
carried by M and its de Rham cohomology. Indeed, every de Rham cohomology
class has a unique harmonic representative. This statement is in general false for non-
compact manifolds, and an ongoing theme in global analysis is to relate spaces of
harmonic forms such as

H∗
L2(M,g) =

{
α ∈ Ω∗(M) | dα = d∗α = 0,

∫
M

α ∧ ∗α < ∞
}

to global geometric and topological properties of the underlying noncompact mani-
fold M . Based on physical reasoning, the S-duality conjecture due to Sen [121] makes
a prediction of the dimensions of the spaces Hk

L2(M) for various gauge theoretically

defined noncompact manifolds. In the case of the moduli space M sd(r, d) with metric
GL2 the Sen conjecture has the following formulation, going back to Hausel [61]:

Question/Conjecture 7 (Hausel–Sen)

H∗
L2

(
M sd(r, d)

)= {0}.

So far, the only progress towards this conjecture is due to Hitchin [75] who
succeeded in showing that Hk

L2(M
sd(r, d)) is trivial outside the middle degree

2k = dimM sd(r, d), and due to Hausel [60] who showed that for r = 2 the inclusion
of the compactly supported cohomology groups has trivial image in H∗

L2(M
sd(r, d)).

More refined conjectures concerning stable parabolic PGL(n) Higgs bundles have
been formulated in [60], where a relation to Nakajima’s quiver varieties is discussed.
Further progress might well build on a more refined understanding of the metric
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asymptotics of GL2 , which would have to take into account its structure near the
discriminant locus of M sd(r, d), cf. the discussion at the end of §6.2. A further goal
would then be to relate the space H∗

L2(M
sd(r, d)) to the intersection cohomology of

the compactification of M sd(r, d) by limiting configurations.

Dai–Li Conjecture The map on the moduli space M sd(r, d) which assigns to
[(A,Φ)] the quantity 1

2‖Φ‖2
L2(X)

admits interpretations from various different an-

gles. In §4.5 it appeared as a moment map for the Hamiltonian S1 action rotating the
Higgs field Φ , and also as a Morse–Bott function. One can show that it is a Kähler
potential for the metric GL2 with respect to the complex structure J . In the context
of the nonabelian Hodge correspondence it appears as the energy E (h) of a harmonic
metric, cf. Eq. (17). Namely, if ∇ = A + Ψ is the decomposition of a flat connection
∇ into its h-unitary and h-hermitian parts (where Ψ = Φ + Φ∗h ), then one has the
identity

E (h) = rE‖Ψ ‖2
L2(X)

.

In fact, this follows from the stronger relation Ψ = − 1
2h−1 dh. Since the quantity

1
2‖Φ‖2

L2(X)
is strictly increasing in |t | along the orbits t 
→ (∂̄E, tΦ), this monotonic-

ity is likewise satisfied for the energies E (ht ) of the corresponding harmonic metrics
ht . A question due to Dai and Li [24] asks whether this holds true even in a pointwise
sense and makes an assertion concerning the fibrewise maximum.

Question/Conjecture 8 (Dai–Li) Along the flow of the C
∗ action t 
→ (∂̄E, tΦ), the

energy density e(ht ) of the map ht as given by Eq. (16) increases pointwise with |t |.
Its global minimum is attained at the nilpotent cone H−1(0). For every fibre H−1(q),
the energy density of the harmonic metric belonging to the Hitchin section is larger
than that of any other metric, in a pointwise sense.

In this general form, the Dai–Li conjecture is currently open. Dai and Li [24]
proved monotonicity along the C∗ action for the class of so-called stable cyclic Higgs
bundles. This case is somewhat simpler since then the system of PDEs satisfied by a
harmonic metric decouples. Preceding this result, a weaker version for Higgs bundles
in the image of the Hitchin section was established by Li [94]. The assertion concern-
ing the maximality of the Hitchin section, even in the integrated version, is open for
Higgs bundles of rank rE ≥ 3. The case rE = 2 was settled by Deroin and Tholozan
[27]. For various other interesting conjectures concerning the energy and mapping
properties of harmonic metrics, we refer the reader to the survey article [95].

Labourie’s Conjecture The nonabelian Hodge correspondence gives rise to a
parametrization of the Hitchin–Teichmüller component Hn of real representations
within the complex representation variety Hom(π1(X),PSL(n,C))/∼, cf. the dis-
cussion in §5.3. This parametrization is the map

Sn(X) : Bn(X) → Hn (33)
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obtained as the composition of the Hitchin section and the nonabelian Hodge corre-
spondence, where

Bn(X) =
n⊕

i=2

H 0(X,Ki
X). (34)

The map Sn(X) clearly depends on the Riemann surface X which we have been kept
fixed so far. Allowing X to vary over Teichmüller space Tγ one obtains a family of
such maps which may be written as

Sn : Vn → Hn,

where Vn is the vector bundle over Tγ with fibre over X the vector space Bn(X). The
map Sn is equivariant with respect to the action by the mapping class group. Labourie
in [92] considered the similarly defined map Sn where the right-hand side in Eq. (34)
is replaced by the direct sum starting with i = 3. Leaving thus out the summand
H 0(X,K2

X) of holomorphic quadratic differentials (the dimension of which equals
that of Tγ ) we obtain a space Vn of the same dimension as appearing as the right-hand
side of (33). This observation provides some motivation for the following conjecture.

Question/Conjecture 9 (Labourie) The map Sn is a bijection and in particular gives
rise to a mapping class group invariant parametrization of the Hitchin–Teichmüller
component Hn.

One notices that any ρ-equivariant harmonic map for ρ ∈ Hn in the image of
Sn has vanishing Hopf differential, since the quadratic differential q2 = 0 by con-
struction. Hence the image of this map is a minimal surface in the symmetric space
SL(n,C)/SU(n), and the conjecture implies that it the unique ρ-equivariant such sur-
face. Indeed, the existence was shown by Labourie [91], while the uniqueness part is
still not completely settled. Partial results cover the groups PSL(2,R) and PSL(3,R),
along with some other real Lie groups of low rank, cf. the works by Labourie [91, 93],
Loftin [97], Collier [20], Collier–Tholozan–Toulisse [22] and Alessandrini–Collier
[1]. It and the various other conjectures discussed along the way thus remain to be
attractive directions of future research in geometric analysis.
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