In-Pd (Indium-Palladium)

H. Okamoto

The In-Pd phase diagram in [Massalski2] was adopted from [1992Oka]. The In_3Pd phase with unknown crystal structure was reported in this phase diagram. [2002Stu] disclosed by X-ray diffraction analysis that In_7Pd_3 exists instead of In_3Pd . [2002Fla] obtained the same result, but the composition of In_7Pd_3 was found to be 29 at.% Pd. The In-Pd phase diagram in Fig. 1 is primarily based on [2002Fla] for 0 to 45 at.% Pd and [1992Oka] for 45 to 100 at.% Pd. The peritectic decomposition temperatures of In_3Pd and In_3Pd_2 were 664 °C and 709 °C, respectively, in [1992Oka]. [2002Fla] reported the L \rightarrow (In) + In_7Pd_3 eutectic reaction at 154 °C. However, because the Pd concentration of the eutectic point is negligibly small, the eutectic

 Table 1
 In-Pd Crystal Structure Data

temperature must be very close to the melting point of In. Therefore, it is shown at 156 °C in Fig. 1 as in [1992Oka].

Table 1 is the In-Pd crystal structure data table given by [1992Oka] modified with the data for In_7Pd_3 reported by [2002Fla].

References

1992Oka: H. Okamoto: *Phase Diagrams of Indium Alloys and Their Engineering Applications*, C.E.T. White and H. Okamoto, ed., ASM International, Materials Park, OH, 1992, pp. 207-10.
2002Fla: H. Flandorfer, *J. Alloys Compds.*, 2002, *336*, pp. 176-80.
2002Stu: T. Studnitzky and R. Schmid-Fetzer: *Z. Metallkd.*, 2002, *93*(9), pp. 885-93.

Phase	Composition, at.% Pd	Pearson Symbol	Space Group	Strukturbericht Designation	Prototype
(In)	0	tI2	I4/mmm	<i>A</i> 6	In
In ₇ Pd ₃	29	<i>cI</i> 40	Im3m	$D8_{\rm f}$	Ge ₇ Ir ₃
In_3Pd_2	39-40	hP5	$P\overline{3}m1$	D5 ₁₃	Al ₃ Ni ₂
InPd	45-61.5	cP2	$Pm\overline{3}m$	<i>B</i> 2	CsCl
In ₃ Pd ₅	62.5	oP16	Pbam		Ge ₃ Rh ₅
β InPd ₂	63.5-67.2				
$\alpha InPd_2$	66-66.7	oP12	Pnma	C23	Co ₂ Si
β InPd ₃	73-75				
$\alpha InPd_3$	74.5-75.5	<i>tI</i> 8	I4/mmm	$D0_{22}$	Al ₃ Ti
(Pd)	81-100	cF4	$Fm\overline{3}m$	A1	Cu

Fig. 1 In-Pd phase diagram