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Abstract The branching structure of uniform recursive trees is investigated in this paper.

Using the method of sums for a sequence of independent random variables, the distribution law

of ηn, the number of branches of the uniform recursive tree of size n are given first. It is shown

that the strong law of large numbers, the central limit theorem and the law of iterated logarithm

for ηn follow easily from this method. Next it is shown that ηn and ξn, the depth of vertex n,

have the same distribution, and the distribution law of ζn,m, the number of branches of size m,

is also given, whose asymptotic distribution is the Poisson distribution with parameter λ = 1
m .

In addition, the joint distribution and the asymptotic joint distribution of the numbers of various

branches are given. Finally, it is proved that the size of the biggest branch tends to infinity almost

sure as n → ∞.
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1 Introduction

A tree is a connected simple graph without cycles [1]. The recursive tree of size
n is a kind of random trees on n particles that attach to each other randomly.
The process of generating a recursive tree is as follows (see ref. [2]): let the set
of particles be {1, 2, · · · , n}, and {pk,i, i = 1, 2, · · · , k} , k = 1, 2, · · · , n − 1, be a
sequence of probability mass functions, i.e.

pk,i � 0,
k∑

i=1

pk,i = 1, k = 1, 2, · · · , n − 1.

At step 1, put all particles in a plane; at step 2, particle 2 attaches to particle
1; at step 3, particle 3 attaches to particle 1 with probability p21 or to particle
2 with probability p22. In general, at step k + 1, particle k + 1 attaches to one
of the particles in the set {1, 2, · · · , k} with the probabilities pk,i, i = 1, 2, · · · , k,
respectively. After n steps, the resulting tree with the root vertex 1 is called a
recursive tree. If

pk,i =
1
k
, i = 1, 2, · · · , k; k = 1, 2, · · · , n − 1,

i.e. at each step the new particle attaches to a uniformly selected particle
from the previous ones, independent of previous attachments, then we call it
a uniform recursive tree, denoted by Tn. At the kth(k � 2) step we can make
k − 1 choices, so (n − 1)! different
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trees can be obtained, and each tree occurs with the same probability 1
(n−1)!

.

With many applications, recursive trees have been proposed as models for the
spread of epidemics[3], the family trees of preserved copies of ancient or medieval
texts[4], pyramid schemes[5], etc. Here we give an example of the model for the
spread of epidemics.

Suppose there exist n persons infected by a specific infectious disease (e.g.
SARS) in turn in some area, and only one of them is the original case. The
second case must be infected by the original one. Unknowing the law of in-
fection, we suppose that the third case was infected by one of the previous
two with the probability 1/2. In general, we suppose that the kth case was
infected by one of the previous k − 1 cases with respective probabilities 1

k−1
,

k = 2, 3, · · · , n. Let vertex k represent the kth case, and vertex i attaches to
vertex j (1 � i < j � n) if and only if the jth case was infected by the ith case.
Then we obtain a uniform recursive tree. By this token, such a study of the
uniform recursive trees can make the law of infection clear to a certain extent.

In Tn, Dj denotes the set of vertices of the jth generation. A subtree with
the root in D1 is called a branch, which is also a uniform recursive tree [6].
Obviously, the number of branches is the total number of vertices in the set
D1, denoted by ηn. If the size of a branch is m (1 � m � n − 1), we call it an
m-branch, and let ζn,m denote the number of the m-branches. In particular, if
m = 1, the only vertex in the branch is called a child-leaf of the root 1. It is
easy to see that ηn =

∑n−1

i=1 ζn,i. Furthermore, if vertex k ∈ Dj , we say that the
depth of vertex k is j, and let ξk denote the depth of vertex k.

Many authors have studied the depth of vertices. For example, Szymański
has given the distribution of ξn, the depth of vertex n[7]; Devroye has proved
the central limit theorem for ξ[8]

n ; Mahmoud has done some further studies on
the limiting behavior of ξn and

∑n

k=1 ξk
[9,10]; Meir and Moon have given the

distribution of the number of vertices in each generation [6].

It is easy to see that the branching structure is one of the important properties
of the uniform recursive trees, but as far as we know, no one has considered it.
In this paper, our main purpose is to study it. In Section 2, taking advantage
of the mutual independence of the events (2 ∈ D1), (3 ∈ D1), · · · , (n − 1 ∈ D1),
we establish easily the strong law of large numbers, the central limit theorem
and the law of iterated logarithm for ηn, and give the distribution law of ηn

directly. In Section 3, we prove that ηn and ξn have the same distribution law.
In Section 4, we give the distribution law and asymptotic distribution law of
ζn,m, but also give the joint distribution of the numbers of various branches
and their expectations and covariance matrix, and simultaneously we prove the
asymptotic independence of them. Finally, in Section 5, we show that νn, the
size of the biggest branch of Tn, tends to infinity almost sure as n → ∞.

2 The number of branches of Tn

In this section, we shall discuss the properties of ηn. Meir and Moon have
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given the distribution law of ηn, but their method is more complex and they
have not discussed the properties of ηn ulteriorly [6].

Let Xj = I(j + 1 ∈ D1). According to the process of generating a uniform
recursive tree, it is just related to the jth step of the process that vertex j is
in D1 or not. Therefore, X1,X2, · · · ,Xn−1 are mutually independent Bernoulli
random variables, and

ηn =
n−1∑

j=1

Xj = 1 +
n−1∑

j=2

Xj. (1)

It is easy to see that

P(Xj = 1) = P(j + 1 ∈ D1) =
1
j
, j = 1, · · · , n − 1,

then

EXj =
1
j
, Var Xj =

j − 1
j2

, E|Xj − EXj |3 � EX3
j =

1
j
, j = 1, · · · , n − 1.

Let log x = ln max{e, x}. Furthermore, as n → ∞, we have

Eηn =
n−1∑

j=1

EXj =
n−1∑

j=1

1
j

= log n + O(1); (2)

Bn := Var ηn =
n−1∑

j=1

Var Xj =
n−1∑

j=1

j − 1
j2

= log n + O(1); (3)

Gn :=
n−1∑

j=1

E|Xj − EXj|3 � C
n−1∑

j=1

EX3
j = C

n−1∑

j=1

1
j

= C log n + O(1). (4)

Theorem 1 (Marcinkiewicz SLLN). For any 1 � p < 2, as n → ∞,
ηn − log n

log1/p n
−→ 0, a.s. (5)

In particular,
ηn

log n
−→ 1, a.s. (6)

Proof. By (1), ηn is a sum for mutually independent random variables,
X1,X2, · · · ,Xn−1, and

∞∑

n=1

Var Xn

log2/p n
�

∞∑

n=1

1
n(log n)2/p

< ∞.

Therefore, according to Theorem 6.6 in ref. [11],

ηn − Eηn

log1/p n
=

n−1∑
j=1

(Xj − EXj)

log1/p n
−→ 0, a.s.

And it is easy to see that
Eηn − log n

log1/p n
−→ 0,

Eηn

log n
−→ 1.
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Hence, Theorem 1 holds. �

Theorem 2 (CLT).
ηn − log n√

log n

d−→ N(0, 1).

Proof. As n → ∞,

1

B
3/2
n

n−1∑

j=1

E|Xj − EXj|3 � C(log n)−1/2 → 0.

Then X1,X2, · · · satisfy the Lyapunov’s condition, i.e.,
ηn − Eηn

Bn

d−→ N(0, 1).

Thus, by (2) and (3), Theorem 2 holds. �

Theorem 3 (LIL).

lim sup
n→∞

ηn − log n√
2 log n log log log n

= 1 a.s.;

lim inf
n→∞

ηn − log n√
2 log n log log log n

= −1 a.s.

Proof. By (1), ηn is a sum for uniform bounded mutually independent
random variables, and as n → ∞,

Eηn = log n + O(1), Bn = log n + O(1), log log Bn ∼ log log log n.

Therefore, Theorem 3 follows by the well-known Kolmogorov’s law of iterated
logarithm.

�

Using (1), we can write out the distribution law of ηn easily. Assume that
mi, i = 1, 2, · · · only can take values on nature numbers, and let

βn, 0 = 1, βn, k =
∑

1�m1<···<mk�n−2

m1 · · ·mk, k = 1, 2, · · · , n − 2, (7)

where the sum extends over all m1, · · · ,mk ∈ N satisfying 1 � m1 < · · · <
mk � n − 2, for a fixed k ∈ {1, 2, · · · , n − 2}.

Theorem 4. If n � 2, then

P(ηn = k) =
βn,n−1−k

(n − 1)!
, k = 1, · · · , n − 1. (8)

Proof. Since ηn is the sum of n− 1 mutually independent Bernoulli random
variables, X1,X2, · · · ,Xn−1, the event (ηn = k) occurs, if and only if k of them
equal 1 and the rest equal 0. Thus,

P(ηn = k) =
∑

1�j1<···<jk�n−1

⎛

⎝
k∏

i=1

1
ji

∏

j �∈{j1,···,jk}

(
1 − 1

j

)⎞

⎠

=
1

(n − 1)!

∑

1�j1<···<jk�n−1

∏

j �∈{j1,···,jk}
(j − 1)
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=
1

(n − 1)!

∑

1�m1<···<mn−1−k�n−2

m1 · · ·mn−1−k =
βn,n−1−k

(n − 1)!
. �

3 The depth of vertex n

In this section, we shall prove that ξn, the depth of vertex n, and ηn have
the same distribution law.

There exists only a shortest path between the root and vertex n in Tn, denoted
by Zn. Except the root, the number of vertices in Zn is just the depth of vertex
n. Obviously, n ∈ Zn, thus,

ξn = 1 +
n−1∑

j=2

I(j ∈ Zn). (9)

We shall discuss the distribution law of I(j ∈ Zn) first. Obviously, P(n− 1 ∈
Zn) = 1

n−1
. The event (n − 2 ∈ Zn) occurs, if and only if vertex n − 2 is the

parent or the grandparent of vertex n, therefore,

P(n − 2 ∈ Zn) =
1

n − 1
+

1
n − 1

· 1
n − 2

=
1

n − 2
.

Similarly, by induction,

P(i ∈ Zn) =
1
i
, i = 2, · · · , n − 1. (10)

In fact, we assume that for some 2 � i � n− 2, (10) holds for all i < j � n− 1.
We only need to prove that it also holds for i. Let Ai, j be the event that vertex
j is a child of vertex i. It is easy to see that

I(i ∈ Zn) =
n∑

j=i+1

I(j ∈ Zn, Ai, j).

Ai, j is related to the jth step of the generating process only and the event
(j ∈ Zn) is just related to step j + 1, · · · , n, therefore, the two events Ai, j and
(j ∈ Zn) are mutually independent. Hence,

P(i ∈ Zn) =EI(i ∈ Zn) =
n∑

j=i+1

EI(j ∈ Zn, Ai, j) =
n∑

j=i+1

P(j ∈ Zn, Ai, j)

=
n∑

j=i+1

P(j ∈ Zn)P(Ai, j) =
n−1∑

j=i+1

1
j(j − 1)

+
1

n − 1
=

1
i
.

Secondly, the random variables I(2 ∈ Zn), · · · , I(n − 1 ∈ Zn) are mutually
independent. For any 2 � k � n − 2 and 2 � jk < · · · < j2 < j1 � n − 1, the
event

(I(ji ∈ Zn) = 1, I(j ∈ Zn) = 0, j �= ji; i = 1, 2, · · · , k)

represents that vertex n is a child of j1 and ji is a child of ji+1, i = 1, · · · k − 1.
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Let j0 = n. And by the rule of generating process,
P (I(ji ∈ Zn) = 1, I(j ∈ Zn) = 0, j �= ji; i = 1, 2, · · · , k)

=
k∏

i=0

1
ji − 1

=
1

(n − 1)!

∏

j �∈{j1,···,jk}
(j − 1) =

k∏

i=1

1
ji

∏

j �∈{j1,···,jk}

j − 1
j

=
k∏

i=1

P(I(ji ∈ Zn) = 1)
∏

j �∈{j1 ,···,jk}
P(I(ji ∈ Zn) = 0),

which yields that I(2 ∈ Zn), · · · , I(n−1 ∈ Zn) are mutually independent random
variables.

Comparing (9) with (1), the expression of ηn ( in (1), X1 = I(2 ∈ D1) = 1 ),
we can see that they are the same, then ξn and ηn have the same distribution
law. Therefore, Theorem 1, Theorem 2 and Theorem 3 still hold for ξn. The
first two results can be found in Devroye[8] and Mahmoud[10], but their proof
are much more complex.

4 The number of m-branches

In this section, we will give not only the distribution law and the asymptotic
distribution of the numbers of various branches, but also the joint distribution
law and the asymptotic joint distribution of all the different branches.

4.1 The distribution law and the asymptotic distribution of ζn,1

In fact, the result in this subsection is a part of Theorem 6 in the next, but
for the particularity of child-leaves, we give a different way here.

First we give a recursive formula for ζn,1. According to the total probability
formula,

P(ζn+1,1 = k) =P(ζn,1 = k)P(ζn+1,1 = k | ζn,1 = k)
+ P(ζn,1 = k − 1)P(ζn+1,1 = k | ζn,1 = k − 1)
+ P(ζn,1 = k + 1)P(ζn+1,1 = k | ζn,1 = k + 1)

=
n − k − 1

n
P(ζn,1 = k)

+
1
n

P(ζn,1 = k − 1) +
k + 1

n
P(ζn,1 = k + 1).

That is,
nP(ζn+1,1 = k) − (n − 1)P(ζn,1 = k)

=P(ζn,1 = k − 1) + (k + 1)P(ζn,1 = k + 1) − kP(ζn,1 = k).
Replace n by j and sum up for j = 1, 2, · · · , n, then

nP(ζn+1,1 = k) =
n∑

j=1

P(ζj = k − 1) +
n∑

j=1

(k + 1)P(ζj = k + 1)

−
n∑

j=1

kP(ζj = k). (11)
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Using the recursive formula (11), we can prove the following theorem.

Theorem 5. For any n ∈ N ,

P(ζn,1 = k) =
an−k

k!
, k = 0, 1, · · · , n − 1, (12)

where

ai =
i−1∑

j=0

(−1)j

j!
, i � 1. (13)

Furthermore, as n → ∞, the asymptotic distribution of ζn,1 is the Poisson
distribution with parameter λ = 1.

Proof. It is easy to verify that the sequence {an} satisfies the following
recursive relation:

a1 = 1, a2 = 0, aj =
1

j − 1

j−2∑

i=1

ai, j � 2, (14)

and (12) holds for n = 1, 2.

Suppose that (12) holds for n (n � 2). It suffices to prove that it still holds
for n + 1. Obviously,

P(ζn+1,1 = n − 1) = 0, P(ζn+1,1 = n) =
1
n!

.

By (11), (14) and inductive assumption, then for any k ∈ {0, 1, · · · , n − 2},

nP(ζn+1,1 = k) =
n∑

j=1

P(ζj = k − 1) +
n∑

j=1

(k + 1)P(ζj = k + 1) −
n∑

j=1

kP(ζj = k)

=
n∑

j=k

aj−(k−1)

(k − 1)!
+

n∑

j=k+2

(k + 1) · aj−k−1

(k + 1)!
−

n∑

j=k+1

k · aj−k

k!

=
an−(k−1)

(k − 1)!
+

1
k!

n−k−1∑

j=1

aj =
(k + n − k)an−(k−1)

k!

=
nan+1−k

k!
,

which yields that (12) holds for any n ∈ N .

From (12), it is obvious that the asymptotic distribution of ζn,1 is the Poisson
distribution with parameter λ = 1. �

Moreover, by (12), a consequence of Theorem 5 is as follows.

Corollary. For any nature number n � 3,
Eζn,1 = 1, Varζn,1 = 1.

4.2 The general cases

Obviously, for any m ∈ {1, · · · , n − 1}, we have

P(ζn,m � 0) = 1, P
(

ζn,m >

[
n − 1

m

])
= 0, (15)
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where [t] is the biggest integer not more than t.

Now we prove the following theorem.

Theorem 6. In uniform recursive trees of size n, the distribution law of
ζn,m, the number of the m-branches, is as follows:

P(ζn,m = k) =
1

mkk!

[ n−1
m ]−k∑

i=0

(−1)i

i!mi
, k = 0, 1, · · · ,

[
n − 1

m

]
. (16)

Specially, if m > n−1
2

, ζn,m is a Bernoulli random variable, i.e.

P(ζn,m = 1) = 1 − P(ζn,m = 0) =
1
m

.

Proof. From the set {2, 3, · · · , n}, i subsets of size m are chosen to make i
m-branches (each may have (m− 1)! forms), and the rest of n−mi− 1 vertices
attach arbitrarily by the above rule . Therefore, the number of the ways of
generating a recursive tree is(

n−1
m

)(
n−m−1

m

)
· · · · ·

(
n−m(i−1)−1

m

)
((m − 1)!)i (n − mi − 1)!

i!

=
(n − 1)!

mii!
, 1 � i �

[
n − 1

m

]
. (17)

On the other hand, by (15),
[ n−1

m ]∑

j=0

P(ζn,m = j) = 1.

Set i = 1 in (17), then(
n−1
m

)
(m − 1)!(n − m − 1)!

(n − 1)!
=

1
m

.

In view of the fact that each recursive tree which has j m-branches exactly is

counted j times and |Tn| = (n−1)!, the left of the above formula is
[ n−1

m ]∑
j=1

(
j
1

)
P(ζn,m =

j). Hence,
[ n−1

m ]∑

j=1

(
j

1

)
P(ζn,m = j) =

1
m

. (18)

Similarly,
[ n−1

m ]∑

j=2

(
j

2

)
P(ζn,m = j) =

1
2m2

, (19)

· · · · · · · · · · · ·
[ n−1

m ]∑

j=i

(
j

i

)
P(ζn,m = j) =

1
mii!

,

· · · · · · · · · · · ·
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P
(

ζn,m =
[
n − 1

m

]
− 1

)
+

([
n − 1

m

])
P

(
ζn,m =

[
n − 1

m

])

=
1

m[ n−1
m ]−1([n−1

m
] − 1)!

,

P
(

ζn,m =
[
n − 1

m

])
=

1
m[ n−1

m ]([n−1
m

])!
.

Consider the [n−1
m

] + 1 formulae above from the bottom up, then it is easy to
yield (16).

If m > n−1
2

, ζn,m only can take values of 0 or 1. Since [n−1
2

] = 1,

P(ζn,m = 1) = 1 − P(ζn,m = 0) =
1
m

,

by (16). �

By (18) and (19), we can obtain the expectation and variance of ζn,m:

Corollary. (1) For any n � 2,

E(ζn,m) =
1
m

, m = 1, · · · , n − 1;

(2) For any n � 3,

Var(ζn,m) =

{
1
m

, 1 � m � n−1
2

;
m−1
m2 , n−1

2
< m � n − 1.

(20)

Proof. It follows from (18) that Eζn,m = 1
m

. And by (19), if 1 � m � n−1
2

,

E(ζ2
n,m) − E(ζn,m) =

1
m2

,

thus,

Var(ζn,m) = E(ζ2
n,m) − (E(ζn,m))2 =

1
m

;

if n−1
2

< m � n − 1, the result is obvious. �

From Theorem 6, it is easy to see

Theorem 7. For any m ∈ N , the asymptotic distribution of ζn,m is the
Poisson distribution with the parameter λ = 1

m
, as n → ∞, i.e.

lim
n→∞

P(ζn,m = k) = e−1/m 1
mkk!

, k = 0, 1, · · · ; m = 1, 2, · · · . (21)

4.3 The joint distribution of ζn,m

Next we give the joint distribution of random vector (ζn,1, ζn,2, · · · , ζn,n−1).

Theorem 8. In Tn, the joint distribution of the numbers of various branches
(ζn,1, ζn,2, · · · , ζn,n−1)

is as follows:

P(ζn,1 = x1, ζn,2 = x2, · · · , ζn,n−1 = xn−1) =
n−1∏

m=1

1
mxmxm!

, (22)
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where {x1, · · · , xn−1} is any sequence of nonnegative integers satisfying the con-
dition

n−1∑

i=1

ixi = n − 1.

Proof. It suffices to compute the number of the elementary events (corre-
sponding to a certain recursive tree) in the event {ζn,1 = x1, · · · , ζn,n−1 = xn−1}.
Consider the groups of n−1 vertices (the vertices of a group belong to the same
branch). The number of the ways of grouping is

(n − 1)!
(1!)x1(2!)x2 · · · ((n − 1)!)xn−1

· 1
x1!x2! · · · xn−1!

.

And m-branch has (m − 1)! different forms, so the number of the elementary
events in {ζn,1 = x1, · · · , ζn,n−1 = xn−1} is

(n − 1)!
(1!)x1(2!)x2 · · · ((n − 1)!)xn−1

· (0!)x1(1!)x2 · · · [(n − 2)!]xn−1

x1!x2! · · · xn−1!

=
(n − 1)!

1x12x2 · · · (n − 1)xn−1x1!x2! · · · xn−1!
.

Since the elementary events occur with the same probability 1
(n−1)!

,

P(ζn,1 = x1, ζn,2 = x2, · · · , ζn,n−1 = xn−1)

=
1

(n − 1)!
· (n − 1)!
1x12x2 · · · (n − 1)xn−1x1!x2! · · · xn−1!

=
n−1∏

m=1

1
mxmxm!

. �

In the previous subsection, we have obtained the expectation of random vec-
tor (ζn,1, ζn,2, · · · , ζn,n−1), i.e.

E(ζn,1, ζn,2, · · · , ζn,n−1) =
(

1,
1
2
, · · · , 1

n − 1

)
. (23)

Now we give its covariance matrix.

Theorem 9. For any 1 � k < l � n − 1, if k + l � n − 1,
Cov(ζn,k, ζn,l) = 0; (24)

and if k + l > n − 1,

Cov(ζn,k, ζn,l) = − 1
kl

. (25)

Proof. If 1 � k < l � n − 1 and k + l > n − 1, it is obvious that
P(ζn,k = i, ζn,l = j) = 0, i, j > 0,

thus,

Eζn,kζn,l = 0, Cov(ζn,k, ζn,l) = −Eζn,kEζn,l = − 1
kl

.

For 1 � k < l � n − 1 and k + l � n − 1, if i, j > 0, ik + jl � n − 1, the
number of the uniform recursive trees which exactly have i k-branches and j
l-branches is (n− 1)! ·P(ζn,k = i, ζn,l = j). Let A and B be two disjoint subsets
of the set {2, 3, · · · , n}, whose sizes are k and l, respectively. Then the number
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of uniform recursive trees, which have a k-branch and a l-branch consisting of
the vertices in A and B, is (k − 1)!(l − 1)!(n − k − l − 1)!. Noting that A and
B can be chosen arbitrarily, the number multiplied by

(
n−1

k

)
·
(

n−k−1
l

)
is

M :=
(

n − 1
k

)
·
(

n − k − 1
l

)
(k − 1)!(l − 1)!(n − k − l − 1)! =

(n − 1)!
kl

.

It is easy to see that in M , each recursive tree which exactly has i k-branches
and j l-branches is counted ij times. Then

∑

(i,j): i,j>0, ik+jl�n−1

ij(n − 1)!P(ζn,k = i, ζn,l = j) = M =
(n − 1)!

kl
.

That is
∑

(i,j): ij>0, ik+jl�n−1

ijP(ζn,k = i, ζn,l = j) =
1
kl

,

hence,

Eζn,kζn,l =
1

k · l = Eζn,kEζn,l, 1 � k < l � n − 1, k + l � n − 1,

by (23). And Cov(ζn,k, ζn,l) = 0 follows. �

From this theorem, the following consequence is obvious.

Corollary. The covariance matrix of random vector (ζn,1, ζn,2, · · · , ζn,n−1)
is
Bn = (bij)(n−1)×(n−1), where

bii =

⎧
⎪⎨

⎪⎩

1
i
, 1 � i � n−1

2

i − 1
i2

, n−1
2

< i � n − 1
; bij =

⎧
⎨

⎩
0, i �= j, i + j � n − 1

− 1
ij

, i �= j, i + j > n − 1
.

4.4 The asymptotic joint distribution of ζn,m

To study the asymptotic joint distribution of ζn,m, we prove a lemma first.

Lemma 1. For any m ∈ N , as n → ∞, the limit of P(ζn,1 = 0, · · · , ζn,m =
0) exists.

Proof. It holds for m = 1 by Theorem 7. Consider the case m = 2. Let

P(ζn,1 = 0, ζn,2 = 0) = an, P(ζn,1 = 0) = bn.

By Theorem 8,

bn = P(ζn,1 = 0) =
∑

2x2+3x3+···+(n−1)xn−1=n−1

n−1−i∏

m=2

1
mxmxm!

;

an = P(ζn,1 = 0, ζn,2 = 0) =
∑

3x3+···+(n−1)xn−1=n−1

n−1−i∏

m=2

1
mxmxm!

.
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Therefore,

bn =
[(n−1)/2]∑

j=0

1
2jj!

∑

3x3+···+(n−1)xn−1=n−2j−1

n−2j−1∏

m=3

1
mxmxm!

=
[(n−1)/2]∑

j=0

1
2jj!

an−2j. (26)

Suppose that the limit of an does not exist as n → ∞, then there exist
0 � α < β � 1, satisfying

lim inf
n→∞

an = α, lim sup
n→∞

an = β.

Noting that 16 − 9
√

e >
√

256 −
√

81 × 3 > 0, let

δ =
β − α

4
> 0, δ1 =

(
4 − 9

√
e

4

)
δ > 0.

For any fixed 0 < ε < (11
√

e − 18)δ, since lim
n→∞

bn = e−1, there exists an n0,
such that for any n2 > n1 > n0,

|bn1 − bn2 | < ε. (27)
And when n0 is sufficiently large,

α − δ < an < β + δ, n � n0; (28)
∞∑

j=n+1

1
2jj!

< δ1, n � n0. (29)

Then fix an n0, which satisfies the above three formulae (27)—(29).

When n is sufficiently large, rewrite (26) as follows:

bn = an +
n0∑

j=1

1
2jj!

an−2j +
[(n−1)/2]∑

j=n0+1

1
2jj!

an−2j. (30)

Since lim sup
n→∞

an = β, lim inf
n→∞

an = α, there exist n2 > n1 > 3n0, satisfying

an1 > β − δ1, an2 < α + δ1.

Noting that n2 − 2n0 > n1 − 2n0 > n0, (28) holds for all n = n1 − 2j, n =
n2 − 2j, j ∈ {1, 2, · · · , n0}. Hence, combining (29) and (30), we have that

bn1 = an1 +
n0∑

j=1

1
2jj!

an1−2j +
[(n−1)/2]∑

j=n0+1

1
2jj!

an1−2j

> (β − δ1) +
n0∑

j=1

1
2jj!

(α − δ) +
[(n−1)/2]∑

j=n0+1

1
2jj!

an1−2j

> (β − δ1) + (
√

e − 1)(α − δ) −
∞∑

j=n0+1

1
2jj!

> (β − δ1) + (
√

e − 1)(α − δ) − δ1
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and

bn2 = an2 +
n0∑

j=1

1
2jj!

an2−2j +
[(n−1)/2]∑

j=n0+1

1
2jj!

an2−2j

< (α + δ1) +
n0∑

j=1

1
2jj!

(β + δ) +
[(n−1)/2]∑

j=n0+1

1
2jj!

an1−2j

< (α + δ1) + (
√

e − 1)(β + δ) +
∞∑

j=n0+1

1
2jj!

< (α + δ1) + (
√

e − 1)(β + δ) + δ1.

Therefore,
bn1 − bn2 > (2 −

√
e)(β − α) − 2(

√
e − 1)δ − 4δ1

=4δ − 2(
√

e − 1)δ − (16 − 9
√

e)δ = (11
√

e − 18)δ,
which is in contradiction with (27). Thus, as n → ∞, the limit of P(ζn,1 =
0, ζn,2 = 0) exists.

It is not hard to prove that Lemma 1 is holds for all m ∈ N by induction,
whose process is similar as m = 1 ⇒ m = 2. �

The main result in this subsection is the following theorem.

Theorem 10. In uniform recursive trees, the numbers of various branches
are asymptotical independent. Furthermore, for any m ∈ N and any sequence
of nonnegative integers {x1, · · · , xm},

lim
n→∞

P(ζn,1 = x1, · · · , ζn,m = xm) =
m∏

j=1

lim
n→∞

P(ζn,j = xj) =
m∏

j=1

e−1/j 1
jxj · xj!

.

Proof. The proof is divided into two parts: (1) the limit lim
n→∞

P(ζn,1 =

x1, · · · , ζn,m = xm) exists; (2) for any m ∈ N and sequence of nonnegative
integers {x1, · · · , xm},

lim
n→∞

P(ζn,1 = x1, · · · , ζn,m = xm) =
m∏

j=1

e−1/j 1
jxj · xj!

. (31)

By Theorem 7, it is shown that for any j ∈ N and nonnegative integer i,

lim
n→∞

P(ζn,j = i) = e−1/j 1
ji · i! ,

which yields that the theorem holds for m = 1. In particular,
lim

n→∞
P(ζn,1 = 0) = e−1. (32)

Consider the case k = 2. By (22),

P(ζn,1 = i, ζn,2 = j) =
1

i! · 2jj!

∑

3x3+···+(n−1−i)xn−1−i=n−1−i−2j

n−1−i∏

m=3

1
mxmxm!

=
1

i! · 2jj!
P(ζn−i−2j,1 = 0, ζn−i−2j,2 = 0).
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Hence, by Lemma 1, the limit

lim
n→∞

P(ζn,1 = i, ζn,2 = j) =
1

i! · 2jj!
lim

n→∞
P(ζn−i−2j, 1 = 0, ζn−i−2j, 2 = 0)

exists. We only need to prove that
lim

n→∞
P(ζn,1 = 0, ζn,2 = 0) = e−1−1/2. (33)

Let
lim

n→∞
P(ζn,1 = 0, ζn,2 = 0) = P(ζ1 = 0, ζ2 = 0) := p, 0 � p � 1. (34)

Note that

P(ζn,1 = 0, ζn,2 = 0) =
∑

3x3+···+(n−1−i)xn−1=n−1

n−1∏

m=2

1
mxmxm!

.

On the other hand, (32) can be rewrite as follows:

lim
n→∞

∑

2x2+3x3+···+(n−1−i)xn−1=n−1

n−1∏

m=2

1
mxmxm!

= lim
n→∞

[(n−1)/2]∑

j=0

1
2jj!

∑

3x3+···+(n−1−2j)xn−1−2j=n−1−2j

n−1−2j∏

m=3

1
mxmxm!

= lim
n→∞

[(n−1)/2]∑

j=0

1
2jj!

P(ζn−2j,1 = 0, ζn−2j,2 = 0) = e−1.

That is,

lim
n→∞

e

[(n−1)/2]∑

j=0

1
2jj!

P(ζn−2j, 1 = 0, ζn−2j, 2 = 0) = 1. (35)

And (35) shows that for a sufficiently large nature number n0 and if n > 3n0,
we have

e

n0∑

j=0

1
2jj!

P(ζn−2j, 1 = 0, ζn−2j, 2 = 0)

�e

[(n−1)/2]∑

j=0

1
2jj!

P(ζn−2j, 1 = 0, ζn−2j, 2 = 0)

�e

n0∑

j=0

1
2jj!

P(ζn−2j, 1 = 0, ζn−2j, 2 = 0) + e

∞∑

j=n0+1

1
2jj!

.

By (34) and (35), let n → ∞, then

ep

n0∑

j=0

1
2jj!

� 1 � ep

n0∑

j=0

1
2jj!

+ e

∞∑

j=n0+1

1
2jj!

.

And let n0 → ∞ in the above formula, too. Then
e1+ 1

2 p = 1,
i.e. (33) follows and the theorem holds for m = 2.
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For the case m � 3, by induction, it is not hard to be proved, whose process
is similar as m = 1 ⇒ m = 2. Hence the proof is completed. �

5 The biggest branch of Tn

As described in the introduction, in Tn, νn denotes the size of the biggest
branch, i.e.

νn = max{m : ζn,m � 1}.
In the model for spread of epidemics, νn represents the largest number of the
sufferers, who were infected directly or indirectly by someone infected by the
origin case directly.

Proposition 1.

lim
n→∞

P
(

νn >
n − 1

2

)
= ln 2.

Proof. The event
(

νn >
n − 1

2

)
=

n−1⋃

m=[(n−1)/2]+1

(νn = m)

and two of the events (νn = [(n− 1)/2] + 1), (νn = [(n− 1)/2] + 2), · · · , (νn =
n − 1) cannot occur at the same time, therefore, as n → ∞,

P
(

νn >
n − 1

2

)
=

n−1∑

m=[(n−1)/2]+1

P(νn = m) =
n−1∑

m=[(n−1)/2]+1

1
m

→ ln 2. �

Remark. The theorem shows that the probability of an existing branch,
whose size is more than [(n− 1)/2], is very large. To a certain extent, it shows
that there existed some super-infectors in the spread of SARS.

Moreover, it can be proved that νn tends to infinity almost sure, as n → ∞.
It is easy to see that

νn � νn+1 � νn + 1,

then νn is increasing in n and the limit of νn exists.

Theorem 11.
lim

n→∞
νn = ∞, a.s.

Proof. Recall that ηn denotes the number of all branches, and νn denotes
the size of the biggest branch, then ηnνn � n − 1, from this and (6),

lim inf
n→∞

log n · νn

n
� lim

n→∞
log n

ηn

= 1, a.s.

Since lim
n→∞

log n
n

= 0, we have lim
n→∞

νn = ∞, a.s. �
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