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Abstract

Prominences are intriguing, but poorly understood, magnetic structures of the solar corona.
The dynamics of solar prominences has been the subject of a large number of studies, and
of particular interest is the study of prominence oscillations. Ground- and space-based ob-
servations have confirmed the presence of oscillatory motions in prominences and they have
been interpreted in terms of magnetohydrodynamic (MHD) waves. This interpretation opens
the door to perform prominence seismology, whose main aim is to determine physical param-
eters in magnetic and plasma structures (prominences) that are difficult to measure by direct
means. Here, we review the observational information gathered about prominence oscillations
as well as the theoretical models developed to interpret small amplitude oscillations and their
temporal and spatial attenuation. Finally, several prominence seismology applications are
presented.
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1 Prominences

Quiescent solar filaments are clouds of cool and dense plasma suspended against gravity by forces
thought to be of magnetic origin. They form along the inversion polarity line in or between the
weak remnants of active regions. Early observations already suggested that their fine structure
is apparently composed by many horizontal and thin dark threads (de Jager, 1959; Kuperus and
Tandberg-Hanssen, 1967). More recent high-resolution Ha observations obtained with the Swedish
Solar Telescope (SST) in La Palma (Lin et al., 2005) and the Dutch Open Telescope (DOT) in
La Palma (Heinzel and Anzer, 2006) have allowed to observe this fine structure with much greater
detail (see Lin, 2010, for a review). The measured average width of resolved thin threads is about
0.3 arcsec (~ 210 km), while their length is between 5 and 40 arcsec (~ 3500—28,000 km). The fine
threads of solar filaments seem to be partially filled with cold plasma (Lin et al., 2005), typically two
orders of magnitude denser and cooler than the surrounding corona, and it is generally assumed
that they outline the magnetic flux tubes in which they reside (Engvold, 1998; Lin, 2005; Lin
et al., 2005; Okamoto et al., 2007; Engvold, 2008; Martin et al., 2008; Lin et al., 2008). This idea
is strongly supported by observations which suggest that threads are skewed with respect to the
filament long axis in a similar way to what has been found for the magnetic field (Leroy, 1980;
Bommier et al., 1994; Bommier and Leroy, 1998). On the opposite, Heinzel and Anzer (2006)
suggest that these dark horizontal filament structures are a projection effect. According to this
view, many magnetic field dips of rather small vertical extension, but filled with cool plasma, are
aligned in the vertical direction and the projection against the disk produces the impression of a
horizontal thread.

Prominences are highly dynamic structures that display flows. These flows have been observed
in Ha, UV, and EUV lines, and their study and characterization are of great interest for the un-
derstanding of prominence formation and stability, the mass supply, and the prominence magnetic
field structure. In the Ha line, and in quiescent limb prominences, a complex dynamics with ver-
tical downflows and upflows (Berger et al., 2008) as well as horizontal flows is often observed. The
velocities are in the range between 2 and 35 km s !, while in EUV lines flow velocities seem to
be slightly higher. When comparing these values one should be aware that these lines correspond
to different temperatures, so probably the reported flow speeds correspond to different parts of
the prominence. In active region prominences, flow velocities seem to be higher than in quiescent
prominences, even reaching 200 km s !, and some of these high-speed flows are probably related
with the prominence formation itself. In the case of filaments observed on the disk in the Ha line,
horizontal flows in the filament spine are often observed, while in barbs flows are vertical. The
range of observed velocities of filament flows is between 5 and 20 km s!. A particular feature in
these observations is the presence of counter-streaming flows, i.e., oppositely directed flows (Zirker
et al., 1998; Lin et al., 2003). Because of the physical conditions of the filament plasma, all these
flows seem to be field-aligned. For a thorough information about flows in prominences see Labrosse
et al. (2010) and Mackay et al. (2010).

Solar prominences are subject to various types of oscillatory motions. Some of the first works
on this subject were concerned with oscillations of large amplitude induced by disturbances coming
from a nearby flare. Later, observations performed with ground-based telescopes pointed out that
many quiescent prominences and filaments display small amplitude oscillations (Harvey, 1969).
These oscillations have been commonly interpreted in terms of standing or propagating magneto-
hydrodynamic (MHD) waves. Using this interpretation, a number of theoretical models have been
set up in order to try to understand the prominence oscillatory behaviour. Such as we will point out
in the following, the study of prominence oscillations can provide an alternative approach for prob-
ing their internal structure. The magnetic field structure and physical plasma properties are often
hard to infer directly and wave properties directly depend on these physical conditions. Therefore,
prominence seismology seeks to obtain information about prominence physical conditions from a
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comparison between observations and theoretical models of oscillations.

This review is mainly devoted to small amplitude oscillations, although a brief section deals
with large amplitude oscillations. The layout of the review is the following: large amplitude
oscillations are succinctly summarized in Section 2; in Section 3, the observational background
about small amplitude oscillations is reviewed; in Section 4, theoretical models of small amplitude
oscillations based on linear ideal MHD waves in different configurations are described; next, in
Section 5, the damping of prominence oscillations produced by different mechanisms is studied
from a theoretical point of view; finally, in Section 6, prominence seismology using large and small
amplitude oscillations is introduced.
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2 Large Amplitude Oscillations

Oscillations with velocity amplitude greater than 20 km s ! have been observed in filaments. It was
suggested that their exciter was a wave, caused by a flare, which disturbs the filament and induces
damped oscillations. This hypothesis was confirmed by Moreton and Ramsey (1960), who used
a refined photographic technique that permitted the observation of the propagating perturbation,
with velocities in the range 5001500 km s !. In some cases, during the course of the oscillations,
the filament becomes visible in the Hoa image when the prominence is at rest, but when its line-
of-sight velocity is sufficiently large, the emission from the material falls outside the bandpass of
the filter and the prominence becomes invisible in Ha. This process is repeated periodically and
for this reason this type of event is called a “winking filament”. Ramsey and Smith (1965) and
Hyder (1966) studied 11 winking filaments and derived oscillatory periods between 6 and 40 min,
and damping times between 7 and 120 min. They reported that there seemed to be no correlation
between the period and the filament dimensions, the distance to the perturbing flare or its size. In
addition, a single filament perturbed by four flares during three consecutive days oscillated with
essentially the same frequency and damping time in each event. As a consequence, it was suggested
that prominences possess their own frequency of oscillation.

The oscillatory velocity of the winking filaments studied by Ramsey and Smith (1965, 1966)
and Hyder (1966) is quite large compared with the relevant wave speeds in prominences (namely
the sound and Alfvén speeds). For this reason, one usually refers to these events as large amplitude
oscillations. Recently, and thanks to space- and ground-based instruments, new observations of
large amplitude oscillations have been published. The exciters seem to be Moreton or EIT waves
(Eto et al., 2002; Okamoto et al., 2004; Gilbert et al., 2008) or nearby jets and subflares (Jing et al.,
2003, 2006; Vrsnak et al., 2007), while in other cases the oscillations are associated to the eruptive
phase of a filament (Isobe and Tripathi, 2006; Isobe et al., 2007; Pouget, 2007; Chen et al., 2008) or
are produced by the Alfvénic vortex shedding mechanism recently developed by Nakariakov et al.
(2009). In this last case, oscillations could be a signature of the transition from a stable to an
unstable situation. Although in most of the observed flare-induced filament oscillations the material
undergoes vertical oscillations, Kleczek and Kuperus (1969) and Hershaw et al. (2011) have also
reported horizontal oscillations. Moreover, periodic motions along the longitudinal filament axis
have also been observed (Jing et al., 2003, 2006; Vrsnak et al., 2007).

The most recent interpretation of observations of large amplitude oscillations in a prominence
has been given by Hershaw et al. (2011), who studied this kind of oscillations in an arched promi-
nence observed with SOHO/EIT on 30 July 2005. The perturbations were produced by two con-
secutive trains of coronal waves coming from two different flares in an active region located far
away from the prominence site. Both oscillatory trains had periods of around 100 min and excited
prominence oscillations that lasted for about 18 h. During the oscillations, the displacement of
the prominence was horizontal with respect to the solar surface. In the case of the first wave
train, induced by a more energetic flare than the second one, the displacement in all the consid-
ered prominence locations shows a clear time damped oscillatory behaviour (see Figure 1). The
oscillatory period, the damping time, and the horizontal velocity at different heights along the two
prominence legs were determined (see Table 1 in Hershaw et al., 2011). The prominence oscillatory
periods seem to depend on the height at which they were measured and, for each wave train, they
show some differences depending on the leg in which they were measured. Focussing on the first
wave train, which seems to trigger a clearly damped oscillation, the periods range between 86 and
101 min in one leg, and between 92 and 104 min in the other. Furthermore, the velocity amplitude
also changes with height and reaches a maximum value of 50 km s ! in one leg and 33 km s ! in the
other. This growth of the velocity amplitude with height, together with the fact that the oscillation
seems to start in phase for both legs, led the authors to suggest that the oscillatory behaviour is
caused by a global kink mode. The approximate analytical relationship between the damping time
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and the period 7 = (1.6 £ 0.2) P*9%0-1 was derived for the disturbance caused by the first wave
train. This analytical fit suggests a linear dependence between the damping time and the period
that could be compatible with resonant absorption as the damping mechanism (Ruderman and
Roberts, 2002; Ofman and Aschwanden, 2002; Arregui et al., 2008b). However, this interpretation
must be taken with care since the use of scaling laws to discriminate between damping mecha-
nisms is questionable, at least for resonant absorption (Arregui et al., 2008a). Furthermore, some
observational features such as differences in the periods measured in both legs, in the velocity am-
plitudes at both legs, etc., enabled the authors to suggest that the prominence could be composed
by separate oscillating filamentary threads. In summary, from the reported observations it seems
that one of the wave trains was able to induce large amplitude oscillations in the prominence while
the effect of the second wave train was not so strong. The reason for these different behaviours
could be attributed to the different energy carried by the wave trains or, in spite of the wave train
periods being apparently similar, to a resonance effect between the wave train frequency and the
natural oscillatory frequency of the prominence. Also, it is worth to remark that the reported
observation was made in EUV while other observations of large amplitude oscillations have been
made in Ha. The correspondence between oscillations observed in EUV and in Ha remains to be
ascertained. Probably, only simultaneous observations could cast light on this relationship.
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Figure 1: Displacement versus time produced by two wave trains impacting on a prominence: (a) and
(b) in the prominence apex; (c) and (d) in the NE leg; (e) and (f) in the SW leg (from Hershaw et al.,
2011).

From the theoretical point of view, models that explain large amplitude filament oscillations are
lacking. To explain the vertical motions, Anderson (1967) suggested that the disturbance coming
from the flare propagates along the magnetic field and when it arrives to the filament, the material
is pushed down. Hyder (1966) proposed a model which explains the vertical motions in terms of
harmonically damped oscillations. The restoring force is provided by the magnetic tension, while
the damping is due to coronal viscosity. Using this model, Hyder was able to calculate the strength
of the vertical component of the magnetic field in the prominence. Later, Kleczek and Kuperus
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(1969) proposed a similar model to explain the horizontal oscillations, although in this case the
damping is provided by the emission of acoustic waves. On the other hand, Sakai et al. (1987)
developed a model for the formation of a prominence in a current sheet. One of the features of
this model is the presence of non-linear oscillations of the current sheet. Bakhareva et al. (1992)
considered a partially ionized plasma and developed a dynamical model for a solar prominence in
which non-linear oscillations are present. Chin et al. (2010) have considered possible oscillatory
regimes of non-linear thermal over-stability which can occur in prominences. Finally, numerical
simulations (Chen et al., 2002) suggest that Moreton and EIT waves can be produced by CMEs.
Then, the theoretical modelling of large amplitude oscillations excited by these events is a task that
remains to be done. For a more extensive review about large amplitude prominence oscillations
see Tripathi et al. (2009).
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3 Small Amplitude Oscillations: Observational Aspects

Quiescent prominences are also subject to small amplitude oscillations, a type of periodic events
characterized by one or more of these features:

1. Not related to flare activity.
2. Small velocity amplitude.

3. Only a restricted volume of the prominence displays periodic variations.

Regarding item 1, so far it has not been possible to identify the trigger of small amplitude
oscillations. A popular conjecture about their excitation is that it lies in the periodic motions
of magnetic fields caused by photospheric or chromospheric oscillations. The idea is that Alfvén
waves ought to propagate upwards and that any prominence material threaded by the field should
also be subject to periodic motions if there is enough energy available to overcome the inertia
of the dense plasma (Harvey, 1969); this idea was later suggested by other authors too (e.g., Yi
et al., 1991). Harvey made order-of-magnitude calculations to show that the ratio of prominence
to photospheric oscillatory energy is around or smaller than 10~*, which indicates that this exci-
tation mechanism is feasible. On the other hand, Harvey also noted that a few prominences in his
study appear to oscillate with periods nearly twice as large as those of the photospheric oscillation.
This appears to contradict the above hypothesis about the initiator of small amplitude oscilla-
tions. Much longer and shorter periods than those present in Harvey’s work have been detected
afterwards (see Section 3.3), so probably this mechanism of energy transfer from the photosphere
(or chromosphere), if correct, may not be the only one to cause these prominence oscillations.
Mashnich et al. (2009a,b) studied the Doppler velocity field in some filaments and the underlying
photosphere by means of simultaneous observations of the HJ line and the neighbouring photo-
spheric FeT line at 4863 A. They detected a quasi-hourly oscillation in certain areas of the filaments
and photosphere and found a good spatial correlation between them. They also reported that the
parts of the photosphere displaying this oscillation are often observed below filament barbs. The
spatial coincidence of this periodicity and the relation of filament barbs and the photosphere led
these authors to suggest that the photosphere was the origin of these particular prominence os-
cillations. From an observation of a limb prominence with Hinode, Ning et al. (2009b) reported
that the detected oscillatory behaviour only lasted about one period and that new oscillations
appeared nearby simultaneously. These authors then concluded that the exciters or drivers of such
oscillations are numerous and of small scale. The current understanding (see Section 4) is that
periodic perturbations in prominences can be produced by an external impulsive agent that excites
different eigenmodes of the structure or by a continuous agent, as may be the case with the 5-min
photospheric and 3-min chromospheric oscillations whose influence could propagate along magnetic
field lines and force motions of the prominence plasma. Recently, some evidence about the effect
of the chromospheric 3-min oscillations on the corona has been found by Sych et al. (2009).

Regarding item 2, the detected Doppler velocity peak ranges from the noise level (down to
0.1 km s ! in some cases) to 2—-3 km s ! (e.g., Harvey, 1969), although larger values have also
been reported (e.g., Bashkirtsev and Mashnich, 1984; Molowny-Horas et al., 1999; Ning et al.,
2009a). This maximum value has to be compared with the typical speeds of the prominence
plasma (the sound and Alfvén speeds), which are larger than 10 km s ! for typical prominence
conditions. The main purpose of studying prominence oscillations is to obtain insight into their
physics via a seismological approach (see Section 6). Therefore, the information that observations
should provide are the periods, wavelength, phase, and group velocity and damping time of these
phenomena. In addition, observations should also determine whether these periodic variations are
standing oscillations or propagating waves, whether they affect some prominence threads or larger
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areas of a prominence, whether threads oscillate independently from their neighbours or which
physical variables are disturbed and by which amount.

The solar origin of prominence oscillations remained controversial until the beginning of the
1990s. For example, Engvold (1981) failed to detect oscillatory motions in the velocity field of a
limb prominence, although the observational setup used prevented him from reliably distinguishing
velocity amplitudes below 2 km s !, the range in which many peak values are found. In addition,
Malherbe et al. (1981, 1987) recognized no oscillatory pattern in time series of line-of-sight velocities
obtained with the MSDP operating on the Meudon solar tower, although positive results were later
achieved using the same instrument (Thompson and Schmieder, 1991). On the other hand, the
lack of small amplitude, periodic variations in signals coming from solar prominences cannot be
considered a proof against the existence of these kind of processes. Harvey (1969) noted that in a
sample of 68 non-active region prominences, 31% of the objects presented no significant velocity
change along the line-of-sight, 28% showed apparently random line-of-sight velocity variations, and
41% presented a definite oscillatory behaviour. Analogous results were obtained for a set of 45
active region prominences. There are several reasons that may lead to the absence of periodic
variations in some prominences: the velocity amplitude or its projection along the line-of-sight
may be too small to stand above the instrumental noise level; or the prominence material may
actually not oscillate at the time the observations are performed; or the light emitted or absorbed
by various plasma elements along the line-of-sight and having different oscillatory properties may
result in a noisy signal.

3.1 Detection methods

The investigation of small amplitude prominence oscillations has most often been done by spectro-
scopical means, but also using images (e.g., Foullon et al., 2004) or filtergrams, i.e., images taken
in a given spectral line (e.g., Yi et al., 1991; Yi and Engvold, 1991; Lin, 2005; Berger et al., 2008;
Ning et al., 2009b,a). Regarding these studies using a two-dimensional field of view, in some of
them the variations along selected straight paths have been analyzed (Berger et al., 2008; Ning
et al., 2009b,a). This simplifies the study but also reduces the amount of oscillatory information
that can be derived (see Figure 2).

Regarding spectroscopic observations, different setups have been used to gather the temporal
variation of the spectral indicators and more complexity and refinement has been gained over the
years. For example, in some initial studies an entrance hole was placed on a selected area of a
prominence (Wiehr et al., 1984). Another technique that provides information about a small region
of a prominence is the so-called differential method (KKobanov, 1983; Bashkirtsev and Mashnich,
1984). A very widely used method in the investigation of small amplitude prominence oscillations
is to place a spectrograph slit on a prominence (a few examples from a very long list are: T'subaki
and Takeuchi, 1986; Suematsu et al., 1990; Balthasar et al., 1993; Balthasar and Wiehr, 1994;
Suetterlin et al., 1997). Then, this yields a time series of spectra on each slit position (see, for
example, Figure 4 of Tsubaki and Takeuchi 1986), from which the temporal variation of the spectral
indicators (Doppler shift, line intensity, integrated line intensity, line width) can be derived. These
time series can be later analyzed to obtain the period, wavelength, etc. of the oscillations (an
example is shown in Figure 5 of Tsubaki and Takeuchi 1986). Slit observations have also been
conducted from space, using SUMER on SoHO (Blanco et al., 1999; Régnier et al., 2001) and CDS
on SoHO (Pouget et al., 2006).

A spectroscopic observation using a slit yields restricted information on the spatial distribution
of oscillations and, what is even worse, does not ensure that the same plasma elements are placed on
the slit during the observing time. The first of these concerns also applies to the analysis of a two-
dimensional data set in which only variations in one direction are considered. Observations using
a two-dimensional field of view and with high spatial resolution have diminished these worries,
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Figure 2: Time slices taken at three heights in a quiescent prominence. The bright sinusoidal patterns
are caused by horizontal oscillations of the plasma with periods between 20 and 40 min. The orange lines
denote oscillations with phases that approximately match. The slope of these lines implies an upward
propagation speed of about 10 km s™* (projected on the plane of the sky) (from Berger et al., 2008).
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while allowing to study how prominence threads participate of the oscillatory motions. These
observations have been conducted both with ground-based telescopes (Yi et al., 1991; Yi and
Engvold, 1991; Lin et al., 2003; Lin, 2005; Lin et al., 2005, 2007, 2009) and with space-based
telescopes (Okamoto et al., 2007). In addition, two-dimensional Dopplergrams have also been
employed (Molowny-Horas et al., 1999; Terradas et al., 2002), although the spatial resolution of
this particular observation is not good enough to appreciate the prominence thread structure.

Although most data used in the analysis of small amplitude prominence oscillations come from
typical prominence lines, in some cases spectral lines or images formed at hotter temperatures
have also been considered. Examples are the Hel line at 584.33 A, formed at 20,000 K (Régnier
et al., 2001; Pouget et al., 2006); the Sitv and O1v lines at 1393.76 A and around 1401 - 1405 A,
formed at transition region temperatures (Blanco et al., 1999); and 195 A images, with a formation
temperature of 1.5 MK (Foullon et al., 2004). Cool prominences or filaments can be identified in
coronal lines since the line intensity is reduced by means of two different mechanisms: absorption
and volume blocking (Anzer and Heinzel, 2005). In the first case, coronal radiation coming from
behind the cool structure is partially absorbed, while in the second case the volume filled with cool
plasma does not contribute to coronal emission and in this region the radiative output is reduced
as compared with the surrounding corona. These two mechanisms give place to a brightness
reduction of coronal lines and allows us to identify the volume occupied by cool and dark structures
like prominences or filaments. Arguably, oscillations in the dense prominence affect their rarer
neighbourhood, so a joint investigation of the dynamics of the two media has a very promising
seismological potential.

3.2 Spectral indicators

The vast majority of spectroscopic reports of prominence oscillations are based on the analysis of
the Doppler velocity. Some other spectral indicators (line intensity and line width) have also been
used in the search for periodic variations in prominences and, sometimes, a periodic signal has
been recognized in more than one of these indicators. Landman et al. (1977) observed periodic
fluctuations in the integrated line intensity and line width with period around 22 min, but not
in the Doppler shift. In addition, Yi et al. (1991) detected periods of 5 and 12 min in the power
spectra of the line-of-sight velocity and the line intensity. Also, Suematsu et al. (1990) found signs
of a ~ 60 min periodic variation in the Doppler velocity, line intensity, and line width. Nevertheless,
the Doppler signal also displayed shorter period variations (with periods around 4 and 14 min)
which were not present in the other two data sets. We here encounter a common feature of other
investigations, namely that the temporal behaviour of various indicators corresponding to the same
time series of spectra do not agree, either because they show different periods in their power spectra
(as in Tsubaki et al., 1987) or because one indicator presents a clear periodicity while the others
do not (Wiehr et al., 1984; Tsubaki and Takeuchi, 1986; Balthasar et al., 1986; Tsubaki et al.,
1988; Suetterlin et al., 1997). Only rarely have the oscillations been detected in several of these
spectral indicators at the same time and with the same period, which constitutes a puzzling feature
of prominence oscillations. This can be caused by insufficient instrumental sensitivity or by the
effect different waves have on the plasma parameters (pressure, magnetic field, ...), which in turn
may give rise to perturbations of one spectral indicator alone. In addition, Harvey (1969) failed
to detect periodic perturbations in the line-of-sight component of the magnetic field in a set of
prominences that displayed oscillations of the Doppler velocity. He attributed this to the fact that
variations in this magnetic field component were below the observational limit.

Special mention must be made of the study performed by Balthasar and Wiehr (1994), who
simultaneously observed the spectral lines He at 3888 A, Hg at 3889 A and CatIRs3 at 8498 A.
From this information they analyzed the temporal variations of the thermal and non-thermal line
broadenings, the total Hg line intensity, the He 3888 A to Hg emission ratio and the Doppler shift
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of the three spectral lines. The power spectra of all these parameters yield a large number of
power maxima, but only two of them (with periods of 29 and 78 min) are present in more than
one indicator.

The interpretation of the results just summarized appears difficult. First, the theoretical mod-
els (see Section 4) can give the temporal behaviour of the plasma velocity, the density, and other
physical parameters, in a prominence. The observations, however, yield information on quantities
such as the line intensity or the line width. Hence, a clear identification of the spectral param-
eters with physical variables (density, pressure, temperature, magnetic field strength) is required
before further progress can be achieved. Then, the presence of a certain period in more than one
signal could be used to infer the properties of the MHD wave involved. Another useful source of
information could be the detection of a given period in one signal but not in the others, such as
reported in some works discussed above.

3.3 Detected periods

Early observational studies of small amplitude prominence oscillations revealed a wide range of
characteristic periods, ranging from a few minutes (Harvey, 1969; Wiehr et al., 1984; Tsubaki
and Takeuchi, 1986; Balthasar et al., 1986), to 15—25 min (Harvey, 1969; Landman et al., 1977),
to 40—90 min (Bashkirtsev et al., 1983; Bashkirtsev and Mashnich, 1984; Wiehr et al., 1984;
Balthasar et al., 1986). The apparent tendency of periods to group below 10 min or in the range
40—-90 min led to the distinction between short- and long-period oscillations to refer to these two
period ranges. Later, more reports of periods in the range 10-40 min were published (e.g., Yi
et al., 1991; Suetterlin et al., 1997; Blanco et al., 1999; Régnier et al., 2001) and the intermediate-
period class emerged. However, this classification (solely based on the period value) is far from
complete: Balthasar et al. (1993) observed a prominence simultaneously with the GCT and VTT
telescopes in Tenerife to remove doubts about the instrumental or atmospheric origin of prominence
oscillations and obtained strong power in the Doppler shift from both telescopes with period around
30 s; hence, very short-period small amplitude oscillations also exist. Furthermore, a few works
in which prominences have been observed from space during extended time intervals show that
very long-period oscillations also exist: Pouget et al. (2006) detected periodicities of 5—6 h, while
Foullon et al. (2004) and Foullon et al. (2009) have observed variations in EUV filaments with
periods around 12 h, and 10-30 h, respectively. Although the classification in terms of short-
period, long-period, etc. oscillations is still in use, it does not cast any light nor gives any help
with regard to the nature, origin, or exciter of the oscillations.

In some occasions, a given prominence has been observed over a few consecutive days and the
outcome is that the same period seems to be recovered (Bashkirtsev and Mashnich, 1984; Mashnich
and Bashkirtsev, 1990; Suetterlin et al., 1997). This seems to indicate that the overall properties
of this prominence did not change much over this time interval. Similar studies have not been later
carried out.

Some authors have tried to find correlations of the periods of small amplitude oscillations with
other parameters. Harvey (1969) reported a correlation of the period with the unperturbed longi-
tudinal magnetic field, such that long periods are associated with strong field strengths (Figure 3).
This dependence is difficult to understand since, other parameters being equal (density, magnetic
field line length, etc.), one expects just the inverse behaviour for fast MHD waves, and no depen-
dence of the period on the magnetic field strength for slow MHD waves. Bashkirtsev and Mashnich
(1993) claimed that the period of oscillation depends on solar latitude. Only periods above 40 min
were included in this study and some 40 observations gathered along more than eight years were
taken into account. The question then is whether this latitudinal dependence, if real, is related
to the solar activity cycle or not. In a subsequent work by Mashnich and Bashkirtsev (1999) a
similar latitudinal dependence was obtained for the quasi-hourly oscillations of the photosphere
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and chromosphere. The implications of these findings are profound and further checks are essential
before their reality is firmly demonstrated.
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Figure 3: Period of prominence Doppler velocity oscillations as a function of the line-of-sight magnetic
field strength. The top and bottom panels correspond to active region and non-active region prominences,
respectively (from Harvey, 1969).
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3.4 Spatial distribution of oscillations

It now appears well established that small amplitude, periodic changes in solar prominences do
not normally affect the whole object at a time, but are of local nature instead, and that this
conclusion is independent of the oscillatory period. Thus, variations with a given period are
seldom reported to occur over the whole prominence (see Tsubaki and Takeuchi, 1986). One case
in which a periodic signal is present in all slit positions was presented by Balthasar et al. (1988),
who detected long-period oscillations over the whole height of three limb prominences by placing
a vertical spectrograph slit on them. In contrast, it is usually found that only a few consecutive
points along the slit present time variations with a definite period, while all other points lack any
kind of periodicity (e.g., Tsubaki and Takeuchi, 1986; Suematsu et al., 1990; Balthasar et al., 1993;
Balthasar and Wiehr, 1994; Suetterlin et al., 1997; Molowny-Horas et al., 1997).

The works mentioned in the previous paragraph use a spectrograph slit to detect oscillations;
obviously, a two-dimensional data set is much more advantageous when it comes to ascertaining
which part of a prominence is affected by oscillations. Terradas et al. (2002) reported on the propa-
gation of waves over a large region (some 54,000 km by 40,000 km in size) in a limb prominence and
high spatial resolution observations with Hinode/SOT (Berger et al., 2008) also show oscillations
that affect a small area of a prominence. See also the discussion in Section 3.6.4 of the work by
Lin et al. (2007) that gives evidence of coherent Doppler shift oscillations over a rectangular area
3.4 arcsec x 10 arcsec in size.

Other observations with high spatial resolution have shown that individual threads or small
groups of threads may oscillate independently from the rest of the prominence with their own
periods (Thompson and Schmieder, 1991; Yi et al., 1991). Figure 4 displays some of the results in
Yi et al. (1991). Tt is clear that threads 1, 4, 13, and 14 oscillate in phase with their own period,
which ranges from 9 to 14 min. In addition, Tsubaki et al. (1988) obtained successively two time
series of spectra by placing the spectrograph slit first at a height of 30,000 km above the solar limb
and next 40,000 km above the limb. A group of vertical threads detached from the prominence
main body displayed 10.7-min periodic variations at both heights, which was a first indication that
threads can oscillate collectively. After these preliminary studies, much attention has been given
to the detection of thread oscillations (Lin et al., 2003; Lin, 2005; Lin et al., 2005, 2007, 2009;
Okamoto et al., 2007; Ning et al., 2009b,a). Apart from reporting on thread oscillations, these
works have also provided detailed information about wave features such as the period, wavelength,
and phase speed. Because of the importance of these quantities in the seismology of prominences,
these works are discussed in more detail in Section 3.6.4.

There is also some evidence that velocity oscillations are more easily detected at the edges of
prominences or where the material seems fainter, while they sometimes look harder to detect at the
prominence main body (Tsubaki and Takeuchi, 1986; Tsubaki et al., 1988; Suematsu et al., 1990;
Thompson and Schmieder, 1991; Terradas et al., 2002). This result has occasionally been inter-
preted as the consequence of integrating the velocity signals coming from various moving elements
along the line-of-sight. This explanation, however, would imply the presence of broader spectral
lines at the positions showing periodic variations, which is not observed, so other explanations are
also possible (Suematsu et al., 1990). Mashnich et al. (2009a,b) gave evidence that different parts
of filaments may support different periodicities: short-period variations (with periods shorter than
10 min) had coherence scales shorter than 10 arcsec and were detected near the edges of filaments
placed close to the Sun’s central meridian. These oscillations, hence, were characterized prefer-
entially by vertical plasma displacements. On the other hand, variations with period around 1 h
occured in different positions of the filament and the size of the oscillating area was not larger
than 15-20 arcsec. In addition, these oscillations had an amplitude that increased by an order of
magnitude or more in filaments far from the solar center compared to those near the center of the
Sun’s disk. Then, these oscillations showed a mainly horizontal velocity.
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Figure 4: Temporal variation of the Doppler velocity along threads of a solar filament. Numbers on the
right label the various threads. For each thread, the curves correspond to the Doppler velocity measured
at different points along the thread (from Yi et al., 1991).

More information about the spatial distribution of prominence oscillations comes from Ning
et al. (2009b), who detected transverse oscillations of 13 threads in a quiescent prominence ob-
served with Hinode/SOT. These authors found that prominence threads in the upper part of the
prominence oscillate independently, whereas oscillations in the lower part of the prominence do
not follow this pattern. Furthermore, the oscillatory periods were short (between 210 to 525 s),
with the dominant one appearing at 5 min (more information is given in Section 3.6.4). In a
subsequent work, Ning et al. (2009a) used the same data set to analyze the motions of two spines
in the same quiescent prominence. The spine is synonymous with the horizontal fine structure
along the filament axis and is the highest part of the prominence. In the observations of Ning
et al. (2009a), the spines showed drifting motions that were removed by the subtraction of a linear
trend, which allowed the authors to uncover the existence of oscillations with a very similar period
(around 98 min) in both structures. Further insight into the behaviour of the spines comes from
a fit of a function A[0]sin(27t/A[1] + A[2]) exp(A[3]t) to the detrended data. Here A[0] is the
oscillatory amplitude, A[1] the period, A[2] the oscillatory phase, and —1/A[3] the damping time.
The detrended signals and the function fits are displayed in Figure 5, which includes the fitted
parameters, that give the following information: from the oscillatory amplitude, the peak velocities
of the spines are 1 and 5 km s!. The periods are almost identical (96.5 and 98.5 min) and the
phase difference is 149°, which means that the spines oscillated almost in anti-phase. These results
about the period and phase were taken by Ning et al. (2009a) as an indication of a collective
behaviour of the two structures. These authors considered an analogy with the transverse MHD
oscillations of two cylinders (a problem studied by Luna et al., 2008, and discussed in Section 4.4)
and concluded that a coupling of kink-like modes can give the observed behaviour. In particular,
the A, mode of the system has motions resembling the anti-phase oscillatory behaviour found by
Ning et al. (2009a).
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Figure 5: Displacement of two spines of a quiescent prominence (thin lines) and best fits using the
function A[0]sin(27t/A[1] + A[2]) exp(A[3]¢t) (thick lines). The fitted values of the parameters A[0] to
A[3] are written at the bottom of the figure. Note that the values of A[3] displayed in the figure cannot
be correct since they give a very strong amplification/damping that totally disagrees with the almost
undamped behaviour of the thick lines (from Ning et al., 2009a).

3.5 Wave damping and oscillation lifetime

A visual inspection of the data sometimes reveals the existence of outstanding periodic variations
and use of the FFT, or even better the periodogram (which yields an increased frequency resolu-
tion), is only necessary to derive a precise value of the period. In such cases it usually turns out
that the oscillatory amplitude tends to decrease in time in such a way that the periodicity totally
disappears after a few periods (e.g., Landman et al., 1977; Tsubaki and Takeuchi, 1986; Wichr
et al., 1989; Molowny-Horas et al., 1999; Terradas et al., 2002; Lin, 2005; Berger et al., 2008; Ning
et al., 2009b,a), just as found in large amplitude oscillations. This is then interpreted as a sign of
wave damping, although the specific mechanism has not been commonly agreed on (see Section 5
for a summary of theoretical results on this topic).

Reliable values of the damping time, 7, have been derived by Molowny-Horas et al. (1999) after
fitting the function vy cos(wt+¢) exp(—t/7) to Doppler velocity time series recorded simultaneously
in different positions of a polar crown prominence (Figure 6). The values of 7 thus obtained are
usually between 1 and 4 times the corresponding period, in agreement with previous observational
reports. In addition, there is one particular case for which the line-of-sight velocity grows in time,
but no interpretation of this result is given by these authors.

Terradas et al. (2002) performed a deeper investigation of the data of Molowny-Horas et al.
(1999). After fitting the same sinusoidal function to all points in the two-dimensional field of view,
Terradas et al. (2002) generated two-dimensional maps of various oscillatory parameters, such as
the period, damping time and velocity amplitude (Figure 7). Terradas et al. (2002) stressed that
there is a region near the prominence edge (54,000 km by 40,000 km in size) in which the correlation
coefficient of the fit is rather large and in which the period and damping time are very uniform.
The mentioned region is around position z = 80, y = 50 of Figure 7. In Section 3.6.3 we discuss
other aspects of this work, which is unique since it is one of a few in which coherent wave behaviour
has been found in a large area of a prominence and the only one in which the wave parameters in
a two-dimensional prominence area have been computed.

Very often the presence of a periodic signal in the data is not obvious under a visual scrutiny
and the FFT or periodogram simply provide the period of such signal, but not its duration.
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Figure 6: Observed Doppler velocity (dots) and fitted function (continuous line) versus time at two
different positions in a quiescent prominence. The period is 70 min in both positions and the damping
time is 140 and 101 min, respectively. The function fitted to the observational data is of the form vo cos(wt+
@) exp(—t/7) (adapted from Molowny-Horas et al., 1999).

Dividing the time series into shorter intervals and calculating the Fourier spectrum of each of them
allows to narrow down the epoch of occurrence of the oscillation. Wiehr et al. (1984) followed
this procedure and determined that a 3-min oscillation found in a 2-h Doppler velocity record
only existed in the last 40 min of the sample. The wavelet technique, however, is much better
suited for the calculation of lifetimes since it can be used to precisely determine the beginning
and end of the time interval in which a periodicity, previously detected in the Fourier spectrum,
takes place. This approach was used by Molowny-Horas et al. (1997), who obtained a period
around 7.5 min in 16 consecutive points, spanning a distance of 7300 km, along the spectrograph
slit. The time/frequency diagram of the corresponding 16 time signals indicates that the periodic
perturbation is not present for the whole duration of the data and that it only operates for about
12 min (Figure 8). Molowny-Horas et al. (1998) performed a similar study by placing the slit on a
filament, rather than on a limb prominence, with comparable results. Two oscillations with periods
around 2.7 and 12.5 min were present at consecutive points covering some 2000 and 3300 km,
respectively. From the wavelet analysis, the lifetimes of these two perturbations are of the order of
10 and 20 min, respectively. These results provide convincing evidence of the train-like character
of some prominence oscillations. Further details of the work by Molowny-Horas et al. (1997) are
provided in Section 3.6.2.

Oscillations of prominence threads also display fast attenuation. For example, Lin (2005)
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Figure 7: Results of fitting the function of Figure 6 to the Doppler velocity in the whole two-dimensional
field of view. The spatial distribution of the fitted period and damping time is shown in the top panels,
while that of the correlation coefficient and fitted amplitude is displayed in the bottom panels. The
continuous white line (black in the top left panel) represents the approximate position of the prominence
edge. The photosphere is slightly outside the image top (from Terradas et al., 2002).

detected several periodicities over large areas of a filament, with maximum power at periods of
26, 42, and 78 min. Pronounced Doppler velocity oscillations with 26 min period could only be
observed for 2—3 periods, after which they became strongly damped.

3.6 Wavelength, phase speed, and group velocity

To derive the wavelength () and phase speed (cp) of oscillations, time signals at different locations
on the prominence must be acquired. The signature of a propagating wave is a linear variation
of the oscillatory phase with distance. Hence, when several neighbouring points are found to
oscillate with the same frequency, one can compute the Fourier phase of the signal at each of the
points and check whether it varies linearly with distance. If it does, this gives place to a wave
propagation interpretation and the wavelength can be calculated. This approach has been followed
by Thompson and Schmieder (1991), Molowny-Horas et al. (1997) (about which more details are
given in Section 3.6.2), and Terradas et al. (2002) (see Section 3.6.3). On the other hand, Lin (2005)
and Lin et al. (2007) (see Section 3.6.4) detected wave propagation along threads by studying
Doppler velocity variations at fixed times. They observed a sinusoidal variation of the Doppler
shift with distance along the thread, which allowed them to compute the wavelength. Moreover,
the phase velocity of the oscillations can be derived from the inclination of the coherent features
in the Doppler velocity time-slice diagrams. Other authors have followed less strict methods to
calculate these wave parameters.

It must be mentioned that observations of wave propagation in slender waveguides or plane
wave propagation in a uniform medium do not provide the actual value of the wavelength (), but
its projection on the plane of the sky, which is shorter than A\. And if a slit or some points along a
straight line are used, then the computed wavelength is the projection of A on the slit or the line.
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Figure 8: Left: Time-frequency diagrams of the Doppler velocity at several aligned, equispaced points
in a quiescent prominence. White/black correspond to large/small wavelet power. Right: Time variation
of wavelet power from the diagrams on the left column for a period of 7.5 min (i.e., frequency around
2.2 mHz). The presence of power peaks suggests a finite duration of the perturbation, while the linear
displacement of these peaks at the seven positions from ¢ = 28 min to ¢ = 42 min is an indication of a
disturbance travelling with a group velocity vg > 4.4 km st (from Molowny-Horas et al., 1997).
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The observationally measured period and wavelength can in turn be used to calculate the phase
speed, but since the observational wavelength is a lower limit to A, this observational phase speed
is also a lower limit to ¢, (Oliver and Ballester, 2002). Hence, even if it is not explicitly mentioned,
the values of A and ¢, quoted here are observationally derived lower bounds to the actual values.

The results presented in this section are grouped in four parts, the first three of them in
increasing order of complexity of the data analysis; the fourth one is devoted to thread oscillations.
The reported wavelength values cover a range from less than 3000 km (for waves propagating along
some threads) to 75,000 km (for waves propagating in a large area of a quiescent prominence).
These numbers must be taken into account in the theoretical study of these events.

3.6.1 Simple analyses

Malville and Schindler (1981) observed a loop prominence some 90 min before the onset of a nearby
flare and detected periodic changes with a wavelength along the loop of 37,000 km. This value,
together with the period of 75 min, results in a phase speed of about 8 km s!.

Subsequent reports, which we now describe, are based on sheet-like prominences. Thompson
and Schmieder (1991) detected periodic variations with periods between 3.5 and 4.5 min in a
filament thread. They then computed the Fourier phase of the points along the thread and, after
confirming its linearity from a phase versus distance plot, the value A ~ 50,000 km was derived,
from which the phase speed is ¢, ~ 150-200 km s . In other works (e.g., Tsubaki and Takeuchi,
1986; Tsubaki et al., 1987, 1988; Suematsu et al., 1990) the signal in some consecutive locations
along the slit has been found to be in phase. Although this seems to indicate that the wavelength
of oscillations is much larger than the distance between the first and last of those points, this
may not be necessarily true and a proper determination of the wavelength requires computing the
Fourier phase corresponding to the oscillatory period.

Blanco et al. (1999) detected 15—20 min periodic variations corresponding to a pulse travelling
with a speed of 170 km s™!. Such a large phase velocity is hard to reconcile with the typical speeds
in a prominence, but it must be taken into account that this result has been obtained using Si1v
and O1v lines, which are formed at transition region temperatures. Still, Blanco et al. (1999)
mention that the sound speed in the prominence-corona transition region must be considerably
faster than 170 km s, which leads them to conclude that the detected wave is of fast or Alfvénic
character. Assuming a density of 10'® cm 3, a magnetic field of 8 G is derived.

Foullon et al. (2004) analyzed the intensity on a set of points along the main axis of a filament in
195 A images. A time-space plot shows a clear oscillatory pattern at one end of the filament (around
position 25 in Figure 9a). The oscillatory phase, displayed in Figure 9b, presents oscillatory fronts
that are well correlated along the filament, meaning that the oscillations of neighbouring points
along the filament are almost in phase. This is true in particular for positions around 25, although
in positions around 5 and 10 the phase presents a linear trend in neighbouring points, which can
be interpreted as wave propagation along the filament axis. Lower bounds to the wavelength and
phase speed in this area could be determined as explained above. It is remarkable that the most
pronounced periodic intensity variations, those around position 25, were detected during 6 days,
which suggests that they suffered very little damping or were excited continuously during this time
span.

Berger et al. (2008) used high-resolution observations of limb prominences made by SOT on
Hinode and detected oscillations that do not affect the whole prominence body. They considered
three horizontal time slices at heights separated by 4.7 Mm and detected the presence of coherent
oscillations in the three slices (Figure 2). A phase matching of the sinusoidal profiles of these
oscillations results in a vertical propagation speed (i.e., phase speed) around 10 km s . Again this
value comes from a projection on the plane of the sky and is therefore a lower bound of the real
value.
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Figure 9: (a) Time-space diagram of the 195 A image intensity along the main axis of a filament. The
vertical black stripes are caused by the lack of observational data. (b) Spatial distribution of the Fourier
phase (gray coloured contours) (from Foullon et al., 2004).

3.6.2 An elaborate one-dimensional analysis

Molowny-Horas et al. (1997) took into account the projection effects in their analysis of the Doppler
velocity along the spectrograph slit. They detected periodic velocity variations with period of
7.5 min some 7300 km along the slit and found that the Fourier phase of the velocity at this
period changes linearly with distance (Figure 10). The value A > 20,000 km was derived. The
corresponding phase speed is ¢, > 44 km s7L

To obtain the group velocity of this event, Molowny-Horas et al. (1997) performed a wavelet
analysis of the same set of data, which revealed the presence of a train of 7.5-min waves in the
slit locations (Figure 8). Moreover, the time of occurrence of the train of waves increases linearly
along the slit, which agrees with the assumption of a propagating disturbance. The velocity of
propagation along the slit can then be computed and the value v ~ 4.4 km s~ ! is obtained. Taking
into account that v is the projection of the group velocity, vy, on the slit, one concludes that the

above value provides a lower limit for the group velocity, so vy > 4.4 km st

3.6.3 A two-dimensional analysis

This section is devoted to review the work by Terradas et al. (2002), that stands out among all
other works in which wave properties have been determined since in this one a fully two-dimensional
analysis is carried out. Figure 11 shows a time series of Hf filtergrams of the prominence studied
by Terradas et al. (2002). The corresponding time series of the Doppler signal is presented in
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Figure 10: Relative Fourier phase as a function of position along the slit for several sets of consecutive
points with similar oscillatory period: (a) 10.0 min, (b) 7.5 min, (¢) 12.0 min, and (d) 4.0 min. The
variation of the phase in (a) is not linear and so this oscillatory feature is not interpreted as a true signal.
Regarding (c) and (d), the phase varies linearly with position, but the number of points involved is too
small to make a firm conclusion. Finally, the phase in (b) displays a very robust linear dependence with
distance, so this is interpreted as a signature of wave propagation (from Molowny-Horas et al., 1997).
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Figure 11: Still from a movie showing Hf line center images of a quiescent prominence observed with
the VTT of Sacramento Peak Observatory. Images have been coaligned and a persistent drift towards the
left has been suppressed. The thick white line displays the prominence edge and the solar photosphere is
at the top (from Terradas et al., 2002). (To watch the movie, please go to the online version of this review
article at http://www.livingreviews.org/lrsp-2012-2.)

The data used by Molowny-Horas et al. (1999) were re-analysed by Terradas et al. (2002) and
clear evidence for propagating and standing waves was uncovered. These authors started from the
Doppler velocity, which in many areas of the two-dimensional field of view can be very well fitted
by a damped sinusoid (Figures 6 and 7). The subsequent analysis was performed in a rectangle
(black box in Figure 13) that includes an area in which the correlation coefficient of the fit is
large. The period of the oscillations in this rectangle is quite uniform and with a value around
75 min. First, Terradas et al. (2002) conducted an analysis of the phase along two straight lines
inside the rectangle. Along the continuous line in Figure 13, it is found that waves emanate from a
point and propagate away from it (Figure 14). It is clear both from the raw and the fitted signals
in Figure 14 that the slope of wave propagation to the left is larger than that to the right. To
derive the wavelength, Terradas et al. (2002) plotted the Fourier phase associated to the most
relevant period in the Fourier spectrum (i.e., the one with 75 min period) along the selected path
(right panel of Figure 14). There is an almost linear decrease of the phase between positions 5
and 30, a linear increase between positions 50 and 62 and a region of roughly constant phase in
between. The first two patterns correspond to propagation to the left and right along the path,
such as was pointed out from the first two panels of Figure 14, while the third pattern is caused
by standing wave motions. The slope of a straight line fitted to the Fourier phase in each of the
regions with wave propagation gives the wavelength of oscillation (projected on the selected path)
which is around 75,000 km and 70,000 km for propagation to the left and right, respectively. The
corresponding phase velocities are around 17 km s and 15 km s °.

Another interesting feature of this data set can be discerned by considering the dashed path
in Figure 13. A representation of the Doppler velocity versus position and time (Figure 15)
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Figure 12: Still from a movie showing Temporal evolution of the Doppler velocity in all points of the
field of view of Figure 11 (from Terradas et al., 2002). (To watch the movie, please go to the online version
of this review article at http://www.livingreviews.org/lrsp-2012-2.)

shows that, at least for the first half of the observational time, positive and negative velocities
seem to alternate in phase separated by a region, around position 25, with nearly zero amplitude.
This pattern suggests that rather than a propagating feature, the signal in this area behaves like
a standing wave with two regions completely out of phase. The Fourier phase (right panel of
Figure 15) is practically constant in a small region around position 10 and in a larger region for
positions greater than 30, which indicates that there is no signal propagation in these locations.
The phase difference between positions 10 and 50 is close to 7, which, together with the fact that
between these points the amplitude takes low values, is in close agreement with the standing wave
picture and so a tentative identification of nodes and antinodes is possible. The estimated distance
between the two antinodes visible in the left panel of Figure 15 is around 22,000 km. This implies
that the (projected) wavelength of the standing wave is about 44,000 km and the corresponding
phase speed is 10 km s '. These values are about half those obtained for propagation along the
other selected path and are a consequence of the anisotropic propagation of the perturbation.

In addition to the identification of standing and propagating wave features in the prominence,
Terradas et al. (2002) went on to perform an investigation of the two-dimensional distribution of
the wavelength and phase speed. They started by plotting the Fourier phase for the most relevant
period in the Fourier spectrum at each point (Figure 16), which shows that a deep global minimum
is found around the central position of the plot. This particular phase structure is an indication
that motions have their origin at the position of the minimum and propagate, although in an
anisotropic way, from this point. Terradas et al. (2002) gave a much more clear interpretation of
the two-dimensional phase by plotting the wavevector field (Figure 17), computed as the gradient of
the Fourier phase. The arrows in this figure indicate the direction of wave propagation, their length
being proportional to the modulus of the wavenumber, k. The projection of the phase velocity
on the plane of the sky (computed from ¢, = w/k) is also displayed in Figure 17. The analysis
of the wavevector field shown in this figure clearly indicates that motions seem to be generated
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Figure 13: Two-dimensional Doppler velocity distribution at a given time in a quiescent prominence.
The signal in the black rectangle can be fitted by a damped sinusoid with a high correlation coefficient
(see Figure 7). Two paths (straight continuous and dashed lines) were selected. The continuous white line
represents the approximate position of the prominence edge. The photosphere is slightly outside the image
top (from Terradas et al., 2002).
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Figure 14: Doppler velocity versus position and time along the solid path in Figure 13. Left: raw
Doppler signal; middle: fitted exponentially damped sinusoid; right: Fourier phase associated to the
75 min periodicity (from Terradas et al., 2002).
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Figure 15: Doppler velocity versus position and time along the dashed path in Figure 13. Left: raw
Doppler signal; right: Fourier phase associated to the 75 min periodicity (from Terradas et al., 2002).

in a narrow strip close to positions x = 35—-50 and y = 20—30 and spread out from this region.
It is remarkable that the direction of the propagating waves from the source region is essentially
parallel to or towards the prominence edge, revealing the anisotropic character of the observed
wave propagation. The values of the phase velocity in Figure 17 are also quite different for both
directions, being greater for the direction parallel to the edge, with ¢, ~ 20 km s~!, than for the
direction perpendicular to the edge, with ¢, ~ 10 km s~1. This is an indication of the possible
existence of some wave guiding phenomenon, which shows a preferential direction of propagation.
Note the good agreement between the values of the phase velocity in the directions parallel and
perpendicular to the edge and those derived from the analysis of the two selected paths based on
Figures 14 and 15.

3.6.4 Thread oscillations

Yi et al. (1991) and Yi and Engvold (1991) used two-dimensional spectral scans and investigated
the presence of periodic variations of the Doppler shift and central intensity of the He1 10,830 A line
in two filaments. Yi et al. (1991) performed a first examination of the data and found oscillations
with well-defined periods along particular threads in each prominence. For this reason, Yi and
Engvold (1991) plotted the Doppler velocity versus position for different times in a given thread,
so that a periodic spatial structure would directly yield a measure of the wavelength. Instead of this
pattern, an almost linear variation of the velocity along the thread was found and consequently a
value of A much larger than the length of the threads, some 20,000 km in the two cases considered,
was reported. Given that the periods are between 9 and 22 min, the corresponding phase speed
is ¢, > 15 km s~'. This result suggests that the thread is oscillating in the fundamental kink
mode (whose wavelength is of the order of the length of the supporting magnetic tube, that is,
around 100,000 - 200,000 km; see Section 4.4.1), rather than being disturbed by a travelling wave.
Let us mention that, in general, this analysis may be misleading since the velocity signal does not
generally consist of the detected periodic component only, but it is made of this component mixed
with other velocity variations. If the periodic component is weak, then the method used by Yi and
Engvold (1991) may fail because the signature of the propagating wave is masked by the rest of
the signal.
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Figure 16: Fourier phase associated to a period around 75 min (that is, the one corresponding to the
largest peak in the Fourier spectrum) for the rectangular region selected in Figure 13, both as a contour
and as a surface plot. The selected paths are also displayed with continuous and dashed straight lines. Note
that cuts of the Fourier phase along these two paths give rise to the Fourier phase displayed in Figures 14
and 15 (from Terradas et al., 2002).
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Figure 17: Arrows represent the wavevector field computed from the gradient of the Fourier phase
displayed in Figure 16, where the length of the arrows is proportional to the modulus of the wavevector.
The phase velocity is shown with the help of different levels of grey and black and white colors (from
Terradas et al., 2002).
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In the analysis of the Doppler velocity in two threads (denoted as T1 and T2) belonging to the
same filament, Lin (2005) found a clear oscillatory pattern in time-slice diagrams along the two thin
structures. She determined the following wave properties for thread T1: ¢, = 60 km s, A = 22,
12, 15 arcsec, and P in the range 2.5—5 min (the 4.4 min period being particularly pronounced).
For thread T2, the wave properties are: ¢, = 91 km s, A = 38, 23, 18 arcsec, and P in the range
2.5—5 min (the 5-min period being particularly pronounced).

The previous study by Lin (2005) is followed by a much more profound one in which the two-
dimensional motions and Doppler shifts of 328 features (or absorbing “blobs”) of different threads
are examined (see also Lin et al., 2003). Forty nine of these features are observed to flow along
the filament axis with speeds of 520 km s ! while oscillating in the line-of-sight at the same time
with periods of 4—20 min (see Figure 18). To simplify the examination of oscillations, Lin (2005)
computed average Doppler signals along each thread and found that groups of adjacent threads
oscillate in phase with the same period. This has two consequences: first, since the periodicity is
outstanding in the averaged signal for each thread, the wavelength of oscillations is larger than the
length of the thread. Again the interpretation of this result is that the threads oscillate in their
fundamental kink mode. Second, in this data set threads have a tendency to vibrate collectively,
in groups, rather than independently.

Figure 18: Still from a movie showing Ha line center images of a quiescent filament observed with
the Swedish Solar Telescope in La Palma. The small-scale structures display the characteristic filament
counter-streaming motions and undergo simultaneous transverse oscillations, detected as periodic Doppler
variations (from Lin et al., 2003). (To watch the movie, please go to the online version of this review article
at http://www.livingreviews.org/lrsp-2012-2.)

Horizontally flowing threads that undergo simultaneous transverse oscillations have not only
been detected by Lin et al. (2003) and Lin (2005), but also by Okamoto et al. (2007) using SOT on
Hinode. A CaIlrH line movie shows continuous horizontal thread motions along an active region
prominence (cf. Figure 19). This movie also shows that the threads suffer apparently synchronous
vertical oscillatory motions. An example of this phenomenon is shown in Figure 20. Six threads
displaying the same behaviour were studied and periods in the range 135—250 s were measured.
The thread flow velocities range from 15 to 46 km s! and the vertical oscillation amplitudes
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range from 408 to 1771 km. These values are, of course, minimum estimates. A particularly
interesting feature of these oscillations is that points along each thread oscillate transversally with
the same phase. To reach this conclusion, a given thread is selected and several cuts along its
length are considered. A representation of the signal as a function of time reveals that oscillations
are synchronous along the entire length of the thread (Figure 21). Once more this points to the
kink mode as the responsible for the oscillations, as first pointed out by Van Doorsselaere et al.
(2008a).

N

Figure 19: Still from a movie showing Ca11 H line images taken with Hinode/SOT that shows ubiquitous
continuous horizontal motions along the prominence threads at the top right of the image. These threads
also oscillate up and down as they flow (from Okamoto et al., 2007). (To watch the movie, please go to
the online version of this review article at http://www.livingreviews.org/lrsp-2012-2.)

Ha observations conducted with the Swedish 1-m Solar Telescope by Lin et al. (2007) allowed to
detect waves propagating in some selected threads. Figure 22 serves to illustrate the data analysis
procedure for one thread. Here the line intensity shows no coherent behaviour (Figure 22a),
while the line-of-sight velocity presents some inclined features caused by waves propagating along
the thread; two such features are labelled 1 and 2 in Figure 22b. Figure 22c¢ is another way of
presenting Figure 22b and is useful to illustrate more clearly the wavy character of the line-of-
sight velocities along an individual thread. Two shorter time sequencies of Doppler velocity are
extracted from Figure 22c and shown in Figures 22d and e. It is clear that oscillations are of small
amplitude since the Doppler shift has an amplitude of 1 -2 km s™'. The power spectra of two of the
curves in Figure 22¢ (shown in Figures 22f and g) yield wavelengths of the oscillatory pattern of,
respectively, 3.8 arcsec and 4.7 arcsec. The phase velocity of the oscillations can be derived from
the inclination of the features appearing in the Doppler time-slice diagrams of Figure 22b. The
phase velocities thus obtained correspond to, respectively, 8.8 and 10.2 km s t. Lin ef al. (2007)
found similar evidence of travelling waves in eight different threads. The mean phase velocity and
period (obviously affected by the projection effect) are 12 km s ! and 4.3 min. Periods between 3
and 9 min were found; longer period oscillations could not be detected in the data set used in this
work because of its limited duration (18 min).

To test the coherence of oscillations over a larger area, covering several threads, Lin et al.
(2007) averaged the line-of-sight velocity in a 3.4 arcsec x 10 arcsec rectangle containing closely
packed threads. The averaged Doppler signal (left panel of their Figure 4) displays a very clear
oscillation. In addition, the power spectrum of this signal has a significant power peak at 3.6 min.
Thus, the conclusion is that neighboring threads tended to oscillate coherently in this rectangular
area, possibly because they were separated by very short distances. This signal averaging could be
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Figure 20: Close-up view of a flowing thread displaying transverse oscillations. The measured flow speed

is 39 km s ', the amplitude of vertical oscillations is 900 km and the period is 174 s (from Okamoto ef al.,
2007).

analogous to acquiring data with poor seeing, such as in Terradas et al. (2002) (see Section 3.6.3).

Using data from the Swedish 1-m Solar Telescope in La Palma, Lin et al. (2009) performed
a novel analysis of thread oscillations by combining simultaneous recordings of motions along
the line-of-sight and in the plane of the sky, which provides information about the orientation
of the oscillatory velocity vector. From the measurements of swaying motions in the plane of
the sky, several threads in this work presented travelling disturbances whose main features were
characterized (period, phase velocity, and oscillatory amplitude). These parameters were obtained
following the procedure of Figure 22. Moreover, two of the previous threads also showed Doppler
velocity oscillations with a period similar to that of the swaying motions, so that the threads had
a displacement that was neither in the plane of the sky nor along the line-of-sight. By combining
the observed oscillations in the two orthogonal directions, Lin et al. (2009) derived the full velocity
vectors. They suggested that thread oscillations were probably polarized in a fixed plane that may
attain various orientations relative to the local reference system (for example, horizontal, vertical,
or inclined). Swaying motions are most clearly observed when a thread sways in the plane of the
sky, while Doppler signals are strongest for oscillations along the line of sight. In the case of the two
analyzed threads, a combination of the observed velocity components yielded an orientation of the
velocity vectors of 42° and 59° with respect to the plane of the sky. Once the heliocentric position
of the filament was taken into account, these angles transformed into oscillatory motions which
were reasonably close to the vertical direction. Lin et al. (2009) alerted that this conclusion is only
based on two cases and that it is not possible to draw any general conclusion about the orientation
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Figure 21: Example of a prominence thread undergoing synchronous oscillations along its entire length
(all images are shown in negative contrast). (a) The ends of the considered thread are marked by the two
arrows. S1 to S5 indicate the locations used to make the height versus time plots shown in panels (b)
to (f). (b)—(f) Height-time plots for the locations indicated in (a). Maximum and minimum amplitudes
occur at nearly the same time for all locations (from Okamoto et al., 2007).

of the planes of oscillation of filament threads. In fact, Yi and Engvold (1991) found no center-
to-limb variations of the velocity amplitude of threads displaying Doppler velocity oscillations, so
they concluded that there did not seem to be a preferred direction of oscillatory motions in their
data set.

Ning et al. (2009b) analyzed the oscillatory behaviour of 13 threads in a quiescent prominence
observed with Hinode/SOT. They found that many prominence threads exhibited vertical and
horizontal oscillatory motions and that the corresponding periods did not substantially differ for a
given thread. In some parts of the prominence, the threads seemed to oscillate independently from
one another, and the oscillations were strongly damped. Some of the oscillating threads presented
a simultaneous drift in the plane of the sky with velocities from 1.0 to 9.2 km s . The reported
periods were short (between 210 to 525 s), with the dominant one appearing at 5 min. Peak to
peak amplitudes were in the range 7201440 km and the phase velocity varied between 5.0 and
9.1 kms '
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Figure 22: (a) and (b) Time-slice diagrams of the Ha line intensity and Doppler shift along a filament
thread. (c) Data of panel (b) shown as a set of curves instead of as a contour plot. Each curve represents
the Doppler velocity along the thread for a fixed time (frame). (d) and (e) Signals from panel (c¢) for some
selected times (frames). (f) and (g) Power spectra of the Doppler shift along the thread for two times.
Large peaks help identify the wavelength of propagating oscillations (from Lin et al., 2007).
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4 Theoretical Aspects of Small Amplitude Oscillations:
Periods and Spatial Distribution

The usual interpretation of small amplitude oscillations is that some external agent excites MHD
waves in the form of periodic disturbances of the cold plasma. MHD waves can be propagating or
standing. In the first case, there is a periodic disturbance of the particles of the prominence plasma
that may propagate in the medium. In the second case, the wave is confined to a region with fixed
boundaries, thus producing the positive interference of propagating waves. Theoretical models
usually consider small amplitude perturbations superimposed on an equilibrium configuration.
Then the properties of propagating/standing MHD waves are analyzed. In the case of standing
waves, we usually refer to the MHD eigenmodes of the system or to the modes for short.

Following our previous discussion of observations (Section 3.4), oscillations may affect individual
threads, groups of threads or even larger areas of a prominence. The wave information (period,
wavelength, phase speed, damping time) obtained from the analysis of this kind of events has been
presented in Sections 3.5 and 3.6. Given that the main purpose of studying prominence oscillations
is to gain a more profound understanding of their nature via seismological studies, it is necessary
to study these oscillations theoretically. The information one expects to derive from these works
consists of the main wave properties (period, wavelength, phase speed, damping time, spatial
distribution, ...). They can then be compared with the observationally determined values. The
theory also allows us to determine the temporal variation of the perturbed magnetic field strength
and its orientation, the perturbed density, temperature, etc., which means that these variables
constitute another source of comparison with observations that will hopefully be exploited in the
near future.

Theoretical works are here divided into five groups that reflect widely different choices of
prominence equilibrium models: (a) simple, “toy” prominence models (Section 4.1); (b) models
in which the prominence is represented as a plasma slab of finite width surrounded by the solar
corona (Section 4.2); (c) line current prominence models (Section 4.3); (d) models of infinitely long
prominence threads (Section 4.4); and (e) models concerned with the oscillations of prominence
threads of finite length (Section 4.5).

4.1 Oscillations of very simple prominence models

The aim of the works discussed in this section is to follow elementary arguments to derive approx-
imations for the oscillatory period and the polarization of plasma motions of the main modes of
oscillation of a prominence. Some of the obtained results correspond to MHD modes studied in
more detail in other works (see Section 4.2). One of these works (Joarder and Roberts, 1992b)
is concerned with a prominence treated as a plasma slab embedded in the solar corona and with
a magnetic field perpendicular to the prominence main axis (Figure 27). Waves are allowed to
propagate along the slab. The coordinate system introduced by Joarder and Roberts (1992b) has
the z-axis pointing across the prominence (i.e., parallel to the magnetic field), the z-axis in the
direction of wave propagation and the y-axis along the prominence. Three MHD modes exist in
this configuration: the fast, Alfvén, and slow modes, with motions polarized in the z-, y- and
x-directions, respectively. Some of the simple analogies discussed next allow us to derive approxi-
mations for the period of these modes.

A very simplified view of a prominence (Roberts, 1991; Joarder and Roberts, 1992a) is to
consider it as a concentrated mass, M, suspended on an elastic string (representing the sagged
magnetic field that supports the prominence; Figure 23a). Such a model provides some insight
into the period of the prominence oscillating vertically as a whole under the action of gravity and
magnetic tension. The equilibrium state is simply one in which the gravitational force, Mg, is
balanced by the upward component of the tension forces, 27T sin 6, where T is the tension in one
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of the two strings and 6 is the angle made by the string and the horizontal. Small amplitude
oscillations of the mass about this equilibrium state have a period

g

with 2L the separation distance between the two anchor points, which is analogous to the distance
between the photospheric feet of the magnetic tube supporting the prominence plasma. Roberts
(1991) noted that for typical parameter values (¢ = 274 m s 2, 2L = 50,000 km, and 6 between
3° and 30°), the period of these vertical oscillations is in the range 7—24 min, consistent with
observationally reported values.

P =27 (L tan@) , (1)
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Figure 23: Simple models of a prominence. (a) Mass suspended from an elastic string under the influence
of gravity and the tension force. (b) Mass suspended from a taut string subject solely to the tension force
(from Roberts, 1991). (c) Taut string with density p. except for a central part with density pp; gravity is
also neglected (from Oliver et al., 1993). The size of the system (2¢ in panels (a) and (b) and 2z in panel
(c)) is denoted by 2L in the text.

Roberts (1991) and Joarder and Roberts (1992b) considered a second model of interest (Fig-
ure 23b), that resembles the previous one except that now gravity is ignored. In this configuration
there are two possible types of oscillation: either longitudinal or transversal. The frequencies of

oscillation are given by
wl tan(wz/) :%7 (2)
Cstr Cstr M
where again 2L is the distance between the anchor points, p is the mass density of the string (per
unit length) and ¢y, is a natural wave speed of the string. To simplify matters one can assume that
the mass of the string (2pL) is negligible in comparison with M, that is, M > pL. Translating
this inequality to prominences, it is equivalent to assuming that the mass of the cold plasma in
a magnetic tube is much larger than the coronal mass in the same tube; this assumption seems
most reasonable. Then, Equation (2) reduces to a simple expression for the fundamental mode

frequency, )
2T \?
W= <J\4L> ) (3)
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where it has been taken into account that the tension force is T = pc%,. Although M has been
considered a point mass, one can assume that it has a short, but finite, width 2z,. Then, the
previous expression for the tension force applied to the prominence part of the structure is T =
M cfm /(2x,), with ¢ a natural prominence wave speed. Now, inserting this expression into

Equation (3) we obtain for the period

p— o Em)” (4)

Cpro

For fast magnetoacoustic waves in a prominence (with transverse polarization of motions), ¢pro
can be taken as the fast speed,

1/2
cr = (v} +¢2) 2 ()
with va and ¢g the Alfvén and sound speeds, respectively. These quantities are given by

R

=1 (6)
L
and )
B

U%& = (7)
Hp

with v the ratio of specific heats, R the gas constant, fi the mean atomic weight, x the magnetic
permeability of vacuum, and 7', p, and B the temperature, density, and magnetic field strength. For
Alfvén modes (also characterized by transverse displacements in this simplified model) ¢pro = va.
The Alfvén velocity is the group velocity but not the phase velocity for Alfvén waves except
for parallel propagation. On the other hand, for slow magnetoacoustic waves (with longitudinal
polarization of motions), ¢ can be taken to be the cusp speed,
o — VACg - 8
L) )

The fast speed in Equation (5) and the cusp speed in Equation (8) are in general different
from the phase speed and the group speed for fast and slow magnetoacoustic waves. Only for very
specific directions of propagation are these quantities phase and/or group speeds. Using the same
parameters as above together with vy = 28 km s7!, ¢, = 15 km s™! and a prominence width equal
to one tenth the length of magnetic field lines (i.e., 22, = 2L/10 = 5000 km), Equation (4) yields
the periods Ppgt = 26 min, Pajfyen = 30 min, and Pyjow = 63 min, all of them within the range of
observed intermediate- to long-period oscillations in prominences.

Oliver et al. (1993) (see also Roberts and Joarder, 1994) modified the mass loaded string model
of Figure 23b by replacing the point mass M by a denser central string of width 2z, (Figure 23c).
To solve the wave equation it is necessary to impose the continuity of the displacement and its
spatial derivative at the joints = £x,. Here the z-axis is placed along the string with = 0 the
string centre. Then, upon imposing that the string is tied at its ends, the dispersion relation for
even solutions about the centre of the string can be expressed as

3 I
o U0 _ (p> cot YL~ %p). (9)

Cpro Pp Ccor

whereas the dispersion relation for odd solutions can be written as

1

ot W _ <p> ot WL = @) (10)

Cpro Pp
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In these formulas cpro and ceor represent the natural wave speeds of the prominence and coronal
parts of the string and p, and p. their respective densities. These expressions contain a rich array
of solutions representing oscillatory modes of the system with different properties. And since there
are three characteristic wave modes (fast, Alfvén, and slow, with their specific fast, Alfvén, and
tube speeds in the prominence and corona), each set of modes is repeated three times. For the
sake of simplicity, we here keep the parameters cpr, and ccor in the following expressions, although
it must be understood that these two speeds need to be substituted by their corresponding ¢, va,
or cr to derive the frequencies of the fast, Alfvén, and slow solutions.

Equations (9) and (10) can be numerically solved to obtain the frequencies of the various solu-
tions. Nevertheless, some simplifications can be done by taking into account that the prominence
width is much shorter than the length of magnetic field lines (z, < L) and that the prominence
density is much larger than the coronal one (p, > p.) (Joarder and Roberts, 1992b; Roberts and
Joarder, 1994). Further assuming that p./p, < xp/L < 1 the following expression for the period
of the fundamental mode can be obtained from Equation (9)

W= —Pr_ (11)
(Lap)?

-

It is not surprising that the period corresponding to this frequency is just the one given by Equa-
tion (4). Other solutions to Equation (9) can be obtained by simply assuming p./p, < 1. They
come in two sets (Joarder and Roberts, 1992b)

wzmr@, n=123,..., (12)

Lp

and c
= cor =1,2.3,... 13
w nﬂ-L—{Ep’ n 5 4y 9y ( )

On the other hand, Equation (10) has no low-frequency solution analogous to that of Equation (11).
Instead, it has just two sets of solutions: one of them is identical to Equation (13) and the other
one is similar to that given by Equation (12), namely

T Cpro

w:(2n—|—1)§ .
P

., n=0,1,2,... (14)

To understand the standing solutions supported by the string of Figure 23c, we now concentrate
on their spatial distribution. Figures 24a and b display the two lowest frequency solutions of
Equation (9), while Figures 24c and d show the two lowest frequency solutions of Equation (10).
Their frequencies are approximately given by Equations (11), (12) with n = 1, (14) with n = 0,
and (13) with n = 1, respectively. Let us refer to the parts of the string with density p. and p, as
the external and internal regions. The eigenfunction in Figure 24d differs from the other three in
that the displacement in the external region is an order of magnitude larger than in the internal
region. For this reason it is termed an external mode, since its properties are dominated by the
nature of the external part of the string (Joarder and Roberts, 1992b). One then is tempted to
call the other three solutions in Figure 24 internal modes, but a simple experiment will prove this
to be wrong (Oliver et al., 1993). Let us gradually reduce the size of the internal part of the string
(by reducing z,). Then internal mode frequencies (cf. Equations (12) and (14)) tend to infinity
and in the limit z, — 0 internal modes disappear and only external modes remain. It turns out
that this process of gradually removing the density enhancement in the central part of the string
does not eliminate the mode of Figure 24a, which is transformed into the fundamental mode of
the string. Thus, this is not an internal mode. By a similar process (i.e., by letting =, — L),
the central part of the string can be progressively expanded so that we end up with a uniform
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density pp. This makes external mode frequencies grow unbounded (cf. Equation (13)) and for
xp — L only internal modes remain. In this process the mode of Figure 24a transforms into the
fundamental mode of the string. Hence, this mode is not an external mode, either, and it owes its
existence to the concurrent presence of both the internal and external parts of the string. For this
reason Oliver et al. (1993) labelled this solution a hybrid mode. The hybrid mode frequency is
approximately given by Equation (11), the internal mode frequencies by Equations (12) and (14)
and the external mode frequencies by Equation (13).

1.0
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d >
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0.0
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0.5 A 05} 4
> 00f g > 00F 4
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Figure 24: Spatial distribution of some normal modes of the string shown in Figure 23c. (a) Hybrid
mode, (b) first internal even harmonic, (c) first internal odd harmonic, (d) first external odd harmonic.
The spatial coordinate is given in units of L and the string of density pp is in the range —0.1 < z < 0.1.
The wave speeds are cpro = 15 km s and ceor = 166 km sfl, representative of prominence and coronal
sound speeds, and the density ratio is pp/pc = 11.25.

This string analogy points out the basic nature of a prominence’s modes of oscillation. Because
there are in general three MHD modes, there is a fast hybrid mode, an infinite number of internal
fast modes, and an infinite number of external fast modes (Joarder and Roberts, 1992b; Oliver
et al., 1993; Roberts and Joarder, 1994). Their respective frequencies are given by Equations (11),
(12), (13) and (14) with cpro and ceor, substituted by the prominence and coronal fast speeds.
Something similar can be said about Alfvén and slow modes.

Anzer (2009) performed some simple estimates of the main oscillatory periods of a prominence
using the Kippenhahn—Schliiter model (Kippenhahn and Schliiter, 1957) modified so as to include
the corona in which the prominence is embedded (for a general solution see Poland and Anzer,
1971). In this configuration, see Figure 25, a curved magnetic field provides support of the cold
plasma against gravity. Field lines outside the prominence do not bend downwards and so the
magnetic field in the coronal environment does not present the desired arcade shape. For this
reason, the role of the dense photosphere is played by two vertical rigid walls. Note that the
configuration used by Anzer (2009) bears some resemblance to that of Figure 23a: the coronal
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magnetic field is almost uniform and makes an angle # with the horizontal direction. Hence,
tand = B,1/B,, with B,; the magnetic field at the prominence boundary. A further similarity
between the present model and the previous ones is that the density is analogous to that of
Figure 23c.

AZ
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Figure 25: Sketch of a prominence configuration based on the Kippenhahn and Schliiter (1957) model.
In the text the system size (2A) and the prominence width (D) are denoted by 2L and 2xp, respectively.
Except for the filed line curvature, this configuration is identical to that of Figure 27 (from Anzer, 2009).

Instead of solving the MHD equations, Anzer (2009) took the clever approach of making ed-
ucated guesses for the restoring forces acting over the prominence (F'(£)) and then solving the
equation ,

d=§
MS = F(E), (15)
where £ is the plasma displacement and M is the prominence column mass. For magnetically
driven oscillations in the z-direction, caused by the magnetic pressure gradient, it is postulated

that
le g

B, L

F()=-M (16)

so that the corresponding oscillatory period is

1 1
B, L\? L \2
P=2 - =9 . 1
7r<Bz1 g> W(Qtarﬂ) an

For oscillations in the y- and z-directions the restoring force is the magnetic tension of the
stretched field lines. In both cases the restoring force is

By
F¢)=—-M = 18
(€ = -Mp=e, (18)
and the oscillatory period is

1

BZ1 L) <L ) 5
P=2r — ) =27 —tanf | . 19
( B g g 19)

It does not come as a surprise that this formula is identical to Equation (1).
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Anzer (2009) noted that the field line inclination is expected to be very small and, therefore,
B.1/B, < 1. As a consequence, the period of z-oscillations will be much larger than that of the
other two modes, polarized in the y- and z-directions.

Anzer (2009) also investigated perturbations driven by the gas pressure. He assumed that the
coronal magnetic field is so strong that the prominence cannot distort it by a large amount. Further
assuming that the magnetic field is horizontal, then the difference in gas pressure on either side
of the prominence-corona interface can drive oscillations in the z-direction. The restoring force is
approximated by

2
c
F)=-M-=—= 20
(€)= M7 (20)
and consequently the period of this mode is
1
L 2
p—ontlme)” (21)
Cs

This result coincides with that obtained from the simple string models of Figures 23b and c; see
Equation (4).

Four oscillatory modes can be identified from these elementary considerations, but the restoring
forces in the z-direction act in unison to create a single mode, so we are left with the familiar three
MHD modes: fast, Alfvén, and slow.

Some values of the periods given by Anzer (2009) are similar to those in previous works: 200 min
for the magnetically dominated oscillations in the z-direction, 430 min for the gas pressure driven
oscillations and 20 min for the transverse, magnetically driven oscillations.

A further refinement of the string analogy (Joarder and Roberts, 1992b; Roberts and Joarder,
1994) can be introduced by noting that the magnetic field of a prominence is not at 90° with the
prominence axis, contrary to the simple models of Figures 23 and 25. Instead, the prominence
magnetic field makes an angle ¢, typically around 20°, with the long axis of the slab. This is not too
important for the almost isotropic fast modes, but Alfvén and slow modes propagate mainly along
field lines, which in a skewed magnetic configuration are longer than 2L by a factor 1/sin¢ = 3.
Thus, the periods of these waves become larger by this same factor since the travel time needed
for them to travel back and forth between the anchor points increases by 1/sin¢. The result is
that the hybrid Alfvén and slow modes can have periods up to 60 min and 5 h, respectively. It has
been suggested that the last one may be the cause of the very long-period oscillations observed by
Foullon et al. (2004); Pouget et al. (2006).

4.2 Oscillations of prominence slabs

In a series of three papers, Joarder and Roberts conducted analyses of the modes of oscillation of a
magnetized prominence slab embedded in the corona. The influence of gravity was neglected and
so the plasma variables (temperature, pressure, and density) are uniform both in the prominence
and in the coronal region. In the first of these works (Joarder and Roberts, 1992a) a purely
longitudinal magnetic field was taken (see Figure 26). The dispersion relation contains a variety
of modes, which can be fast or slow, combined with kink or sausage and body or surface. Because
of the strong difference of the prominence and coronal physical parameters, some eigensolutions
are slow in the external medium and fast in the internal medium. Tabulated periods range from
9 h and 5 h to a few minutes. The first values had not been reported at the time this work was
published, so emphasis was given by the authors to fast surface modes, with shorter periods around
1 h, and to 5-min and 3-min Pekeris and Love modes.

Joarder and Roberts (1992b) considered the purely transverse magnetic field of Figure 27. From
the characteristic wavenumbers of the solutions in the z-direction, Joarder and Roberts (1992b)
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Figure 26: Sketch of the prominence slab model with longitudinal magnetic field used by Joarder and
Roberts (1992a). These authors assumed that the coronal environment in which the prominence is em-
bedded extends infinitely in the z-direction. In this figure the width of the prominence is denoted by 2a,
whereas in our text 2z, is used.
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Figure 27: Schematic diagram of a prominence slab in a coronal environment. The magnetic field is
perpendicular to the prominence axis and tied at the photosphere, represented by two rigid conducting
walls at x = ££. Note that in the text the position of the photospheric walls is denoted by x = +L (from
Joarder and Roberts, 1992b).
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created the distinction between internal and external modes (see Section 4.1 for a discussion of
the features of these solutions). According to these authors, the former group of modes arises
principally from the magnetoacoustic properties of the plasma slab, although these modes are
somewhat influenced by the external material because of the presence of free interfaces between
the prominence and corona. External modes are present, on the other hand, even in the absence
of the prominence plasma but are modified because of the introduction of this cool, dense slab.
The dispersion diagrams of kink and sausage modes are shown in Figure 28, where ¢y, and va,, are
the sound and Alfvén speeds in the prominence, while ¢s. and va. are their coronal counterparts.
Moreover, Joarder and Roberts (1992b) also removed propagation along the prominence by setting
k, = 0. The mode frequencies are then those on the vertical axes of Figure 28. In this case
the dispersion relations of kink and sausage modes are those discussed for a string with densities
pe and pp (Figure 23c), namely Equations (9) and (10). Joarder and Roberts (1992b) gave the
approximate solutions of Equations (11) to (14), which are in very good agreement with the results
of Figure 28 for k, = 0.
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Figure 28: Dispersion diagram of magnetoacoustic (a) kink modes and (b) sausage modes in the equilib-
rium model represented in Figure 27. Meaning of labels at the right of each curve: modes are identified
as fundamental (f), first harmonic (1h), second harmonic (2h), ...; internal or external (I or E); and fast
or slow (F or S). Here w and k. are the frequency and the wavenumber along the slab, while vac is the
coronal Alfvén speed and L is half the length of the supporting magnetic field. Parameter values used:
vap = 28 km st csp = 15 km s vac =315 kms !, ¢ = 166 km s7* (from Joarder and Roberts, 1992b).

Oliver et al. (1993) provided more insight into the nature of internal and external modes while
using the non-isothermal Kippenhahn—Schliiter solution represented in Figure 25. These authors
followed the evolution of fast and slow modes in the dispersion diagram when the prominence is
slowly removed by taking z, — 0. They noted that the frequency of internal modes, both slow and
fast, progressively grows until the modes disappear from the dispersion diagram and, therefore, only
external modes remain. The presence of the prominence region thus provides physical support for
the existence of internal modes. The same is true for external modes when the corona is gradually
removed by making x, — L. A clear distinction then arises between the two types of modes,
although it turns out that the fundamental mode is internal and external at the same time, since it
survives both when the prominence and the corona are eliminated. For this reason, this mode with
mixed internal and external properties was called hybrid by Oliver et al. (1993) and later string
by Joarder and Roberts (1993b) because it arises in the string analogy. Nevertheless, internal and
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external modes are also present in the string analogy (Section 4.1), so perhaps hybrid mode is a
better denomination for this solution.

From Oliver et al. (1993) it also appears that the amplitude of perturbations in the prominence
is rather small for external modes, a feature that is also present in the string solutions of Figure 24.
For this reason it was postulated that they would probably be difficult to detect in solar prominences
and that the reported periodic variations are produced by the hybrid and internal modes. In
addition, the frequency of internal modes is shown to depend on prominence properties only, while
that of hybrid and external modes depends on other physical variables such as the length of field
lines. This is in agreement with the approximate Equations (11) to (14).

The essential difference between the equilibrium models in Joarder and Roberts (1992b) and
in Oliver et al. (1993) is that gravity is neglected in the former, which results in straight magnetic
field lines, while it is a basic ingredient in the later, which results in the curved shape of field
lines characteristic of the Kippenhahn—Schliiter equilibrium model. Despite the different shape
of field lines, the main features of the oscillatory spectrum are similar and so the influence of
gravity and field line shape on the properties of the MHD modes is not too relevant in this kind
of configurations.

A study of the oscillatory modes of the Kippenhahn and Schliiter (1957) prominence model was
undertaken by Oliver et al. (1992). The equilibrium model is represented in Figure 25 although the
corona is omitted. This implies that this work only provides a restricted account of the MHD modes
of a slab prominence since there are no hybrid and external solutions in the absence of the corona.
Oliver et al. (1992) noted that the three MHD modes possess different velocity orientations. The
fast mode is characterized by vertical motions. The Alfvén mode by motions along the filament long
axis, and the slow mode by plasma displacements parallel to the equilibrium magnetic field, which
in this configuration is practically horizontal and transverse to the prominence. The immediate
consequence of this association between modes and velocity polarization is that periodic variations
in the Doppler shift are more likely to be detected in filaments near the disk centre for fast
modes and in limb prominences for Alfvén and slow modes, depending on the orientation of the
prominence with respect to the observer. These features of the MHD modes are retained in
other models in which the equilibrium magnetic field is assumed perpendicular to the filament
axis (Joarder and Roberts, 1992b, 1993a; Oliver et al., 1993; Oliver and Ballester, 1995, 1996).
Nevertheless, the distinction between the three MHD modes is lost when the observed longitudinal
magnetic field component is taken into account (Joarder and Roberts, 1993b). Probably, there are
no characteristic oscillatory directions associated to the various modes (unfortunately, the issue of
velocity polarization in a skewed magnetic equilibrium model has not yet been addressed in the
context of prominence oscillations). The actual velocity field in prominences can be substantially
more complex than that indicated by investigations based on models with magnetic field purely
transverse to the prominence slab.

It is well-known (Leroy, 1988, 1989) that magnetic lines are actually oriented at a rather small
angle (around 20°) with the prominence axis. Joarder and Roberts (1993b) took this observational
fact into account by adding a longitudinal magnetic field component to the equilibrium model
used in Joarder and Roberts (1992b); see Figure 29. Now, the zy-plane is defined to contain
the assumed horizontal magnetic field. Then, it is not possible to place the z-axis parallel to the
wavenumber along the prominence axis, so now the k, and k., components must be considered. The
assumptions of transverse field and propagation of perturbations in the z-direction made in the
works discussed above simplify the MHD wave equations since the Alfvén mode is decoupled from
the slow and fast modes, which can be studied separately with a subsequent reduction in complexity
of the mathematical problem. The problem considered by Joarder and Roberts (1993b) contains
coupled fast, Alfvén and slow modes. The resulting dispersion diagram (Figure 30) displays a
very rich mode structure with plenty of mode couplings, which anticipates the complex nature of
actual prominence MHD modes. Unfortunately, the physical properties of perturbations (velocity
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polarization, importance of the various restoring forces, perturbations of the equilibrium variables,
...) for the modes in the dispersion diagram have not been examined yet. Oscillation periods up
to 4 h (for the slow hybrid mode) are present in this configuration.

Rigid wall

Figure 29: Schematic diagram of a prominence slab in a coronal environment. The magnetic field makes
an angle ¢ with the prominence axis and is tied at the photosphere, represented by two rigid, perfectly
conducting walls (from Joarder and Roberts, 1993b).

The previous results rely on models in which the prominence and coronal temperatures are
uniform, with a sharp jump of this physical variable from the cool to the hot region at an infinitely
thin interface. A smoothed temperature transition between the two domains, representing the
prominence-corona transition region (PCTR), was used by Oliver and Ballester (1996) to investi-
gate the MHD modes of a more realistic configuration. Despite the presence of the PCTR in the
equilibrium model, internal, external, and hybrid modes are still supported, just like in configura-
tions with two uniform temperature regions. Nevertheless, the PCTR results in a slight frequency
shift and in the modification of the spatial velocity distribution so as to decrease the oscillatory
amplitude of internal modes inside the prominence. Hybrid modes are not so much affected by
the presence of the PCTR because their characteristic wavelength is much longer than the width
of the PCTR. Then, the conclusion is that the PCTR may influence the detectability of periodic
prominence perturbations arising from internal modes.

Some two-dimensional equilibrium models were considered by Galindo Trejo (1987, 1989a,b,
1998, 2006). The focus of these works was in the stability properties of prominence equilibrium
configurations (using the MHD energy principle of Bernstein et al., 1958) and for this reason the
author concentrated in the lowest eigenvalue squared. This means that information about all
other modes of the system is absent. Galindo Trejo (1987) considered four prominence models,
namely those by Kippenhahn and Schliiter (1957), Dungey (1953), Menzel (1951), and Lerche and
Low (1980). All these models are isothermal, i.e., they do not incorporate the corona around the
prominence plasma. This implies that the important hybrid modes are absent in the analysis.
In spite of this, some interesting results were obtained by Galindo Trejo (1987). Here we only
mention the most relevant ones. For example, the fundamental mode of the Kippenhahn—Schliiter
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Figure 30: Dispersion diagram of magnetoacoustic modes in the equilibrium structure of Figure 29.
Meaning of labels at the right of each curve: modes are identified as string, fundamental (f), first harmonic
(1h), second harmonic (2h), ...; internal or external (I or E); and fast, Alfvén or slow (F, A or S) according
to the mode’s nature for k < 1. Here w and k are the frequency and the wavenumber modulus, while vae
is the coronal Alfvén speed and ¢ is half the length of the supporting magnetic field. Parameter values
used: vap = 74 km s 1, csp = 15 km s 1, VAac = 828 km s 1, Csc = 166 km s ¢ (from Joarder and Roberts,
1993b).
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configuration, whose period is 16 min, has motions polarized mainly across the prominence slab,
so it can be associated with the internal slow mode. On the other hand, the fundamental mode of
Dungey’s model has horizontal motions mostly along the prominence axis (such as corresponds to
Alfvén waves) which are more important at the top of the prominence than at the bottom. The
oscillatory period ranges from 55 to 80 min. In the case of Menzel’'s model, the lowest frequency
eigenmode has a period of 40 min and motions whose amplitude increases with height and oriented
across the prominence. The eigenmode of Lerche & Low’s solution presents a greater range of
periods (17—50 min) and, once more, with horizontal plasma displacements transverse to the
prominence axis. Two improvements of this elaborated work can be done: the inclusion of the
coronal plasma and the consideration of the oscillatory properties of other modes.

In two subsequent papers the stability of the prominence model of Low (1981) was investigated.
In the first one (Galindo Trejo, 1989a) a uniform magnetic field component along the prominence
axis was used, whereas in the second one (Galindo Trejo, 1989b) this quantity is not uniform. The
author concluded that, as long as this magnetic field component is weak, these different choices of
the magnetic configuration do not influence much the period of the fundamental mode, which is in
the range 3—7 min. The spatial distribution of motions is similar to that found by Galindo Trejo
(1987) for Menzel’s and Lerche & Low’s equilibrium models.

The following paper of this series (Galindo Trejo, 1998) is concerned with the prominence
model of Osherovich (1985), which is characterized by a surrounding horizontal magnetic field
connected with the prominence field. Different values of the equilibrium parameters were used
and as a result the fundamental mode has periods that range from 4 to 84 min. Galindo Trejo
(1998) found that for small values of the longitudinal magnetic field component large velocity
amplitudes predominate in the upper part of the prominence, while the opposite happens for a
stronger longitudinal component. The magnetic field shear is also relevant: for a moderate (and
hence non-uniform) shear, the fundamental eigenmode is in the intermediate-period range and for
a uniform shear long periods are obtained.

Galindo Trejo (2006) investigated the equilibrium solution of Osherovich (1989), that is char-
acterized by an external vertical magnetic field that allows the prominence to be placed on the
boundary between two regions of opposite photospheric magnetic polarity. A wide range of peri-
ods was obtained in this work (9—-73 min). Also, horizontal oscillatory motions either along the
prominence or almost across it were found. Therefore, it seems that in most configurations studied
by Galindo Trejo the fundamental oscillatory mode is a slow mode.

4.3 Oscillations of line current models

A completely different approach, based on line current models of filaments, was taken by van den
Oord and Kuperus (1992), Schutgens (1997a,b), and van den Oord et al. (1998) in order to study
filament vertical oscillations. They used the model introduced by Kuperus and Raadu (1974), in
which the prominence is treated as an infinitely thin and long line, i.e., without internal structure.
The interaction of the filament current with the surrounding magnetic arcade and photosphere was
taken into account. Furthermore, both normal (NP) and inverse polarity (IP) configurations were
considered. When a perturbation displaces the whole line current representing the filament, that
remains parallel to the photosphere during its motion, the coronal magnetic field is also disturbed
and the photospheric surface current is modified. This restructuring affects the magnetic force
acting on the filament current. As a consequence, either this force enhances the initial perturbation
and the original equilibrium becomes unstable, or the opposite happens and the system is stable
against the initial disturbance. As a further complication, van den Oord and Kuperus (1992),
Schutgens (1997a,b), and van den Oord et al. (1998) took into account the finite travel time of the
perturbations between the line current and the photosphere and investigated the effect of these
time delays on the filament dynamics. For both NP and IP configurations, exponentially growing or
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decaying solutions were found, which means that perturbations are amplified and the equilibrium
becomes unstable, or that oscillations are damped in time and the equilibrium is stable.
Schutgens and Téth (1999) considered an IP magnetic configuration in which the prominence
is not infinitely thin but is represented by a current-carrying cylinder. They solved numerically
the magnetohydrodynamic equations assuming that the temperature has a constant value (10° K)
everywhere. The inner part of the filament is disturbed by a suitable perturbation that causes the
prominence to move like a rigid body in the corona, both vertically and horizontally, undergoing
exponentially damped oscillations. Horizontal and vertical motions can be studied separately since
they are decoupled. It turns out that the period and damping time of horizontal oscillations are
much larger than those of vertical oscillations. Some remarks about the damping mechanism at

work in these models is presented in Section 5.6

4.4 Fine structure oscillations (infinitely long thread limit)

Prominence models considered in Sections 4.1, 4.2, and 4.3 are very simplified representations
of solar prominences. They provide us with information about a prominence global oscillatory
behaviour, but high resolution observations (see Sections 3.4 and 3.6.4) have given us detailed
information about the local oscillatory behaviour of the fine, internal structure of filaments. This
has prompted the study of thread oscillations. Two situations can be considered: the simplest one
is that of short waves propagating along a thread. By short we mean that the wavelength is much
shorter than the thread length, so we refer to this problem as the infinitely long thread limit. On
the other hand, the second situation includes propagating waves whose wavelength is comparable
to or larger than the length of the thread and standing modes, whose wavelength is of the order
of the length of the supporting magnetic tube and thus much larger than the thread length; the
works concerned with this second kind of problem are presented in Section 4.5. Other important
ingredients uncovered by observations (Sections 3.4 and 3.6.4) are the collective behaviour and the
presence of flows in some oscillating threads. These features have been incorporated into some
investigations and will be also discussed here.

4.4.1 Individual thread oscillations

A simple thread model consists of an infinitely long cylinder filled with cold, dense plasma and
embedded in the hotter and less dense corona; field line curvature is neglected. The magnetic field
is parallel to the cylinder axis and uniform everywhere (Figure 31).
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Figure 31: Sketch of an infinitely long thread immersed in the solar corona (from Lin et al., 2009).

The MHD modes of this structure have been extensively studied in the context of coronal and
photospheric magnetic tube oscillations (Spruit, 1982; Edwin and Roberts, 1983; Cally, 1986).
The mode of interest here is the kink mode because it is the only one that produces a significant
transverse displacement of the thread, which is the observed behavior of oscillating threads. In the
absence of mass flows and assuming that the thread radius is much smaller than the wavelength,
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the kink frequency is given by

'1}2 + C,UQ 2
pf AP p Ac _ kZ'UAp C , (22)
Pp + Pc 1+¢

with k. the axial wavenumber, p, and p. the prominence thread and coronal densities, { = pp/pc
the density contrast, and vap.. = B/ /lippc the prominence thread and coronal Alfvén velocities.
In terms of the density contrast, the period of kink oscillations with wavelength A\ = 27 /k, can

then be written as
poVZ A (Hc)m
2 UAp C ’

Note that the factor containing the density contrast varies between /2 and 1 when ¢ is allowed to
vary between a value slightly larger that 1 (extremely tenuous thread) and ¢ — oo. This defines
a narrow range of Alfvén speed values when the inverse problem is solved for plasma diagnostic
purposes (see Section 6). One can plug typical parameter values into Equation (23) and periods
ranging from 30 s to a few minutes are obtained. This result is in agreement with the observed
periods of traveling waves in threads (see Section 3.6.4).

This formula for P is based on some assumptions, namely that the thread is much longer than
the wavelength, which in turn is much larger than the thread radius (this last approximation is also
know as the thin tube limit). Short-wavelength propagating waves in threads have been detected
by Lin et al. (2007) (see Section 3.6.4 and Figure 22). The length of the fine structure is around
20 arcsec, the reported wavelength is 3.8 arcsec, and the radius of threads is typically between
0.1 and 0.15 arcsec. We can appreciate that the assumptions made to derive Equation (23) are
satisfied in this event.

Nakariakov and Roberts (1995) studied the magnetosonic modes of a magnetic slab when flows
are present, while Soler et al. (2008) considered non adiabatic waves and included a mass flow
parallel to the magnetic field in the thread model of Figure 32, which is identical to that of
Figure 31 except for the inclusion of plasma flows. Without loss of generality the flow speed in the
corona was neglected in this last work, while typical values observed in prominences were taken
for the flow speed in the thread (namely U, < 30 km sfl). In the absence of flow, the complex
oscillatory frequencies for a fixed, real and positive wavenumber k, appear in pairs, w; = wg + iwr
and wy = —wg + twy. The solution w; corresponds to a wave propagating towards the positive z-
direction (parallel to magnetic field lines). The wq solution corresponds to a wave that propagates
toward the negative z-direction (antiparallel to magnetic field lines). Both solutions have exactly
the same physical properties in the absence of flows. In the presence of flow, the frequencies
are Doppler shifted. In addition, the symmetry between parallel and antiparallel propagation is
broken. For instance, for strong enough flows, slow waves can only propagate parallel to the flow
direction, antiparallel propagation being forbidden. Figure 33 presents the period of the slow,
fast and thermal modes as a function of the flow speed in the thread. For U, # 0 the fast and
slow waves acquire different periods that diverge as U, is increased. For U, ~ 8.5 km s7! the
antiparallel slow wave becomes a backward wave, which causes its period to grow dramatically
near this flow velocity. The influence of the flow on the fast mode is not so severe, while the
thermal mode has a finite period that takes very large values.

(23)

4.4.2 Collective thread oscillations

Some authors have reported that groups of threads oscillate in unison (e.g., Yi et al., 1991) and
that large areas of a prominence present in-phase oscillations (e.g., Terradas et al., 2002; Lin
et al., 2007), which may be also taken as a sign of collective thread behaviour (see Sections 3.4,
3.6.3, and 3.6.4). Similar collective oscillations have been observed in coronal loops (Verwichte
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Figure 32: Sketch of an infinitely long thread immersed in the solar corona. The respective flow speeds
in the thread and the corona are denoted by U, and U, (from Soler et al., 2008).
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Figure 33: Period of the fundamental oscillatory modes of an infinitely long thread versus the mass flow,
Up. The top, middle, and bottom panels correspond to the slow, kink, and thermal modes. Different line
styles correspond to waves propagating in the absence of flow (dotted), parallel waves (solid), and anti-

parallel waves (dashed). The wavenumber is given by k.a = 1072, which is consistent with the wavelength
of observed propagating waves in prominences (Section 3.6); a is the thread radius (from Soler et al., 2008).
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et al., 2004) and their properties have been studied by, e.g., Murawski (1993), Luna et al. (2008),
Van Doorsselaere et al. (2008b), and Robertson and Ruderman (2011). To model this situation,
an equilibrium model made of two homogeneous and infinitely long prominence threads embedded
in the coronal medium has been considered (see Figure 34).
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Figure 34: Sketch of an equilibrium model made of two infinitely long threads embedded in the solar
corona (from Luna et al., 2008).

When identical threads are considered, the system exhibits four kink-like transverse oscillatory
modes (Luna et al., 2008; Soler et al., 2009a). These modes are denoted by S, A;, S, and A,.
The S and A denote symmetry or antisymmetry of the total pressure perturbation with respect to
the yz-plane. The subscript describes the main direction of polarization of motions, that is in the
zy-plane; the choice of the coordinate axes is shown in Figure 34 and the spatial distribution of the
modes is displayed in Figure 35. In addition to the kink-like modes, Soler et al. (2009a) studied
the collective slow modes and obtained only two fundamental collective solutions, one symmetric
and the other antisymmetric with respect to the yz-plane, with motions mainly polarized along
the z-direction (Figure 35).

A measure of the interaction between threads is the frequency of their normal modes. If
the modes have frequencies similar to that of the isolated cylinder, then the threads oscillate
independently from one another. If the frequencies are significantly different, the threads oscillate
in a collective manner. The left panel of Figure 36 displays the real part of the frequency of the four
kink-like solutions as a function of the distance between cylinders. For large separations, i.e., for a
distance between threads larger than about 6 or 7 radii, the collective kink mode frequencies are
almost identical to the individual kink frequency. This is a signature of a weak interaction between
threads, which behave as independent structures. On the other hand, for short thread separations
the four frequencies separate in two branches as a consequence of a strong interaction between the
cylinders. Therefore, the collective behaviour of oscillations becomes stronger when the threads
are closer. In the case of slow modes the interaction between threads is almost negligible and
as a result the frequencies of the S, and A, modes are almost identical to the individual slow
mode frequency (cf. right panel of Figure 36) in the whole range of thread separations. This is in
agreement with the fact that transverse motions (responsible for the interaction between threads)
are not significant for slow modes in comparison with their longitudinal motions. Therefore, the
S, and A, modes essentially behave as individual slow modes, contrary to kink-like modes, which
display a more significant collective behaviour.
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Figure 35: Fundamental normal modes of two parallel and infinitely long threads (Figure 34). Total
pressure perturbation field (contour plot in arbitrary units) and transverse Lagrangian displacement vector
field (arrows) in the zy-plane for the wave modes (a) Sz, (b) Az, (c) Sy, (d) Ay, (e) Sz, and (f) A, for
a separation between threads d = 4a and a longitudinal wavenumber k.a = 1072, where a is the thread
radius. The prominence thread boundaries are denoted by dotted circles (from Soler et al., 2009a).
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Figure 36: Fundamental normal modes of two parallel and infinitely long threads (Figure 34). Left: Ratio
of the frequency of the four collective kink-like modes, w, to the frequency of the individual kink mode,
wy, as a function of the normalized distance between strand axes. Meaning of symbols: S, (solid line), A,
(dotted line), Sy (triangles), and A, (diamonds). Right: Ratio of the frequency of the two collective slow
modes, w, to the frequency of the individual slow mode, ws for the S, (solid line) and A, (dotted line)
(from Soler et al., 2009a).
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Figure 37: Cross-section of a two-thread model analogous to that of Figure 34 with the addition of mass
flows along the cylinders (from Soler et al., 2009a).
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Soler et al. (2009a) assessed the effect of material flows along two threads on the behaviour
of collective modes (see Figure 37 for a sketch of the model). Arbitrary flows U; and Uy were
assumed in both cylinders, while coronal flows were neglected. The first main conclusion of this
work is that the flows do not eliminate wave modes with collective dynamics (i.e., those that
produce significant perturbations in the two threads), even in the case U; # Us. Nevertheless, the
requisite for retaining the collective dynamics is that the Doppler-shifted individual frequencies of
the threads must be very similar. In the case of kink-like modes the Doppler-shifted frequencies
are given by

M1 = wig + Uik, (24)

Qo = wio + Uak, (25)

where wy1 and wyo are the kink frequencies of each thread, which are not equal if the thread densities
differ. In the limit A > a, with a the tube radius, these frequencies are given by Equation (22).
Now, the requirement for the two threads to oscillate in phase rather than independently is 1 ~
Q2. Using Equation (22) and making the reasonable assumption that the density contrast in both
cylinders is much larger than one, Soler et al. (2009a) obtained

Uy — Uy = V2 (vpas — va1), (26)

where the + sign is for parallel waves and the — sign is for anti-parallel propagation. A similar
analysis can be performed for slow modes to obtain,

U1 —U2 %ﬂ:(csg _Csl)~ (27)

which points out that the coupling between slow modes occurs at different flow velocities than
the coupling between kink modes. Therefore, the simultaneous existence of collective slow and
kink-like solutions in systems of non-identical threads is difficult. In the above equations, vai 2
and cg1,2 correspond to Alfvén and sound speeds in both threads, respectively.

Soler et al. (2009a) extracted another conclusion from Equations (26) and (27): the difference
between the Alfvén (sound) speed of the threads determines the difference of the flow speeds for
the existence of collective behaviour of kink (slow) modes. Therefore, when flows are present in
the equilibrium, collective motions can be found even in systems of non-identical threads for very
specific combinations of the two flow velocities. These velocities are within the observed values in
prominences if threads with not too different temperatures and densities are considered. However,
since the flow velocities required for collective oscillations must take very particular values, such
a special situation may rarely occur in prominences. This conclusion has important repercussions
for future prominence seismological applications, given that if collective oscillations are observed
in large areas of a prominence, threads in such regions should possess very particular combinations
of temperatures, densities, magnetic field strengths and flows.

4.5 Fine structure oscillations (finite length threads)

Filament threads have been modeled as magnetic flux tubes anchored in the solar photosphere
(Ballester and Priest, 1989; Rempel et al., 1999) which are stacked one on top of one another in
the vertical and horizontal directions, giving place to the filament body.

Many observations of oscillatory events in threads (see Section 3.6.4) cannot be accounted for
by the simple models of Section 4.4 because the obtained results rely on the assumption that the
thread length is much larger than the wavelength. Exceptions to this hypothesis are standing
waves and propagating waves whose wavelength is of the order of or larger than the thread length.
In the models presented in this section a thread is envisaged as a cold, dense condensation that
fills the central part of a magnetic tube containing hot coronal plasma and anchored in the solar
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photosphere. Although this structure has been modeled with some complexity (Ballester and
Priest, 1989; Rempel et al., 1999), only oscillations of much simpler thread configurations have been
investigated so far. Because the reported thread oscillations are transverse, we here concentrate
on works that investigate this kind of motions.

Joarder et al. (1997) considered a thin thread with finite width and length in Cartesian geometry
(Figure 38). The thread is infinitely deep since the equilibrium configuration is invariant along
the y-axis. The influence of the plasma pressure was neglected (i.e., the zero-g limit was taken)
and consequently the slow mode is absent from their analysis. Joarder et al. (1997) obtained
the dispersion relations for Alfvén and fast modes, and restricted their study to the oscillatory
frequencies, omitting other properties that are also relevant for the understanding of oscillations
such as the spatial structure and the polarization of perturbations.

by,

Figure 38: Sketch of the thread equilibrium model used by Joarder et al. (1997), Diaz et al. (2001),
and Diaz et al. (2003). The blue zone of length 2W represents the cold part of the flux tube, i.e., the
prominence thread. The length of the magnetic structure is 2L and the thread thickness (equivalent to its
diameter) is 2b. The magnetic field is uniform and parallel to the z-axis, and the whole configuration is
invariant in the y-direction (from Diaz et al., 2001).

Using the same two-dimensional configuration, Diaz et al. (2001) performed an analytical and
numerical study of the behaviour of fast modes when a proper treatment of the boundary conditions
at the different interfaces of this thread configuration is included. The main conclusion is that
prominence threads can only support a few non-leaky modes of oscillation, those with the lowest
frequencies. Also, for reasonable values of the thread length, the spatial structure of the fast
fundamental even and odd kink modes is such that the velocity amplitude outside the thread takes
large values over long distances (Figure 39). Fast kink modes are associated to normal motions
with respect to the thread length (i.e., in the z-direction; see Figure 38). The fundamental kink
mode (simply referred to as the kink mode) has a velocity maximum at the thread centre, while
its first harmonic (that is, the fundamental odd kink solution) has a node in the same position.

Later on, Diaz et al. (2003) included wave propagation in the y-direction (see Figure 38) making
the model fully three-dimensional, and two important features appeared. The first is that the cut-
off frequency, that separates confined and leaky modes, varies with the longitudinal wavenumber
(ky), which allows the structure to trap more modes. The second one is that a much better
confinement of the wave energy is obtained compared to the k, = 0 case (see Figure 40). An
interesting issue concerning these results obtained using Cartesian threads is that large velocity
amplitudes are found in the corona, which seems to favour collective thread oscillations in front of
individual oscillations.

Since cylindrical geometry is more suitable to model prominence threads, Diaz et al. (2002)
considered a straight cylindrical flux tube with a cool region representing the prominence thread,
which is confined by two symmetric hot regions (Figure 41). With this geometry the fundamental
sausage mode (m = 0, with m the azimuthal wavenumber) and its harmonics are always leaky.
However, for all other modes (m > 0), at least the fundamental solution lies below the cut-off
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Figure 39: Kink mode normal velocity component across the axis of the Cartesian prominence thread
depicted in Figure 38. Solutions are symmetric about the thread axis (x = 0) and so they are only shown
for x > 0. The length of magnetic field lines is 2L = 200,000 km. (a) In a very thick thread (with a
“radius” of 10,000 km) the perturbation is essentially confined to the thread itself, i.e., to 0 < z/L < 0.1.
(b) In an actual thread (with a “radius” of 100 km) the velocity displays a large amplitude beyond the
thread boundary, at /L = 0.001. This means that wave energy spreads into the surrounding coronal
medium (from Diaz et al., 2001).
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Figure 40: Normal velocity component (in arbitrary units) of the kink mode in the direction across the
thread axis. The ratio of the thread “diameter” to the length of magnetic field lines is b/L = 0.001, while
the ratio of the thread length to the field lines length is W/L = 0.1. The solid, dotted, and dashed lines
correspond to kyL = 0 (curve of Figure 39b), kyL = 3, and ky,L = 20. All other parameter values are
those of Figure 39. The thread boundary is marked by a vertical dashed line (from Diaz et al., 2003).
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frequency. Hence, if any of these modes is excited the oscillatory energy in the prominence plasma
does not vary in time after the initial transient has elapsed. Regarding the spatial structure of
perturbations, in cylindrical geometry the modes are always confined to the dense part of the flux
tube (Figure 42). Therefore, an oscillating cylindrical thread is less likely to induce oscillations in
its neighbouring threads than a Cartesian one.
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Figure 41: Sketch of the equilibrium configuration of a thread in a cylindrical coronal magnetic tube.
The gray zone of length 2W represents the cold part of the flux tube, i.e., the prominence thread. The
length of the magnetic structure is 2L and the thread radius is b. The magnetic field is uniform and parallel
to the z-axis, and the whole configuration is invariant in the ¢-direction (from Diaz et al., 2002).
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Figure 42: Cut of the normal velocity component in Cartesian geometry (dashed line, i.e., curve of
Figure 39b) and the radial velocity component in cylindrical geometry (dotted line) in the direction across
the thread axis. These solutions correspond to the (fundamental) kink mode in a prominence thread with
the parameter values used in Figure 40. The vertical long dashed line marks the thread boundary (from
Diaz et al., 2002).

To study the oscillations of the above mentioned configurations, Diaz et al. (2001, 2002) devel-
oped a very general, although cumbersome procedure. However, Dymova and Ruderman (2005)
considered the same problem and to simplify its study took advantage of the fact that the observed
thickness of oscillating threads is orders of magnitude shorter than their length. Taking this into
account, Dymova and Ruderman (2005) used the so-called thin flux tube (TT) approximation,
that enables a simpler solution for the MHD oscillations of longitudinally inhomogeneous magnetic
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tubes. Once the partial differential equation for the total pressure perturbation is obtained, a
different scaling (stretching of radial and longitudinal coordinates) of this equation inside the tube
and in the corona can be performed. Following this procedure, two different equations for the total
pressure perturbation inside and outside the flux tube, with well known solutions, are obtained.
After imposing boundary conditions, the analytical dispersion relations for even and odd modes
were derived and a parametric study was performed. A comparison between the numerical values
of the periods obtained with this approach and that of Diaz et al. (2002) points out differences of
the order of 1%. The only drawback of the method of Dymova and Ruderman (2005) is that it
can be only applied to the fundamental mode with respect to the radial dependence.

Taking into account observations by, e.g., Lin (2005), which suggest in-phase oscillations of
neighbouring threads in a filament, Diaz et al. (2005) studied multi-thread systems in Cartesian ge-
ometry. The equilibrium configuration consists of a collection of two-dimensional threads modeled
as in Diaz et al. (2001) and separated by an adjustable distance 2¢ (Figure 43). An inhomogeneous
filament composed of five threads was constructed (Figure 44) with thread density ratios thought
to represent the density inhomogeneity of a prominence. The separations between threads were
chosen randomly within a realistic range. The thread separations were then changed with respect
to the values of Figure 44 by a certain factor and the kink modes were computed. Their frequencies
are displayed in Figure 45, where c,¢f is a reference value representative of the separations between
threads. When the separations are small, i.e., for ¢,of /L < 1, there is a strong interaction between
threads since the perturbed velocity in a given thread can easily extend over its neighbours. As
a result, there is only one even non-leaky mode: the one producing in-phase oscillations of all
threads. The other extreme of Figure 45, i.e., cref/L > 1, corresponds to very large separations.
In this situation all threads oscillate independently and the individual kink mode frequencies are
recovered. Note that realistic thread separations correspond to c¢ef/L ~ 103 -1072, for which
only the kink mode mentioned before is supported by the system. Its frequency is lower than the
individual kink mode frequencies. Although these results show some agreement with observations
about the collective oscillations of threads, the use of Cartesian geometry favours this kind of
combined behaviour and so a similar study based on a cylindrical model is also of interest.

X
Yob
~ R Izc
Va Lz
g
i oL

Figure 43: Sketch of a multi-thread equilibrium configuration. The grey zone represents the cold part of
the magnetic tube, i.e., the prominence. The magnetic field is uniform and parallel to the z-axis, and the
whole configuration is invariant in the y-direction (from Diaz et al., 2005).

Diaz and Roberts (2006) studied the properties of the fast MHD modes of a periodic, Cartesian
thread model (see Figure 1 of Diaz and Roberts 2006). This configuration provides a bridge
between a structure with a limited number of threads (studied by Diaz et al., 2005, see Figure 43)
and a homogeneous prominence with a transverse magnetic field (investigated by Joarder and
Roberts, 1992, see Figure 27). Diaz and Roberts (2006) found that for thread separations of the
order of their thickness the only confined modes are those in which large numbers of threads are
constrained to oscillate nearly in phase. The spatial structure of these solutions is similar to that
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Figure 44: Sketch of the density profile in the direction z = 0 of an inhomogeneous multi-thread sys-
tem. The density values of the are normalized to the coronal value. Between and under the threads the
dimensionless separation, 2¢/L, and “diameter”, 2b/L, are given (from Diaz et al., 2005).
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Figure 45: Dimensionless frequency versus the dimensionless reference separation between threads in a
multi-thread system. In this figure ¢, is the Alfvén speed in the corona (from Diaz et al., 2005).
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of the propagating modes of a homogeneous prominence, with small-scale deviations due to the
presence of the dense threads. Their period is equal to v/f P, with P the period of the prominence
slab and f the filling factor. The system with a limited number of threads has an even shorter
period and a comparison between the different configurations considered by Diaz and Roberts
(2006) gives periods of 23.6 min for the homogeneous prominence, between 12.1 and 19.3 min for
the system of periodic threads and 5.3 for the four-thread configuration studied by Diaz et al.
(2005). Hence, the main conclusion of Diaz and Roberts (2006) is that prominence fine structure
plays an important role and cannot be neglected.

Terradas el al. (2008) modeled the transverse oscillations of flowing prominence threads ob-
served by Okamoto et al. (2007) with HINODE/SOT (Section 3.6.4). The kink oscillations of a
flux tube containing a flowing dense part, which represents the prominence material, were studied
from both the analytical and the numerical point of view. In the analytical case, the Dymova and
Ruderman (2005) approach with the inclusion of flow was used, while in the numerical calculations
the linear ideal MHD equations were solved. The results point out that for the observed flow speeds
there is almost no difference between the oscillation periods when static versus flowing threads are
considered, and that the oscillatory period matches that of a kink mode. In addition, to obtain
information about the Alfvén speed in oscillating threads, a seismological analysis as described in
Section 6.6 was also performed. Also motivated by the observations by Okamoto et al. (2007),
Soler and Goossens (2011) have further studied the properties of kink MHD waves propagating in
flowing threads. In good agreement with Terradas et al. (2008), the period is seen to be slightly
affected by mass flows. When the thread is located near the center of the supporting magnetic
tube, and for realistic flow velocities, the effect of the flow on the period is estimated to fall within
the error bars from observations. On the other hand, as the thread approaches the footpoint of
the magnetic structure, flows introduce differences up to 50% in comparison to the static case.
The variation of the amplitude of kink waves due to the flow is additionally analysed by Soler
and Goossens (2011). Tt is found that the flow leads to apparent damping or amplification of
the oscillations. During the motion of the prominence thread along the magnetic structure, the
amplitude grows as the thread gets closer to the center of the tube and decreases otherwise. This
effect might be important, since it would modify the actual observed attenuation, if any physical
damping mechanisms is present.

Theoretical models described in this section have considered prominence plasmas as either slabs
or cylindrical magnetic flux tubes. Slab models were intended to study the global oscillation prop-
erties of prominences, while flux tube models seem to be more appropriate for their application to
the fine structure of prominences. Nevertheless, the properties of modes of oscillation like the kink
mode have often been first studied in Cartesian geometry and then in cylindrical configurations.
A few differences that arise are relevant when comparing the theoretical results to observations.

The theoretical frequencies for the kink mode in Cartesian geometry are above the value ob-
tained for a cylindrical equivalent with the same physical properties. This has been shown by
Arregui et al. (2007b), in the context of coronal loop oscillations. By assuming that a kink mode
in a cylinder can be modeled in Cartesian geometry by adding a large perpendicular wavenumber,
these authors show that in that limit the cylindrical kink mode frequency is recovered. A similar
analogy was used by Hollweg and Yang (1988) who derived an expression for the damping time of
a surface wave in Cartesian geometry and applied their result to coronal loops in the limit of large
perpendicular wave number.

The spatial distribution of the eigenfunctions also differ when one compares, e.g., the kink
mode properties in Cartesian and cylindrical geometry. The drop-off rate of the transverse velocity
component is faster in cylindrical flux tubes than in slabs. A cylinder is a much better wave guide.
For this reason, an oscillating cylindrical thread is less likely to induce oscillations in its neigboring
threads than a Cartesian thread.
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5 Theoretical Aspects of Small Amplitude Oscillations:
Damping Mechanisms

Temporal and spatial damping is a recurrently observed characteristic of prominence oscillations
(see Section 3.5). Several theoretical mechanisms have been proposed in order to explain the ob-
served damping. Direct dissipation mechanisms seem to be inefficient, as shown by Ballai (2003),
who estimated, through order of magnitude calculations, that several isotropic and anisotropic
dissipative mechanisms, such as viscosity, magnetic diffusivity, radiative losses, and thermal con-
duction cannot in general explain the observed wave damping. The time and spatial damping of
linear non-adiabatic MHD waves has been considered by Carbonell et al. (2004, 2009), Terradas
et al. (2001), Terradas et al. (2005), Carbonell et al. (2006), and Soler et al. (2007, 2008). The
overall conclusion from these studies is that thermal mechanisms can only account for the damping
of slow waves in an efficient manner, while fast waves remain almost undamped. Since prominences
can be considered as partially ionized plasmas, a possible mechanism to damp fast and Alfvén waves
could be ion-neutral collisions (Forteza et al., 2007, 2008), although the ratio of the damping time
to the period does not completely match the observations. Besides non-ideal mechanisms, another
possibility to attenuate fast waves in thin filament threads comes from resonant wave damping
(see, e.g., Goossens et al., 2010), which needs the presence of a smooth radial profile of the Alfvén
speed. This phenomenon is well studied for transverse kink waves in coronal loops (Goossens
et al., 2006; Goossens, 2008) and provides a plausible explanation for quickly damped transverse
loop oscillations first observed by TRACE (Aschwanden et al., 1999; Nakariakov et al., 1999).

The time scales of damping produced by these different mechanisms should be compared with
those obtained from observations, that indicate that the ratio of the damping time to the period,
74/ P, is of the order of 1 to 4. The theoretical approach of many works about the damping of
prominence oscillations has been to first study a given damping mechanism in a uniform and un-
bounded medium and, thereafter, to introduce structuring and non-uniformity. This has led to an
increasing complexity of theoretical models in such a way that some of them now combine different
damping mechanisms. Detailed reports on theoretical studies of small amplitude oscillations in
prominences and their damping can be found in Oliver (2009), Ballester (2010), and Arregui and
Ballester (2011). Here, we collect the most significant aspects of the theoretical mechanisms that
have been proposed to explain the observed time-scales.

5.1 Damping of oscillations by thermal mechanisms

In a seminal paper, Field (1965) studied the thermal instability of a dilute gas in mechanical
and thermal equilibrium. Using this approach, the time damping of magnetohydrodynamic waves
in bounded Kippenhahn—Schliiter and Menzel prominence models was studied by Terradas et al.
(2001). Similar studies using prominence slabs embedded in the solar corona were undertaken by
Soler et al. (2007) and Soler et al. (2009Db).

5.1.1 Non-adiabatic magnetoacoustic waves in prominence slabs

Terradas et al. (2001) studied the radiative damping of quiescent prominence oscillations. They
adopted a relatively simple non-adiabatic damping mechanism, by including a radiative loss term
based on Newton’s law of cooling with constant relaxation time. The influence of this type of ra-
diative dissipation on the normal modes of Kippenhahn—Schliiter and Menzel quiescent prominence
models was analyzed. The normal modes of these configurations had previously been investigated
by Oliver et al. (1992) and Joarder and Roberts (1993a); cf. Section 4.2. In a Kippenhahn—Schliiter
prominence model, the fundamental slow mode is unaffected by radiation, but its harmonics are
strongly damped. On the other hand, in a Menzel prominence configuration all slow modes are
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characterized by short damping times. The damping time depends on the curvature of field lines,
in such a way that more curved models produce larger damping times. In both prominence models,
fast modes are practically unaffected by radiative losses and have very long damping times.

A more involved analysis was performed by Soler et al. (2007) by including thermal conduction,
optically thin or thick radiation, and heating in the energy equation. The prominence was modeled
as a plasma slab embedded in an unbounded corona and with a magnetic field oriented along the
direction parallel to the slab axis (see Figure 26); this is the equilibrium configuration of Joarder
and Roberts (1992a), whose normal modes have been discussed in Section 4.2. Soler et al. (2007)
found that radiation losses have a different effect on magnetoacoustic waves depending on their
wavenumber. For typical values of observed wavelengths, the internal slow mode is attenuated by
radiation from the prominence plasma, the fast mode by the combination of prominence radiation
and coronal conduction and the external slow mode by coronal conduction. This study highlights
the relevance of the coronal physical properties on the damping properties of fast and external
slow modes, whereas this aspect does not affect the internal slow modes at all. For thin slabs,
representing a fine thread, Soler et al. (2007) found that the fast mode is less attenuated, whereas
both internal and external slow modes are not affected by non-adiabatic damping mechanisms.

Damping of magnetoacoustic waves in slab prominence models with a transverse magnetic field
(see Figure 27 and Section 4.2 for a description of the normal modes) were studied by Soler et al.
(2009b). The most relevant damping processes are coronal thermal conduction and radiative losses
from the prominence plasma. In terms of the spatial distribution of the studied normal modes,
it was found that both mechanisms govern together the attenuation of hybrid modes, whereas
prominence radiation is responsible for the damping of internal modes and coronal conduction
essentially dominates the attenuation of external modes. In terms of the different magnetohy-
drodynamic wave types, slow modes were found to be efficiently damped, with damping times
compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic
effects and their damping times are several orders of magnitude larger than those observed. The
inclusion of the coronal medium in the analysis causes a decrease of the damping times compared
to those of an isolated prominence slab, but this effect is still insufficient to obtain fast mode
damping times compatible with observations.

5.1.2 Non-adiabatic magnetoacoustic waves in a single thread with mass flows

Soler et al. (2008) investigated the effects of both mass flow and non-adiabatic processes on the
oscillations of an individual prominence thread modeled as an infinite homogeneous cylinder Fig-
ure 32). Thermal conduction and radiative losses were taken into account as damping mechanisms.
For a discussion of the oscillatory features of this system, see Section 4.4.1.

The analysis of the damping time-scales for the different wave types shows that slow and thermal
modes are efficiently attenuated by non-adiabatic mechanisms. On the contrary, fast kink modes
are much less affected and their damping times are much larger than those observed. These results
are compatible with the known damping properties of these waves in the absence of flows.

In addition, Soler et al. (2008) analyzed how mass flows affect these damping properties. Fig-
ure 46 shows the dependence of the period, damping time, and their ratio as a function of the flow
velocity for the slow, fast and thermal modes (for a discussion of the thermal mode, see Carbonell
et al., 2009). Note that the left column of this figure has been already presented in Figure 33, but
it is retained here to facilitate our explanation. Flow velocities in the range 0—30 km s !, that
correspond to the observed flow speeds in quiescent prominences, were considered. The damping
time of slow and thermal modes is found to be independent of the flow velocity, but the attenuation
of the fast kink mode is affected by the flow. The larger the flow velocity, the more attenuated the
parallel fast kink wave, whereas the opposite occurs for the anti-parallel solution. This behaviour
is due to the weak coupling of the fast modes to external slow modes (Soler et al., 2008).
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Figure 46: Wave damping by thermal effects in a uniform, infinitely long thread (Figure 32). Period (left),
damping time (center), and ratio of the damping time to the period (right) versus the flow velocity for the
fundamental oscillatory modes. The upper, middle, and lower panels correspond to the slow, fast kink, and
thermal modes, respectively. Different line styles represent parallel waves (solid line), anti-parallel waves
(dashed line), and solutions in the absence of flow (dotted line) (from Soler et al., 2008).
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Although the presence of steady mass flows improves the efficiency of non-adiabatic mechanisms
on the attenuation of transverse kink oscillations for propagation parallel to the flow, its effect is
still not enough to obtain damping times compatible with observations.

5.1.3 Non-adiabatic magnetoacoustic waves in a two-thread system with mass flows

The oscillatory properties, namely the frequency and spatial distribution, of fast and slow mag-
netoacoustic waves in a system made of two infinite threads with mass flows are described in
Section 4.4.2; see Figure 37 for a sketch of the equilibrium configuration. Soler et al. (2009a)
evaluated the damping time-scales caused by non-adiabatic effects as a function of the distance
between the thread axes. The left panel of Figure 47 shows that the ratio of the damping time to
the period of the four kink modes is very large, so that dissipation by non-adiabatic mechanisms
is not efficient enough to damp these modes. Hence, the collective nature of the transverse oscil-
lations in a system of two identical threads does not change the conclusion about the irrelevance
of thermal mechanisms to account for the damping of fast modes already obtained for one thread.
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Figure 47: Wave damping by thermal effects in a two-thread system. Left: Ratio of the damping time
to the period versus the distance between the thread axes of the S, (solid line), A, (dotted line), Sy
(triangles), and A, (diamonds) kink-like modes. Right: The same for the S. (solid line) and A, (dotted
line) slow wave modes (from Soler et al., 2009a).

As concluded in Section 5.1.2, slow wave damping can be explained by thermal mechanisms.
The right panel of Figure 47 shows the damping ratios of the S, and A, solutions versus the
distance between the two threads. Slow modes in a threaded prominence are efficiently attenuated
by non-adiabatic mechanisms. Note that 7q/P is almost independent of the thread separation and
the mode because the two threads oscillate independently in the S, and A, modes. Time-scales
74/ P & 5 are obtained, which is in agreement with previous studies (Soler et al., 2007, 2008) and
consistent with observations.

Soler et al. (2009a) concluded that collective slow modes are efficiently damped by thermal
mechanisms, with damping ratios similar to those reported in observations, while collective fast
waves are poorly damped. This is a key point since efficiently damped transverse oscillations have
been observed, which could suggest that other attenuation mechanisms could be at work.

5.2 Damping of oscillations by ion-neutral collisions

Since the temperature of prominences is typically of the order of 10* K, the prominence plasma is
only partially ionized. The exact ionization degree of prominences is unknown and the reported
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ratio of electron density to neutral hydrogen density (see, e.g., Patsourakos and Vial, 2002) covers
about two orders of magnitude (0.1-10). Partial ionization brings the presence of neutrals in
addition to electrons and ions, thus collisions between the different species are possible. Because of
the occurrence of collisions between electrons with neutral atoms and ions, and more importantly
between ions and neutrals, Joule dissipation is enhanced when compared with the fully ionized case.
A partially ionized plasma can be represented as a single-fluid in the strong coupling approximation,
which is valid when the ion density in the plasma is low and the collision time between neutrals and
ions is short compared with other time-scales of the problem. Using this approximation it is possible
to describe the very low frequency and large-scale fluid-like behaviour of plasmas (Goossens, 2003).

Partial ionization affects the induction equation, which contains additional terms due to the
presence of neutrals and a non-zero resistivity (Soler et al., 2009d). These terms account for the
processes of ohmic diffusion, with coefficient 7; ambipolar diffusion, with coefficient 7 ; and Hall’s
magnetic diffusion, with coefficient . They govern collisions between the different plasma species.
Ohmic diffusion is mainly due to electron-ion collisions and produces magnetic diffusion parallel to
the magnetic field lines; ambipolar diffusion is mostly caused by ion-neutral collisions and Hall’s
effect is enhanced by ion-neutral collisions since they tend to decouple ions from the magnetic
field, while electrons remain able to drift with the magnetic field (Pandey and Wardle, 2008).
The ambipolar diffusivity can be expressed in terms of Cowling’s coefficient, n¢c, that accounts for
diffusion perpendicular to magnetic field lines, as

_hc—n
=g

nA (28)
with B the magnetic field strength. For a fully ionized plasma, nc = n and there is no ambipolar
diffusion, so magnetic diffusion is isotropic. Due to the presence of neutrals, nc > 71, which means
that perpendicular magnetic diffusion is much more efficient than longitudinal magnetic diffusion
in a partially ionized plasma. It is important to note that nc > 71 even for a small relative density
of neutrals.

5.2.1 Homogeneous and unbounded prominence medium

Several studies have considered the damping of MHD waves in partially ionized plasmas of the
solar atmosphere (De Pontieu et al., 2001; James et al., 2003; Khodachenko et al., 2004; Leake
et al., 2005). In the context of solar prominences, Forteza et al. (2007) derived the full set of
MHD equations for a partially ionized, one-fluid hydrogen plasma and applied them to the study
of the time damping of linear, adiabatic fast and slow magnetoacoustic waves in an unbounded
prominence medium. This study was later extended to the non-adiabatic case by including thermal
conduction by neutrals and electrons and radiative losses (Forteza et al., 2008). The main effects
of partial ionization on the properties of MHD waves manifest through a generalized Ohm’s law,
which adds some extra terms in the resistive magnetic induction equation, in comparison to the
fully ionized case. Forteza et al. (2007) considered a uniform and unbounded prominence plasma
and found that ion-neutral collisions are more important for fast waves, for which the ratio of the
damping time to the period is in the range 1 to 10, than for slow waves, for which values between
10* and 10® are obtained. Fast waves are efficiently damped for moderate values of the ionization
fraction, while in a nearly fully ionized plasma, the small amount of neutrals is insufficient to damp
the perturbations.

A hydrogen plasma was considered in the above studies, but 90% of the prominence chemical
composition is hydrogen and the remaining 10% is helium. The effect of including helium in the
model of Forteza et al. (2008) was assessed by Soler et al. (2010b). The species present in the
medium are electrons, protons, neutral hydrogen, neutral helium (HeT) and singly ionized helium
(He1r), while the presence of He1ll is neglected (Gouttebroze and Labrosse, 2009).
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The hydrogen ionization degree is characterized by fig, which varies between 0.5 for fully
ionized hydrogen and 1 for fully neutral hydrogen. The helium ionization degree is characterized
by e = 551;1117 where £gerr and Epe1 denote the relative densities of single ionized and neutral
helium, respectively. Figure 48 displays 74/P as a function of the wavenumber, k, for the Alfvén,
fast and slow waves, and the results corresponding to several helium abundances are compared for
hydrogen and helium ionization degrees of jiy = 0.8 and dpe = 0.1, respectively. We can observe
that the presence of helium has a minor effect on the results.
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Figure 48: Wave damping by ion-neutral effects in a uniform medium. (a)-(c) Ratio of the damping
time to the period, 74/ P, versus the wavenumber, k, corresponding to the Alfvén wave, fast wave and slow
wave, respectively. (d) Damping time, 74, of the thermal wave versus the wavenumber, k. The different
linestyles represent the following abundances: Emeii = 0% (solid line), &ueii = 10% (dotted line), and
Ereii = 20% (dashed line). In all computations, fu = 0.8 and due = 0.1. The results for &xesi = 10%
and dge = 0.5 are plotted by means of symbols for comparison. The shaded regions correspond to the
range of typically observed wavelengths of prominence oscillations. In all the figures the angle between the
wavevector and the magnetic field is 7/4 (from Soler et al., 2010b).

The thermal mode is a purely damped, non-propagating disturbance (wg = 0), so only the
damping time, 74, is plotted (Figure 48d). We observe that the effect of helium is different in
two ranges of k. For k > 10* m™!, thermal conduction is the dominant damping mechanism, so
the larger the amount of helium, the shorter 74 because of the enhanced thermal conduction by
neutral helium atoms. On the other hand, radiative losses are more relevant for k¥ < 1074 m~".
In this region, the thermal mode damping time grows as the helium abundance increases. Since
these variations in the damping time are very small, we again conclude that the damping time
obtained in the absence of helium does not significantly change when helium is taken into account.
Therefore, the inclusion of neutral or single ionized helium in partially ionized prominence plasmas
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does not modify the behaviour of linear, adiabatic or non-adiabatic MHD waves already found by
Forteza et al. (2007) and Forteza et al. (2008).

5.2.2 Cylindrical filament thread model

Soler et al. (2009¢) applied the equations derived by Forteza et al. (2007) to the study of MHD
waves in a partially ionized filament thread modeled as an infinite cylinder with radius a embedded
in the solar corona (see Figure 32). As in Forteza et al. (2007), the one-fluid approximation for
a hydrogen plasma was considered. The internal and external media are characterized by their
densities, temperatures, and their own relative densities of neutrals, ions and electrons. The
contribution of the electrons is neglected. The coronal medium is considered as fully ionized, while
the ionization fraction in the prominence plasma, i}, is allowed to vary.

In their analysis, Soler et al. (2009¢) neglected Hall’s term since it can be ignored when the
plasma is magnetized, i.e., when ions and electrons are tightly bound to the magnetic field. The
condition to neglect Hall’s term can be written in terms of the ion-gyrofrequency (w;) and the
ion-neutral collision time (7) as w;7 > 1, which once expanded gives,

§ ™m; 1

> 1, (29)

where ¥;,, is the ion-neutral cross-section and n,, the neutrals number density (Leake et al., 2005;
Pandey and Wardle, 2008). Using prominence conditions (p = 5 x 107! kg m 3 B =10 G,
T = 8000 K, fi, = 0.8), we obtain the numerical value w;7 = 467, which fully justifies the
neglect of Hall’s term. Parallel and perpendicular magnetic diffusion can be evaluated by defining
the corresponding Reynolds numbers as Ry, | = cspa/n and Ry = 4n?cg/nckla, where the
typical velocity scale has been associated to the sound speed in the prominence, cs,. The parallel
Reynolds number is independent of the wavenumber, while the relative importance of Cowling’s
diffusion increases with k., the longitudinal wavenumber. In the range of observed wavelengths
(k.a ~ [1073-1071]) both Cowling’s and ohmic diffusion could therefore be important. Soler et al.
(2009¢) analyzed separately the effect(s) of partial ionization in Alfvén, fast kink and slow waves.

For torsional Alfvén waves, Soler et al. (2009¢) found that wave propagation is constrained
between two critical wavenumbers (top panels of Figure 49). These critical wavenumbers are,
however, outside the range of the observed wavelengths, in which 74/P is in the range 10—100 and
so is considerably larger than the observed damping rate. Nevertheless, a prominence ionization
fraction larger than the maximum one considered here (namely fi, > 0.95) can yield 74/P = 110,
in agreement with observations. For short wavenumbers, the values of the damping time over the
period are independent of the ionization degree, while for large wavenumbers they become smaller
for larger values of fi,. This behaviour is explained in Soler et al. (2009¢) by considering solutions to
the dispersion relation in which one of the two possible damping mechanisms, i.e., partial ionization
or ohmic dissipation, is neglected. Soler et al. (2009¢) observed that ohmic diffusion dominates
for small wavenumbers. Nevertheless, for large wavenumbers Cowling’s diffusion dominates over
ohmic dissipation and so a larger number of neutrals decreases the damping time: the larger i in
the thread, the shorter 74 and, consequently, the smaller 74/P.

The presence of critical wavenumbers is also found in the case of transverse kink waves (middle
panels of Figure 49). Within the range of observed wavelengths, the phase speed closely corresponds
to its ideal counterpart, ¢y = w/k,, so non-ideal effects are irrelevant for wave propagation. The
behaviour of the damping rate as a function of wavelength and ionization fraction is seen to
closely resemble the result obtained for Alfvén waves, with 74/P > 10 in the range of observed
wavelengths. Therefore, neither ohmic diffusion nor ion-neutral collisions seem to provide damping
times as short as those observed for kink waves in filament threads. Only for an almost neutral
plasma, with fi, > 0.95, the obtained damping rates are compatible with the observed time-scales.
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Figure 49: Wave damping by ion-neutral effects in an infinitely long prominence thread. Dimensionless
phase speed (left panels) and ratio of the damping time to the period (right panels) as a function of k.a
for Alfvén waves (top panels), kink waves (middle panels), and slow waves (bottom panels). The different
linestyles represent different ionization degrees: i, = 0.5 (dotted), fip = 0.6 (dashed), i, = 0.8 (solid),
and fi, = 0.95 (dash-dotted). Symbols are the approximate solution given by Equation (36) in Soler et al.
(2009¢) for fip, = 0.8. The shaded zones correspond to the range of typically observed wavelengths of
prominence oscillations. The Alfvén speed in the thread, var, the kink speed, ck, and the cusp speed in the
thread, crp, have been used to compute the dimensionless phase speed (adapted from Soler et al., 2009c¢).
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Just like for Alfvén waves, ohmic diffusion dominates for small wavenumbers, while ion-neutral
collisions are the dominant damping mechanism for large wavenumbers.

Regarding slow waves (bottom panels of Figure 49), Soler et al. (2009¢) concentrated their
analysis on the radially fundamental mode with m = 1, since the behaviour of the slow mode is
weakly affected by the value of the azimuthal wavenumber. Slow wave propagation is constrained
by only one critical wavenumber, that strongly depends on the ionization fraction, in such a way
that for k, below this critical wavenumber the wave is totally damped. More importantly, for
large enough values of the ionization fraction, the corresponding critical wavelength lies in the
range of observed wavelengths of filament oscillations. As a consequence, the slow wave might
not propagate in filament threads under certain circumstances. As for the damping rate, it is
found that ion-neutral collisions are a relevant damping mechanism for slow waves, since very
short damping times are obtained, especially close to the critical wavenumber. By comparing the
particular effects of ohmic diffusion and ion-neutral collisions, the slow mode damping is seen to
be completely dominated by ion-neutral collisions. Ohmic diffusion is found to be irrelevant, since
the presence of the critical wavenumber prevents slow wave propagation for small wavenumbers,
where ohmic diffusion would start to dominate.

5.3 Resonant damping of infinitely long thread oscillations

The phenomenon of resonant wave damping in non-uniform plasmas has been extensively studied in
connection to wave-based coronal heating mechanisms (Ionson, 1978) and the damping of transverse
coronal loop oscillations (Hollweg and Yang, 1988; Ruderman and Roberts, 2002; Goossens et al.,
2002, 2010). The mechanism relies in the energy transfer from the transverse kink mode to small
scale Alfvén waves because of the plasma inhomogeneity at the transverse spatial scales of the
structures. This idea was put forward by Arregui et al. (2008b), whose analysis is restricted to the
damping of kink oscillations due to the resonant coupling to Alfvén waves in a pressureless (zero
plasma-£) plasma. It was extended to the case in which both the Alfvén and the slow resonances
are present by Soler et al. (2009¢). Here we discuss the main results from these works, whose
aim is to assess the damping properties of resonant absorption. For this reason, the considered
configurations are based on the infinitely long thread model of Figure 31.

5.3.1 Resonant damping in the Alfvén continuum

Arregui et al. (2008b) considered an individual and isolated thread modeled as a cylindrical mag-
netic flux tube of radius a in a gravity-free environment. The uniform magnetic field points along
the axis of the tube (Figure 50). In the zero plasma-/3 approximation, the thread is modeled as a
density enhancement with a radial variation of density from its internal constant prominence value
pp to the coronal constant value p, over a non-uniform layer of thickness /. A typical value of the
density contrast between the filament and coronal plasma is ¢ = p,/p. = 200.

-

B

Figure 50: Model used by Arregui et al. (2008b) to represent a radially non-uniform filament fine structure
of mean radius a and transverse inhomogeneity length scale [.
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MHD waves of axisymmetric one-dimensional cylindrical flux tubes are characterized by two
wavenumbers, i.e., the azimuthal wavenumber, m, and the axial wavenumber, k,. They can have
different nodes in the radial direction. Arregui et al. (2008b) concentrated their analysis on the
radially and longitudinally fundamental transverse wave with azimuthal number m = 1, the kink
mode. This eigenmode is consistent with the detected Doppler velocity variations (see Section 3.6.4)
and their associated transverse motions, discussed in Section 4.4.1. The frequency of this mode
is not influenced by the presence of a layer with small thickness, so the result of Section 4.4.1 is
approximately correct; see Equation (22).

When transverse inhomogeneity is considered, the fundamental transverse kink mode reso-
nantly couples to Alfvén waves. The consequence is the transfer of wave energy from the global
transverse motion to azimuthal motions of localized nature, and thus the time damping of the kink
mode (Goossens et al., 2009). Analytical expressions for the damping time scale can be obtained
under the assumption that the transverse inhomogeneity length-scale is small (I/a < 1). This is
the so-called thin boundary approximation. When the long wavelength and the thin boundary
approximations are combined, the analytical expression for the damping time over period for the
kink mode can be written as (see, e.g., Goossens et al., 1992, 1995; Ruderman and Roberts, 2002;
Goossens et al., 2002)

Ty
—

_|_
-1

Td

=F
P

' (30)

Y

Here F' is a numerical factor that depends on the particular variation of the density in the non-
uniform layer. For a linear variation, F' = 4/72 (Hollweg and Yang, 1988; Goossens et al., 1992);
for a sinusoidal variation, F' = 2/7 (Ruderman and Roberts, 2002). Consider for example ¢ = 200
as a typical density contrast and {/a = 0.1. Then, Equation (30) predicts a damping time of ~ 6
times the oscillatory period, thus producing a time-scale compatible with observations.

Quantitative parametric results for the damping of resonant kink waves in prominence threads
as a function of the relevant parameters are provided by Arregui et al. (2008b). The accuracy of
the analytical approximations is compared to full numerical results, beyond the long wavelength
and thin boundary approximations. These results are shown in Figure 51. The damping is affected
by the density contrast in the low contrast regime and 74/ P rapidly decreases for increasing thread
density (Figure 51a). Interestingly, 74/P stops depending on this parameter in the large contrast
regime, typical of filament threads. The damping time over period is independent of the wavelength
of perturbations (Figure 51b), but rapidly decreases with increasing inhomogeneity length-scale
(Figure 51c).

Resonant damping in the Alfvén continuum appears to be a very efficient mechanism for the at-
tenuation of transverse thread oscillations, especially because large density contrasts and transverse
plasma inhomogeneities are combined together.

5.3.2 Resonant damping in the slow continuum

Although the plasma-£ in solar prominences is probably small, it is definitely non-zero. Soler et al.
(2009¢) showed that, in prominence plasmas, resonant damping of kink waves can additionally be
produced due to the coupling to slow continuum waves. In the context of coronal loops, which
are presumably hotter and denser than the surrounding corona, the ordering of sound, Alfvén and
kink speeds does not allow for the simultaneous matching of the kink frequency with both Alfvén
and slow continuum frequencies. Because of their relatively higher density and lower temperature
conditions, this becomes possible in the case of prominence threads. Therefore, the kink mode
phase speed is also within the slow (or cusp) continuum, which extends between the internal and
external sound speeds, in addition to the Alfvén continuum. By considering gas pressure in the
cylindrical thread model of Arregui et al. (2008b), Soler et al. (2009¢) evaluated the contribution
of the damping due to the slow continuum to the total resonant damping of the kink mode.
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Figure 51: Wave damping by Alfvén resonant absorption in an infinitely long prominence thread. Damp-
ing time over period for fast kink waves in filament threads with radius ¢ = 100 km. (a) As a function of
the density contrast, with I/a = 0.2 and for two wavelengths. (b) As a function of the wavelength, with
l/a = 0.2, for two density contrasts. (c) As a function of the transverse inhomogeneity length-scale, for two
combinations of wavelength and density contrast. In all plots solid lines correspond to analytical solutions
given by Equation (30), with F' = 2/7 (from Arregui et al., 2008b).
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Soler et al. (2009¢) used the density model of Section 5.3.1 and the plasma-3 ~ 0.04. In order to
obtain an analytic expression for the damping rate of the kink mode, first the long wavelength and
thin boundary limits were considered. In terms of the physically relevant quantities, the damping
time over the period can be cast as

T4 _ 0 (+1
P13 (Cl)

Here F is the same numerical factor as in Equation (30), while ay = 7(ra —a)/l and ag =
m(rs —a)/l, with ro and rs the Alfvén and slow resonant positions. The term with k, corresponds
to the contribution of the slow resonance. If this term is dropped and m = 1 and cosap = 1 are
taken, Equation (31) becomes Equation (30), that only takes into account the Alfvén resonance.

Equation (31) can now be directly applied to measure the relative contribution of each resonance
to the total damping. To do that, Soler et al. (2009¢) assumed rp ~ rg ~ a, for simplicity, so
cosap ~ cosag ~ 1. The ratio of the two terms in Equation (31) is then

Taa _ (k.a)? (02)2 (32)

Tas m2 2 +03

cos ap m c2+v3 /) cosas

m +(k;za)2( 2 )2 | ]1_ 1)

where T7qa and 74s are the respective contributions of the Alfvén and slow resonances in Equa-
tion (31). A simple calculation shows that, for typical wavelengths of observed thread oscillations,
the contribution of the slow resonance is irrelevant in front of that of the Alfvén resonance. Take
for instance, m = 1 and k.a = 1072, then Equation (32) gives 7qa /7qs ~ 107 7.
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Figure 52: Wave damping by Alfvén and slow resonances in an infinitely long prominence thread. Kink
mode ratio of the damping time to the period, 7q/P, as a function of the dimensionless wavenumber,
k.a, for I/a = 0.2. The solid line is the full numerical solution. The symbols and the dashed line are
the results of the thin boundary approximation for the Alfvén and slow resonances, i.e., the two terms in
Equation (31). The shaded region represents the range of typically observed values for the wavelengths in
prominence oscillations (from Soler et al., 2009¢).

This analytical predictions were further confirmed by Soler et al. (2009¢) by performing numer-
ical computations outside the thin tube and thin boundary approximations. Figure 52 shows that
the slow resonance is much less efficient than the Alfvén resonance. For the wavenumbers relevant
to observed prominence oscillations, the value of 74/ P due to the slow resonance is between 4 and
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8 orders of magnitude larger than the same ratio obtained for the Alfvén resonance. The overall
conclusion by Soler et al. (2009¢) is that the slow resonance is very inefficient when it comes to
damping the kink mode for typical prominence conditions and in the observed wavelength range.
The damping times obtained with this mechanism are comparable to those due to the thermal ef-
fects discussed in Section 5.1. Hence, resonant damping of transverse thread oscillations is governed
by the Alfvén resonance.

5.4 Resonant damping in partially ionized infinitely long threads
5.4.1 Temporal damping

Damping by resonant absorption in a partially ionized prominence plasma was studied by Soler
et al. (2009d), who integrated both mechanisms in a non-uniform cylindrical prominence thread
model in order to assess their combined effects. Partial ionization is relevant for the damping of
short wavelength fast waves (Forteza et al., 2007), while resonant damping of kink waves is efficient
whenever a transverse density inhomogeneity is present. The question arises on whether partial
ionization affects the mechanism of resonant absorption and vice versa.

The model adopted by Soler et al. (2009d) has the magnetic and density structuring of the
models used in Section 5.3 (see Figure 50), but the plasma properties are also characterized by
the ionization fraction, fi. The radial behaviour of the ionization fraction in threads is unknown,
so Soler et al. (2009d) assumed a one-dimensional transverse profile akin to the one employed to
model the equilibrium density. The thread ionization fraction, fip,, is considered a free parameter
and the corona is assumed to be fully ionized, so jic = 0.5. The non-uniform transitional layer
of thickness [ therefore connects two plasmas with densities p, and p. and ionization degrees fi,
and fic. Soler et al. (2009d) used the one-fluid approximation and, for simplicity, the £ = 0 limit,
which excludes slow waves. The quantities 1, nc and 7y are here functions of the radial direction.

Soler et al. (2009d) first considered resonant damping in combination with Cowling’s diffu-
sion and excluded Hall’s dissipation. They derived the following approximate expression for the
damping ratio over the period, under the thin boundary approximation,

—1
2 l - Fc 2 7] CN C kz
™2 m() <pp p)+ (ppiicp + peiice) kza , (33)
P oo a) \pp+ pe 2pp (pp + pe)

with floe,p = Nc/Vac,p@ the coronal and prominence Cowling’s diffusivities in dimensionless form.
Notice that Equation (33) reduces to Equation (30) in a fully ionized plasma, and is in agreement
with Equation (31), in which the slow resonance is additionally included. In this expression, the
term due to resonant damping is independent of the value of Cowling’s diffusivity and, therefore,
of the ionization degree. The second term, related to the damping by Cowling’s diffusion, is
proportional to k., so its influence in the long-wavelength limit is expected to be small. Soler et al.
(2009d) performed a simple calculation by considering m = 1, k,a = 1072 and [/a = 0.2. This
results in 74/P = 3.18 for a fully ionized thread (&, = 0.5) and 74/P ~ 3.16 for an almost neutral
thread (fi, = 0.95). Thus, this approximate expression suggests that the ratio 74/P depends very
slightly on the ionization degree, suggesting that resonant absorption dominates over Cowling’s
diffusion.

The analytical estimates described above can be verified and extended by numerically solving
the full eigenvalue problem. This approach allowed Soler et al. (2009d) to additionally include
Hall’s diffusion in addition to ohmic and Cowling’s dissipation. In their study, these authors first
considered a configuration with an abrupt density variation across the thread boundary (that is,
I = 0), which prevents resonant absorption from working. Next, they included the thin transitional
layer between the thread and the corona, so that both resonant absorption and ion-neutral effects
are at work.
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Figure 53: Wave damping by ion-neutral effects in an infinitely long cylindrical prominence thread.
Ratio of the damping time to the period of the kink mode as a function of k,a for a thread without
transitional layer, i.e., [/a = 0. (a) Results for a = 100 km and different ionization degrees: fi, = 0.5
(dotted line), fip = 0.6 (dashed line), fip, = 0.8 (solid line), and fip = 0.95 (dash-dotted line). Symbols are
the approximate solution, given by Equation (33), for fi, = 0.8. (b) Results for i, = 0.8 and different
thread widths: @ = 100 km (solid line), a = 50 km (dotted line) and a = 200 km (dashed line). The
shaded zone corresponds to the range of typically observed wavelengths of prominence oscillations (from
Soler et al., 2009d).

For a homogeneous thread (I/a = 0), Soler et al. (2009d) computed the damping rate for
different ionization degrees (see Figure 53). In agreement with the results displayed for the kink
mode in Figure 49, 74/P has a maximum at the transition between the ohmic-dominated regime,
which is almost independent of the ionization degree, to the region where Cowling’s diffusion is
more relevant and the ionization degree has a significant influence. The approximate analytical
solution for a given value of i, agrees very well with the numerical solution in the region where
Cowling’s diffusion dominates, while it significantly diverges from the numerical solution in the
region where ohmic diffusion is relevant. Within the range of typically reported wavelengths, 7q/P
is between 1 and 2 orders of magnitude larger than the measured values, so neither ohmic nor
Cowling’s diffusion can account for the observed damping time.

For the inhomogeneous thread case (I/a # 0), Figure 54a displays some relevant differences.
First, the damping time is dramatically reduced for intermediate values of k,a, which include the
region of typically observed wavelengths. In this region, the ratio 7q4/P becomes smaller as [/a
is increased, a behaviour consistent with damping by resonant absorption. The inclusion of the
inhomogeneous transitional layer removes the smaller critical wavenumber and consequently the
kink mode exists for very small values of k,a. Figure 54a also shows a very good agreement between
the numerical and the approximate solutions, this one given by Equation (33), for wavenumbers
above k.a ~ 10™%, and a poor agreement in the range for which ohmic diffusion dominates, below
k.a ~ 10~*. To understand this behaviour one has to bear in mind that the analytic approximate
solution includes the effects of resonant absorption and Cowling’s diffusion, but not the influence
of ohmic diffusion. Such as shown in Figure 54b, the ionization degree is only relevant for large
wavenumbers, where the damping rate significantly depends on the ionization fraction through
ohmic diffusion.

Figure 55 displays the ranges of k.a for which Cowling’s and Hall’s diffusion dominate. Hall’s
diffusion is irrelevant in the whole range of k,a studied by Soler et al. (2009d), while Cowling’s
diffusion dominates the damping for large k.a. In the whole range of relevant wavelengths, resonant
absorption is the most efficient damping mechanism and the damping time is independent of
the ionization degree, as predicted by the analytical result (Equation [33]). On the contrary,

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-2


http://www.livingreviews.org/lrsp-2012-2

Prominence Oscillations 75

(@) 1000.00¢ ®) 07
i ] 10° 1
700.00 ¢ E .
é 1 i 10’ T
10.00 4 2
a 2 - E 8 10 ) B
AN 3 B E AN
=) F 4 =) AN P B
- 1.00 - i 10 N
0.10 3
0.01= ‘
107 107" 107% 70° 107 1078 107 107 10° 107
k,a k,a

Figure 54: Wave damping by resonant absorption and ion-neutral effects in an infinitely long cylindrical
prominence thread. Ratio of the damping time to the period of the kink mode as a function of k.a for a
thread with an inhomogeneous transitional layer. (a) Results for fi, = 0.8 and different transitional layer
widths: [/a = 0 (dotted line), [/a = 0.1 (dashed line), {/a = 0.2 (solid line), and I/a = 0.4 (dash-dotted
line). Symbols are the solution in the thin boundary approximation (Equation [33]) for [/a = 0.2. (b)
Results for [/a = 0.2 and different ionization degrees: fi, = 0.5 (dotted line), fip = 0.6 (dashed line),
fp = 0.8 (solid line), and i, = 0.95 (dash-dotted line). In both panels ¢ = 100 km (from Soler et al.,
2009d).
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Figure 55: Ratio of the damping time to the period of the kink mode as a function of k.a in an infinitely
long thread with a = 100 km and [/a = 0.2. The different line styles represent the results for a partially
ionized thread with fi, = 0.8 and considering all the terms in the induction equation (solid line), for a
partially ionized thread with i, = 0.8 and neglecting Hall’s term (symbols) and for a fully ionized thread
(dotted line) (from Soler et al., 2009d).
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ohmic diffusion dominates for very small k,a. In this region, the damping time related to Ohm’s
dissipation becomes even shorter than that due to resonant absorption, which means that the kink
wave is mainly damped by ohmic diffusion.

5.4.2 Spatial damping

Motivated by the spatially damped propagating waves observed by Terradas et al. (2002) (see
Section 3.6.3), the spatial damping of linear non-adiabatic magnetohydrodynamic waves in a ho-
mogenous, unbounded, magnetized, and fully ionized plasma was studied by Carbonell et al. (2006).
The spatial damping in a flowing partially ionized plasma has been studied by Carbonell et al.
(2010). Carbonell et al. (2006) found that the thermal (fast) wave shows the strongest (weakest)
spatial damping. For periods longer than 1 s the spatial damping of magnetoacoustic waves is
dominated by radiation, while at shorter periods the spatial damping is dominated by thermal
conduction. Therefore, radiative effects on linear magnetoacoustic slow waves can be a viable
mechanism for the spatial damping of short period prominence oscillations, while thermal conduc-
tion does not play any role. On the other hand, Carbonell et al. (2010) found that in the presence
of a background flow, new strongly damped fast and Alfvén waves appear whose features depend
on the joint action of flow and resistivity. The damping lengths of adiabatic fast and slow waves
are strongly affected by partial ionization, which also modifies the ratio between damping lengths
and wavelengths. For non-adiabatic slow waves, the unfolding in both wavelength and damping
length induced by the flow allows efficient damping for periods compatible with those observed in
prominence oscillations. In the case of non-adiabatic slow waves and within the range of periods
of interest for prominence oscillations, the joint effect of both flow and partial ionization leads to
efficient spatial damping of oscillations. For fast and Alfvén waves, the most efficient damping
occurs at very short periods not compatible with those observed in prominence oscillations.

Using the same equilibrium model as in Soler et al. (2009d) (see Figure 50), whose results have
been presented in Section 5.4.1, Soler et al. (2011) investigated the spatial damping of propagating
kink MHD waves in transversely non-uniform and partially ionized prominence threads. The
damping mechanisms are resonant absorption and ion-neutral collisions (Cowling’s diffusion). In
the absence of transitional layer, i.e., when the damping is due to Cowling’s diffusion exclusively,
the non-dimensional wavelength, the damping length, Lp, and the ratio of the damping length
to the wavelength are displayed in Figure 56. Regarding the wavelength, we see that the effect
of Cowling’s diffusion is only relevant for periods much shorter than those observed (1—-10 min,
corresponding to 40 < P/7a, < 400, with 7a, = a/va, the thread Alfvén travel time). On the
other hand, an almost neutral plasma, i.e., fi, — 1, has to be considered to obtain an efficient
damping and to achieve small values of the damping ratio within the relevant range of periods.
Such very large values of fi, are probably unrealistic (Labrosse et al., 2010).

For resonantly damped modes, Figure 57 shows the results for different values of the thickness
of the layer and fixed ionization degree. Figure 58 displays the results for different values of the
ionization degree and a fixed transverse inhomogeneity length scale. Since the wavelength is not
affected by the value of [/a and has the same behaviour as in Figure 56a, both Figures 57 and 58
focus on Lp/a and Lp/A. Depending on the period, two different behaviours of the solutions are
obtained. For short periods, the damping length is independent of the layer thickness and is gov-
erned by the value of the ionization degree. On the contrary, for large periods, the damping length
depends on the value of I/a, but is independent of the ionization degree. This result indicates
that resonant absorption dominates the damping for large periods, whereas Cowling’s diffusion
is more relevant for short period oscillations. In addition, we can observe that the approximate
transitional period for which the damping length by Cowling’s diffusion becomes shorter than that
due to resonant absorption is much lower than the typically observed periods. This shows that
resonant absorption is the dominant damping mechanism in the relevant range. The analytical ap-
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Figure 56: Spatial damping of kink waves due to ion-neutral effects in an infinitely long prominence
thread. Results for the kink mode spatial damping in the case [/a = 0: (a) A/a, (b) Lp/a, and (c)
Lp /X versus P/7ap for i, = 0.5, 0.6, 0.8, and 0.95. Symbols in panels (a), (b), and (c¢) correspond to
the analytical solution given by Equations (12), (13), and (14) in Soler et al. (2011) in the thin tube
approximation, while the horizontal dotted line in panel (c) corresponds to the limit of Lp/A for high
frequencies. The shaded area denotes the range of observed periods of thread oscillations.
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proximation for the damping ratio obtained by Soler et al. (2011) provides an accurate description
of the kink mode spatial damping in the relevant range of periods, such as shown by the diamonds
in Figures 56 and 57.
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Figure 57: Results for the kink mode spatial damping in an infinitely long prominence thread, in the case
l/a#0: (a) Lp/a and (b) Lp /X versus P/7ap for [/a = 0.05, 0.1, 0.2, and 0.4, with fi, = 0.8. Symbols in
panel (b) correspond to the analytical solution in the thin tube approximation, while the vertical dotted
line is the approximate transitional period for I/a = 0.1. The shaded area denotes the range of observed
periods of thread oscillations.
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Figure 58: Results for the kink mode spatial damping in an infinitely long prominence thread, in the case
l/a #0: (a) Lp/a and (b) Lp/X versus P/7ap for i, = 0.5, 0.6, 0.8, and 0.95, with [/a = 0.2. Symbols in
panel (b) correspond to the analytical solution in the thin tube approximation. The shaded area denotes
the range of observed periods of thread oscillations.

For typically reported periods of thread oscillations, resonant absorption is an efficient mecha-
nism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling’s
diffusion dominates both the propagation and damping for periods much shorter than those ob-
served, while resonant absorption could explain the observed spatial damping of kink waves in
prominence threads.
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5.5 Resonant damping in partially ionized finite length threads

The results described in Sections 5.3, 5.4.1, and 5.4.2 indicate that, because of the coupling of
kink waves to Alfvén waves, resonant absorption constitutes a very plausible mechanism for the
explanation of the observed spatial and time decay of transverse oscillations. The main limitation
of these studies is that they adopt a one-dimensional density model that might not be appropriate
in view of the longitudinal structuring of prominence threads. This led Soler et al. (2010a) to
investigate the time damping properties of two-dimensional thread models, that is, with density
inhomogeneity across the thread and along the magnetic tube in which it is contained. In this study,
resonant absorption and damping by partial ionization effects were considered simultaneously.

Soler et al. (2010a) (see Figure 59) modeled a prominence fine structure as a straight cylindrical
magnetic tube only partially filled with the cold and dense material. The length of the dense part
is Lp. The thread may either occupy the centre of the magnetic tube or be displaced, so that the
lengths of both evacuated parts of the tube are different. By denoting the lengths of the right and
left hand-side evacuated regions as LT and L, one has L} = L—L_ — L, with L the full length of
the tube. Just like in the works discussed in Section 5.4, the prominence plasma is partially ionized
and a transverse inhomogeneous transitional layer is included between the prominence thread and
the coronal medium. Ion-neutral collisions and resonant absorption are the considered damping
mechanisms. The main model improvements in comparison to the thread model by Diaz et al.
(2002), discussed in Section 4.5 (see Figure 41), are the ability to model non-centered threads, the
inclusion of a non-uniform transverse layer and partial ionization of the thread plasma.

Figure 59: Model used by Soler et al. (2010a) to represent a finite length thread. A partially filled
magnetic flux tube, with length L and radius a, is considered. The tube ends are fixed by two rigid walls
representing the solar photosphere. The tube is composed of a dense region of length L, surrounded by
two much less dense zones corresponding to the evacuated parts of the tube. In the prominence region
a transversely inhomogeneous layer of length [ is considered. The plasma in the prominence region is
assumed to be partially ionized with an arbitrary ionization degree fi,. Both the evacuated part and the
corona are taken to be fully ionized.

First, damping by Cowling’s diffusion alone is considered by setting [ = 0. When the thread
is located in the center of the tube the ratio of the damping time to the period is given by the

approximate expression
1/2
Ezi Pp t P /i 2 1f& Ly (34)
P 27 Pp Ncp L)L’

with fjcp = nc/vapa the filament Cowling’s diffusivity in dimensionless form. For p,/p. = 200,
L,/L = 0.1 and L = 10° km, Equation (34) gives 74/P ~ 5 x 103 for ji, = 0.8 and 74/P ~ 150
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for fi, = 0.99. Therefore, in a transversally homogeneous thread, an almost neutral prominence
plasma is needed, i.e., fi, ~ 1, for the damping due to Cowling’s diffusion to be efficient. Although
the precise ionization degree is unknown, such large values of fi,, are probably unrealistic in the
context of prominences.

Next, Soler et al. (2010a) considered {/a # 0, so that both resonant absorption and Cowling’s
diffusion can cause wave damping. An approximate expression for the damping ratio for a sinusoidal
density variation in the transitional layer is
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As a numerical example, in the case m = 1, L,/L = 0.1, L = 10" m and [/a = 0.2, the damping
ratio is 7q4/P = 3.18 for a fully ionized thread (fi, = 0.5) and 74/P ~ 3.16 for an almost neutral
thread (fi, = 0.95). Note that the obtained damping times are consistent with the observations.
Moreover, as seen in Section 5.4.1, the contribution of resonant absorption to the damping is much
more important than that of Cowling’s diffusion, so the ratio 74/P depends only very slightly on
the ionization degree and the second term on the right-hand side of Equation (35) can in principle
be neglected.

When the prominence region is not at the center of the tube, and assuming [ = 0, an approxi-
mate expression for the damping ratio is

T (e L LT Ly Ly Lo Li) Ly (36)
P o\ o iow L)1 ZE

Taking the limits L, — 0 or LT — 0 in this expression, it can be shown that the minimum value
of the damping ratio by Cowling’s diffusion takes place when the prominence region is located at
the magnetic tube center (L7 = LT).

Soler et al. (2010a) find that for I # 0 and under the thin tube and thin boundary approxi-
mations, the period and damping time by resonant absorption have the same dependence on L_
and L¥. This means that for resonant absorption the damping ratio does not depend on these
quantities. Since resonant damping dominates over Cowling’s diffusion, this leads to the conclusion
that when considering both damping mechanisms, the damping ratio will be almost unaffected by
the position of the prominence region within the fine structure.

The accuracy of the above analytical solutions can be assessed by numerically solving the
general dispersion relation derived by Soler et al. (2010a). Here we only show the results obtained
by Soler et al. (2010a) for the case in which the prominence thread is centered in the tube.

In the case without transverse transitional layer, {/a = 0, damping is only due to Cowling’s
diffusion. Figure 60a displays the period as a function of L, /L for different values of the ionization
degree in the prominence region, whereas Figure 60b shows the corresponding values of the damping
time. As can be seen, the period increases when the length of the thread is increased and tends
to the value for a homogeneous prominence cylinder when L,/L — 1. In addition, the period is
independent of the ionization degree. On the contrary, the damping time strongly depends on the
ionization degree, and for a fixed fi, it slightly increases as L,,/L becomes larger. In all solutions,
the analytical expressions for the period and the damping time are in agreement with the solution
of the full dispersion relation for realistic, small values of L,/L, i.e., L,/L < 0.4, whereas the
approximate expressions diverge from the actual solution when the prominence region occupies
most of the magnetic tube. Figure 60c displays 74/P versus L,/L. The numerical solution shows
little dependence on L, /L, while the analytical approximation (Equation [34]) diverges from the
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Figure 60: Results for the thread model in Figure 59 without transverse transitional layer and for the
prominence thread located at the central part of the magnetic tube. (a) Period, P, of the fundamental
kink mode in units of the internal Alfvén travel time, Tap, as a function of L,/L. The horizontal dotted
line corresponds to the period of the kink mode in a homogeneous prominence cylinder. The symbols
are the analytic solution (Equation (24) in Soler et al., 2010a). (b) Damping time, 7q, in units of the
internal Alfvén travel time, Tap, as a function of L,/L. The different lines denote fi, = 0.5 (dotted), 0.6
(dashed), 0.8 (solid), and 0.95 (dash-dotted). The symbols are the analytic approximation for fi, = 0.8
(Equation (27) in Soler et al., 2010a). (c) Ta/P versus L, /L. The line styles have the same meaning as in
panel (b) and the symbols are the approximation given by Equation (34) (from Soler et al., 2010a).
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numerical value in the limit of large L,/L. Given the obtained large values of 7q/P, Soler et al.
(2010a) concluded that the efficiency of the damping due to Cowling’s diffusion in a partially filled
flux tube does not improve with respect to the longitudinally homogeneous tube case shown in
Section 5.4.1.

Next, Soler et al. (2010a) included resonant damping. The period and the damping time of the
fundamental kink mode were computed as a function of the different parameters, namely fiy, [/a,
and L, /L. Regarding the period, Soler et al. (2010a) found that both its value and its dependence
on L,/L are the ones plotted in Figure 60a because the period is almost independent /i, and I/a.
For a fixed ionization degree of fi, = 0.8, the damping time decreases with [/a. The approximate
analytical estimate of the damping time is in good agreement with the full solution for L,/L below
0.4. In order to assess the efficiency of resonant damping, Figure 61b displays the corresponding
values of 74/P. In comparison with the damping ratio by Cowling’s diffusion (see Figure 60c),
much smaller values of 74/P are now obtained. The damping ratio is almost independent of the
length of the thread. This is because, under the assumptions made by Soler et al. (2010a), the
dependence of the period and damping time on the length of the thread is the same. Overall, a
very good agreement is obtained between the numerical result and the analytical approximation,
even for large values of the length of the thread.
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Figure 61: Results for a thread configuration with a transverse transitional layer and for the prominence
thread located at the central part of the magnetic tube. (a) 74 in units of the internal Alfvén travel time,
Tap, and (b) 74/ P as a function of L, /L. The different lines in both panels denote [/a = 0.05 (dotted), 0.1
(dashed), 0.2 (solid), and 0.4 (dash-dotted). The symbols in panels (a) and (b) correspond to the analytic
approximations with {/a = 0.2, Equations (34) and (32) in Soler et al. (2010a).

In summary, the dominant damping mechanism is resonant absorption, which provides damping
ratios in agreement with the observations, whereas ion-neutral collisions are irrelevant for the
damping. The values of the damping ratio are independent of both the prominence thread length
and its position within the magnetic tube, and coincide with the values for a tube fully filled
with the prominence plasma. A recent study that further analyses resonant damping of thread
oscillations in two-dimensional equilibrium models can be found in Arregui et al. (2011). These
authors additionally analyzed the influence of the density in the evacuated part of the thread. This
quantity is seen to influence periods and damping times, but has little influence on the damping rate
of transverse thread oscillations. The implications of some of these results for the determination
of physical properties in transversely oscillating threads are discussed in Section 6.
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5.6 Damping by wave leakage

The solutions obtained for the oscillations of prominence line current models (van den Oord and
Kuperus, 1992; Schutgens, 1997a,b; van den Oord et al., 1998) mentioned in Section 4.3 suggest the
existence of time amplification and damping of the studied oscillations. While the amplification
should be linked to a prominence destabilization, the attenuation seems to be very efficient for many
of the considered parameter values, and the ratio of the damping time to the period is between 1 and
10 (i.e., in agreement with observations). This indicates that the oscillations are efficiently damped
(Figure 62a). On the other hand, in the prominence model used by Schutgens and Téth (1999)
vertical oscillations are very efficiently attenuated for all the parameters considered and the same
happens with horizontal oscillations (Figure 62b) for coronal densities above ~ 5 x 1073 kg m 3.
These constraining properties of damped horizontal and vertical oscillations could be used for
prominence seismology.

However, the exact nature of the damping mechanism should be pointed out, and Schutgens
and Téth (1999) suggest that the damping of oscillations is due to the emission of waves by the
prominence, i.e., wave leakage. The damping of horizontal motions is attributed to the emission of
slow waves, whereas fast waves are invoked as the cause of the damping of vertical motions. Taking
into account that the main difference between this work and those of van den Oord and Kuperus
(1992), Schutgens (1997a,b), and van den Oord et al. (1998) lies essentially in the cross section
of the filament, it seems that the physics involved should be the same, so wave leakage should be
the mechanism responsible for the accounted damping. However, in Schutgens and Téth (1999),
the plasma-g in the prominence ranges from S > 1 in its central part to 5 < 0.1 at its boundary.
Hence, waves emitted by the prominence into the corona propagate in a § < 1 environment
in which magnetic field lines are closed. Under these conditions, slow modes propagate along
magnetic field lines and are unable to transfer energy from the prominence into the corona and so
wave leakage in the system studied by Schutgens and Téth (1999) is only possible by fast waves.
Then, it is hard to understand how the prominence oscillations can be damped by the emission of
slow waves in this particular model, in which the dense, cool plasma is only allowed to emit fast
waves. It must be mentioned, however, that the plasma-£ in the corona increases with the distance
from the filament, which implies that the emitted fast waves can transform into slow waves when
they traverse the 8 ~ 1 region. This effect has been explored by McLaughlin and Hood (2006) and
McDougall and Hood (2007); see also references therein for similar studies.
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Figure 62: Attenuation of prominence oscillations by wave leakage. (a) Quality factor (Qo = w7a/P)
of stable IP (solid curves) and NP (dashed curves) prominence oscillations as a function of the coronal
Alfvén speed. (b) Quality factor of the horizontally (squares) and vertically (diamonds) polarized stable
oscillations versus the coronal density (from Schutgens, 1997b and Schutgens and Téth, 1999).
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6 Prominence Seismology

Solar atmospheric seismology aims to determine physical parameters that are difficult to measure by
direct means in magnetic and plasma structures. It is a remote diagnostics method that combines
observations of oscillations and waves in magnetic structures, together with theoretical results
from the analysis of oscillatory properties of given theoretical models. The philosophy behind this
discipline is akin to that of Earth seismology, the sounding of the Earth interior using seismic
waves, and helio-seismology, the acoustic diagnostic of the solar interior. It was first suggested by
Uchida (1970) and Roberts et al. (1984), in the coronal context, and by Tandberg-Hanssen (1995)
in the prominence context. The increase in the number and quality of high resolution observations
in the 1990s has lead to the rapid development of solar atmospheric seismology. In the context of
coronal loop oscillations, recent applications of this technique have allowed the estimation and/or
restriction of parameters such as the magnetic field strength (Nakariakov and Ofman, 2001), the
Alfvén speed in coronal loops (Zaqarashvili, 2003; Arregui et al., 2007a; Goossens et al., 2008),
the transversal density structuring (Goossens et al., 2002; Verwichte et al., 2006) or the coronal
density scale height (Andries et al., 2005; Verth et al., 2008).

The application of inversion techniques to prominence seismology is less developed. This is due
to the complexity of these objects in comparison to, e.g., coronal loops. The recent refinement
of theoretical models that incorporate the fine structuring of prominences and the high resolution
observations of small amplitude oscillations have produced an increase in prominence seismology
studies. Several techniques for the inversion of physical parameters have been developed that make
use of observational estimates for quantities such as phase velocities, periods, damping times, and
flow speeds. In general, the solution to the inverse problem cannot provide a single value for
all the physical parameters of interest. However, important information about unknown physical
quantities can be obtained using this method. The most relevant results of the MHD prominence
seismology technique are here discussed.

The theoretical models decribed in Section 4 make use of different conceptual views of promi-
nences, such as the string model, the slab model, and the thread model for their fine structure.
Seismology efforts in the area have followed the same pattern. We describe them in increasing
intricacy order, starting with a mechanical analogue (Section 6.1), followed by slab models (Sec-
tion 6.2), and ending with the seismology of fine structure oscillations (Sections 6.3 to 6.6).

6.1 Seismology of large amplitude prominence oscillations

Several studies have made use of the observed characteristics of large amplitude oscillations in
prominences to deduce physical parameters of these objects. The classic example is the interpre-
tation by Hyder (1966) of the winking filament phenomenon in terms of a global mode of the
prominence. This author modeled the eleven winking filament events reported by Ramsey and
Smith (1965) as damped harmonic oscillators and obtained estimates of the vertical magnetic field
strength in the range 2—30 G. More recent studies have also used large amplitude oscillations in
filaments to deduce the magnetic field strength in these objects.

Vrsnak et al. (2007) reported on Ha observations of periodical plasma motions along the axis
of a filament. The motions were both large amplitude and large scale, with an initial displacement
of 24 Mm, an initial velocity amplitude of 51 km s !, a period of 50 min, and a damping time of
115 min. Oscillations were interpreted as a global mode of the system and the driver was thought
to be the magnetic flux injection by magnetic reconnection at one of the filament legs. Although
oscillatory motions along the prominence axis were also reported by Jing et al. (2003, 2006), the
study by Vrsnak et al. (2007) proposes an explanation for the triggering process and the restoring
force, and performs diagnostics based on these interpretations.

The seismology analysis by Vrsnak et al. (2007) is based on the fitting of the oscillation proper-
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ties to a mechanical analogue model in terms of the classic damped harmonic oscillator equation.
This analogue is first used to discard gas pressure as the restoring force, since it leads to sound
speed values one order of magnitude larger than those corresponding to the typical temperature of
prominence plasmas, and no signature of plasma at those temperatures was observed in TRACE
EUV images. In this work a twisted flux rope model with both axial and azimuthal magnetic
field components was considered and an excess azimuthal field at one of the prominence legs was
assumed. This gives rise to a magnetic pressure gradient and a torque, which in turn drive a com-
bined axial and rotational motion of the plasma. Next, an expression that relates the azimuthal
Alfvén speed, va,, and the oscillatory period was obtained. From this relation, the Alfvén speed
vap ~ 100 km s was inferred. By further assuming that the number density of the prominence
plasma is in the range 10'° 10! ¢m 3, the azimuthal magnetic field strength results in the range
5-15 G. By measuring the pitch angle, Vrsnak et al. (2007) additionally determined the internal
structure of the flux rope helical magnetic field, from which the axial magnetic field strength was
estimated to be in the range 10-30 G.

The twisted flux rope model was also invoked by Pintér et al. (2008) in their analysis of SOHO
EUV observations of large amplitude transverse oscillations in a polar crown filament previously
studied by Isobe and Tripathi (2006). Oscillations were present along a foot belonging to a larger
prominence structure and occurred prior to the eruption of the full structure. Wavelet analysis
tools were used to shed light into the temporal and spatial behaviour of oscillations. The filament
oscillated as a rigid body with a period of 2.5 h, that was constant along the filament, but decreased
in time. The line-of-sight velocity was estimated to be about a few tens of km s™!. The analysis of
the spatial properties of the oscillations shows evidence of a global standing transverse oscillation,
although some small scale oscillations within the structure cannot be discarded. Using the twisted
flux rope model for the filament and based on the same scenario and analysis as Vrsnak et al.
(2007), the azimuthal Alfvén speed component was estimated to be va, = 49 km s * and the axial
magnetic field strength in the range 2—-10 G. In this case, the pitch angle could not be measured.
By assuming a mean value of 65°, Pintér et al. (2008) estimated that the axial component of the
magnetic field must be in the range 1-5 G.

6.2 Seismology of prominence slabs

The MHD wave properties for slab models of prominences are described in Section 4.2. Two relevant
studies have made use of some of these models to infer physical properties in prominences. Their
methodology is based on the identification of observed oscillations with theoretical eigenmodes.
Régnier et al. (2001) consider the possible theoretical modes that can explain their observations
of oscillations in an active region filament. The slab model with a uniform and inclined magnetic
field by Joarder and Roberts (1993b) is used (see Figure 29). The dispersion relations for Alfvén
modes and magnetoacoustic modes are considered. They provide the frequency of six fundamental
modes: the symmetric Alfvén, slow and fast kink modes and the antisymmetric Alfvén, slow
and fast sausage modes, as a function of the prominence parameters. Observations provide with
estimates for the width (8000 km) and length (63,000 km) of the filament. Assumptions on other
parameters, such as the temperature of the filament (8000 K) and of its environment (10° K),
the density of the slab (10'2 cm 2), the magnetic field strength (20 G) and for the angle between
the magnetic field and the long axis of the slab (25°) are made. The dispersion relations are then
solved by using these parameters and the corresponding periods are obtained and classified.
Observations and Fourier analysis of Doppler velocity time series enable Régnier et al. (2001)
to detect intermediate (between 5 and 20 min in this case) and long (> 40 min) period oscillations.
From the comparison between the observed and calculated frequencies, an identification method of
the oscillation modes in the observed filament is presented. The method makes use of the fact that
the frequency ratio of the fundamental even Alfvén mode to the fundamental odd Alfvén mode only
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depends on the ratio of the half-with of the slab to the half-length of the filament. This quantity
is measurable. The same applies to the frequency ratios involving the slow kink/sausage and fast
kink/sausage modes. Parametric calculations for the frequencies as a function of the magnetic field
strength and the inclination angle, while keeping the slab density constant, are next performed. A
diagnostic of the observed filament is obtained by looking for the parameters values that enable the
matching of theoretical and observed frequencies. By following this method, the angle between the
magnetic field and the long axis of the slab is estimated to be 18°. Using this value, an algebraic
relation for the magnetic field strength as a function of the slab density is derived.

A more involved and ambitious diagnostic, using the Joarder and Roberts (1993b) slab model,
was performed by Pouget et al. (2006). The long duration and high temporal resolution observa-
tions with CDS/SoHO enable these authors to detect and measure the entire range of periodicities
theoretically expected in a filament. In particular both the short (less that 10 min) and the long
ones (more than 40 min) are detected.

The detailed analysis of three filaments is presented. The seismic inversion technique closely
follows that by Régnier et al. (2001), in the sense that the first step towards the diagnostic is the
use of frequency ratios between fundamental even/odd (kink/sausage) modes. These ratios only
depend on the ratio of the filament half-width to its half-length. Once this ratio is measured, with
a given uncertainty, Pouget et al. (2006) assume that their 16-h long observation has allowed them
to observe the six modes of interest, since the slowest mode is expected at a period of 5 h, for
standard prominence parameters.

The inversion method first assigns a possible triplet of measured frequencies to the 3 odd
fundamental frequencies (odd Alfvén, slow sausage, and fast sausage modes). The coherence
of each choice is examined against two tests. The first requires to find three corresponding even
frequencies, with the condition that the even/odd frequency ratios are consistent with the measured
half-width to half-length ratio. The second involves the inferred values for the density, temperature,
magnetic field inclination angle, and magnetic field strength to be consistent with typical values
reported in the literature. For each test, if the test was negative, the full triplet was changed and
the series started again. On the contrary, if the tests succeeded, Pouget et al. (2006) considered
that the six fundamental modes were identified.

The three filament observations led to coherent diagnostics and a single possible set of frequen-
cies was found for each observation. The importance of this study is its ability to simultaneously
determine the values of the inclination angle, temperature, and Alfvén speed for the same promi-
nence. The drawback is that the modeling, as in Régnier et al. (2001), does not permit to capture
the highly inhomogeneous nature of prominences.

6.3 Seismology of propagating transverse thread oscillations

Transverse thread oscillations observed by Lin et al. (2009) and discussed in Section 3.6.4 show
evidence of waves propagating along individual threads. Ten of the swaying threads were chosen
by Lin et al. (2009) for further investigation, and for each selected thread two or three perpen-
dicular cuts were made in order to measure the properties of the propagating waves. Periods and
amplitudes of the waves, as well as their phase velocity, were derived for each thread. Lin et al.
(2009) interpreted the observed events as propagating MHD kink waves supported by the thread
body. This mode is the only one producing a significant transverse displacement of the cylinder
axis. In addition, it also produces short-period oscillations of the order of minutes, compatible
with the observed periods (see Section 4.4.1).

If an infinitely long, straight, cylindrical thread model, with the tube fully filled with cool and
dense material (Figure 31), is assumed, a comparison between the observed wave properties and
the theoretical prediction can be made. This enabled Lin et al. (2009) to obtain estimates for some
physical parameters of interest, namely the Alfvén speed and the magnetic field strength in the
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studied threads. To this end, the observed phase velocity was directly associated to the kink speed

1/2
Ck = % = VAp |:1j_<<:| ) (37)

where Equation (22) for the kink frequency has been used. In this expression vap, is the Alfvén speed
in the prominence thread and ¢ = p,/p. is the density contrast. Both quantities are unknown,
hence no unique solution to Equation (37) can be obtained from the observed period alone. In
the limit of high density contrast, typical of prominence plasmas, the ratio p,/pc is very large
and the ratio ¢ /vip is almost independent from it (see Figure 63a). The kink speed can then be
approximated by

Cx ~ \/ivAp. (38)

Lin et al. (2009) assumed that thread oscillations observed from the Ha sequences were the result
of a propagating kink mode, which implies that the measured phase velocity, c, is equal to the
kink speed. Then, the thread Alfvén speed can be computed from

~ O
VAp ~ \/i (39)
The inferred values of va,, for the ten selected threads are displayed in Table 2 in Lin et al.
(2009). The results show a strong dispersion, suggesting that the physical conditions in different
threads were very different in spite of belonging to the same filament. This result clearly reflects
the highly inhomogeneous nature of solar prominences. Once the Alfvén speed in each thread was
determined, the magnetic field strength could be computed after a value for the thread density

was assumed. For the analyzed events, and considering a typical value p, = 5 x 10 1 kg m 3,
magnetic field strengths in the range 0.9—3.5 G were obtained (see Figure 63b).
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Figure 63: (a) Ratio ci/vi, (solid line) as a function of the density contrast, (. The dotted line
corresponds to the value of the ratio cf/ Uip for ¢ = co. (b) Magnetic field strength as a function of the
internal density, pp, corresponding to four selected threads (from Lin et al., 2009).

6.4 Seismology of damped transverse thread oscillations

A feature clearly observed by Lin et al. (2009) is that the amplitudes of the waves passing through
two different cuts along a thread are notably different. Apparent changes can be due to damp-
ing of the waves in addition to noise in the data. The damping of prominence oscillations is a
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common feature in many observed events and damping time-scales provide an additional source
of information that can be used when performing parameter inference using seismology inversion
techniques, once a physical model that provides an explanation is available. Among the different
damping mechanisms described in Section 5, resonant absorption in the Alfvén continuum seems a
very plausible one and has been used to perform prominence thread seismology, using the damping
as an additional source of information. In the context of coronal loop seismology, the use of damp-
ing rates in combination with oscillatory periods gives information about the transverse density
structuring of coronal loops (Goossens et al., 2002; Arregui et al., 2007a; Goossens, 2008; Goossens
et al., 2008).

The model considered here is an infinitely long thread of radius a surrounded by a thin transition
sheath of thickness [ in which a smooth transition from the thread to the coronal density takes
place (see Figure 50). For standing kink waves, and without using the thin tube and thin boundary
approximation, the normal mode period and damping ratio are functions of the relevant equilibrium
parameters,

P P
P = P(kzaCal/aavAp)a a = a(kzvgal/a)a (40)

with vap the prominence thread Alfvén speed. Note that in the thin tube and thin boundary
approximations (Equation (23) for P and Equation (30) for the damping ratio), the period does
not depend on !/a and the damping ratio is independent of the wavelength. This is not true in the
general case (Arregui et al., 2008b). The period is a function of the longitudinal wavenumber, k.,
the transverse inhomogeneity length-scale, [/a, and the internal Alfvén speed. Similarly for the
damping ratio, except for the fact that it cannot depend on any time-scale. The long wavelength
approximation further eliminates the k, dependence of the damping ratio. In the case of coronal
loop oscillations, an estimate for k, can be obtained directly from the length of the loop and the
fact that the fundamental kink mode wavelength is twice this quantity. For prominence threads,
the wavelength of oscillations needs to be measured. Relations (40) indicate that, if no assumption
is made on any of the physical parameters of interest, there are infinite different equilibrium
models that can equally well explain the observations (namely the period and damping ratio). The
parameter values that define these valid equilibrium models are displayed in Figure 64a, where the
analytical algebraic expressions in the thin tube and thin boundary approximations by Goossens
et al. (2008) have been used to invert the problem. It can be appreciated that, even if an infinite
number of solutions is obtained, they define a rather constrained range of values for the thread
Alfvén speed. Because of the insensitiveness of the damping rate with the density contrast for the
typically large values of this parameter in prominence plasmas, the obtained solution curve displays
an asymptotic behaviour for large values of (. This makes possible to obtain precise estimates
for the thread Alfvén speed, vap =~ 12 km s, and the transverse inhomogeneity length scale,
I/a ~ 0.16. Note that these asymptotic values can directly be obtained by inverting Equations (23)
and (30) for the period and the damping rate in the limit ¢ — co. The computation of the magnetic
field strength from the obtained seismological curve requires the assumption of a particular value
for either the filament or the coronal density. The resulting curve for a typical coronal density is
shown in Figure 64b. Precise values of the magnetic field strength cannot be obtained, unless the
density contrast is accurately known.

The transverse inhomogeneity length scale of an oscillating thread could also be estimated by
using observations of spatial damping of propagating kink waves and theoretical results described
in Section 5.4.2. In the context of coronal loops, Terradas et al. (2010) have shown that the ratio
of the damping length to the wavelength, due to resonant damping of propagating kink waves,
has the same dependence on the density contrast and transverse inhomogeneity length-scale as the
ratio of the damping time to the period for standing kink waves. Similar inversion techniques to
the ones explained here for the temporal damping of oscillations could be applied to the spatial
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Figure 64: Left: Analytic inversion of physical parameters in the (¢, [/a, vap) space for a filament thread
oscillation with P = 3 min, 7q¢ = 9 min, and a wavelength A = 3000 km (see, e.g., Lin et al., 2007). Right:
Magnetic field strength as a function of the density contrast and transverse inhomogeneity length-scale,
derived from the analytic inversion for a coronal density p. = 2.5 x 10 '3 kg m 2.

damping of propagating waves.

The main downside of the technique just described is the use of thread models in which the full
magnetic tube is filled with cool and dense plasma. The solution to the forward problem in the case
of two-dimensional thread models is discussed in Section 5.5. The analytical and numerical results
obtained by Soler et al. (2010a) using these models indicate that the length of the thread and
its position along the magnetic tube influence the period and damping time of transverse thread
oscillations. On the contrary, the damping ratio is rather insensitive to these model properties.

Going back to the inversion curve displayed in Figure 64a, we notice that a change in the period
produces a vertical shift of the solution curve, hence the period influences the inferred values for
the Alfvén speed. On the other hand, the damping ratio determines the projection of the inversion
curve onto the (¢, I/a)-plane. We can conclude that ignorance of the length of the thread or the
length of the supporting magnetic flux tube will have a significant impact on the inferred values
for the Alfvén speed (hence magnetic field strength) in the thread. On the contrary, because of
the smaller sensitivity of the damping ratio to changes in the longitudinal density structuring,
seismological estimates of the transverse density structuring will be less affected by our ignorance
about the longitudinal density structuring of prominence threads.

An example of the inversion of physical parameters for different values of the thread length was
presented by Soler et al. (2010a). When partially filled threads, i.e., with the dense part occupying
a length L, shorter than the total length of the tube L, are considered, one curve is obtained for
each value of the length of the thread. The solutions to the inverse problem are shown in Figure 65a
for a set of values of L,,. Even if each curve gives an infinite number of solutions, again each of them
defines a rather constrained range of values for the thread Alfvén speed. The figure shows that the
ratio L, /L is a fundamental parameter in order to perform an accurate seismology of prominence
threads, since different curves produce different estimates for the prominence Alfvén speed, as
anticipated above. Because of the insensitiveness of the damping ratio with respect to the length
of the thread, all solution curves for different lengths of the threads produce the same projection
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Figure 65: Determination of (a) prominence Alfvén speed and (b) magnetic field strength from the
computation of periods and damping times for standing kink oscillations in two-dimensional prominence
thread models and observations of period and damping times in transverse thread oscillations. The observed
period and damping time are 20 and 60 min, respectively, and L = 10° km (from Soler et al., 2010a).

onto the (¢, I/a)-plane. Hence, the same precise estimates of the transverse inhomogeneity length
scale obtained from infinitely long thread models are valid, irrespective of the length of the thread.
The computation of the magnetic field strength from the obtained seismological curve requires
the assumption of a particular value for either the filament or the coronal density. The resulting
curves for a typical coronal density and several values of L,/L are shown in Figure 65b. Here
again, precise values of the magnetic field strength cannot be obtained, unless the density contrast
is accurately known.

6.5 Seismology using period ratios of thread oscillations

The widespread use of the concept of period ratios as a seismological tool has been remarkable in
the context of coronal loop oscillations (see Andries et al., 2009, for a review). The idea was first
put forward by Andries et al. (2005) and Goossens et al. (2006) as a means to infer the coronal
density scale height using multiple mode oscillations in coronal loops embedded in a vertically
stratified atmosphere. In coronal loop seismology, the ratio of the fundamental mode period to
twice that of its first overtone in the longitudinal direction (P; /2P;) mainly depends on the density
structuring along magnetic field lines. It can therefore be used as a diagnostic tool for the coronal
density scale height.

In the context of prominence seismology, a similar approach was proposed by Diaz et al. (2010)
to obtain information about the density structuring along prominence threads using the piece-
wise longitudinally structured thread model by Diaz et al. (2002) (see Figure 41). These authors
showed that the non-dimensional oscillatory frequencies of the fundamental kink mode and the
first overtone are almost independent of the ratio of the thread diameter to its length. Thus, the
dimensionless oscillatory frequency depends, basically, on the density ratio of the prominence to
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the coronal plasma, p,/pc, and the non-dimensional length of the thread, W/L,

wL

VUap = f(W/L7pP/pC)' (41)

Here we follow the notation of Diaz et al. (2010), who use 2W for the thread length, rather than
that of Soler et al. (2010a), who denote this length by L. In order to determine the dimensional
frequency when comparing to observations, two additional parameters are needed, namely the
Alfvén velocity in the corona or in the prominence (involving some knowledge of the magnetic
field strength and density) and the length of the magnetic tube, 2L. Note, however, that the
non-dimensional frequencies of the fundamental mode and its first overtone can be cast as

OJ1L -

2L LWLy, (42)
ti=h@WL%m& (43)

so that the dependence on the length of the tube and the thread Alfvén speed can be removed by
considering the period ratio,

o0 = FOV/Lopy ). (14)
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Figure 66: Plot of the solution lines satisfying Pi/2P> = constant in the parameter space. The upper
line corresponds to Pi /2P, = 1.25 and the lower one to P /2P, = 3, with each line showing an increment
in P;/2P; of 0.25 from the previous one (from Diaz et al., 2010).

Equation (44) can be used for diagnostic purposes, once reliable measurements of multiple mode
periods are obtained. The curves in Figure 66 display the solution to the inverse problem in the
(pp/pc, W/L) parameter space for several values of the period ratio. Given the period ratio from
an observation, it only depends on W/L in first approximation. Once W/L has been obtained,
one can estimate the value of the magnetic field length 2L, since the thread length, 2W can be
determined quite accurately from the observations.

The use of the period ratio technique needs the unambiguous detection of two periodicities in
the same oscillating prominence thread. Diaz et al. (2010) pointed out two main difficulties in this
respect. From a theoretical point of view, the overtone with period P» is an antisymmetric mode
in the longitudinal direction, with a node in the center of the thread and two maxima located
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outside it. Only for sufficiently long threads, with W/L ~ 0.1, the anti-nodes of the overtone are
located inside the thread and could hence be measured in the part of the tube visible in, e.g.,
Ha. From an observational point of view, no conclusive measurement of the first overtone period
has been reported so far in the literature, although there seem to be hints of its presence in some
observations by, e.g., Lin et al. (2007), who reported on the presence of two periods, P, = 16 min
and P, = 3.6 min in their observations of a prominence region. Diaz et al. (2010) used the period
ratio from these observations to infer the value for the length of the thread ratio W/L = 0.12.
Although it is difficult to estimate the length of the particular thread under consideration, assuming
a value of 13,000 km, as for other threads analyzed by Lin et al. (2007), results in a magnetic tube
length L ~ 130,000 km.

This new seismological information can be now used to obtain further information about the
physical conditions in the oscillating thread. Using analytical approximations for the dimensionless
frequency of the first overtone, the following expression for the prominence Alfvén speed as a
function of the length of the thread is obtained,

oL | W w

Once the length of the tube is known, an estimate for the prominence Alfvén speed can be inferred
from Equation (45). In the example shown by Diaz et al. (2010), the high density contrast limit
was used to infer the value vap, ~ 160 km s~

6.6 Seismology of flowing and oscillating prominence threads

Mass flows in conjunction with phase speeds, oscillatory periods, and damping times might consti-
tute an additional source of information about the physical conditions of oscillating threads. The
first application of prominence seismology using Hinode observations of flowing and transversely
oscillating threads was presented by Terradas et al. (2008), using observations obtained in an active
region filament by Okamoto et al. (2007) discussed in Section 3.6.4.

The observations show a number of threads that flow following a path parallel to the photo-
sphere while they oscillate in the vertical direction. The relevance of this particular event is that
the coexistence of waves and flows can be firmly established, so that there is no ambiguity about
the wave or flow character of a given dynamic feature: both seem to be present in this particular
event. However, other interpretations for the apparent motion in the plane of the sky could be
also possible, for instance, an ionization wave or a thermal front. Okamoto et al. (2007) analyzed
6 threads whose relevant measured properties are displayed in Table 1.

Table 1: Summary of geometric and wave properties of horizontally flowing and vertically oscillating
threads analyzed by Okamoto et al. (2007). Lihreaa is the thread length, vg its horizontal flow velocity, P
the oscillatory period, V' the oscillatory velocity amplitude, and H the height above the photosphere.

Thread  Lipeaa (km) vg (km s!) P (s) V (kmst) H (km)

1 3600 39 174 £ 25 16 18,300
2 16,000 15 240 £ 30 15 12,400
3 6700 39 230 £ 87 12 14,700
4 2200 46 180 £+ 137 8 19,000
) 3500 45 135 £ 21 9 14,300
6 1700 25 250 £ 17 22 17,200

In their seismological analysis of these oscillations Terradas et al. (2008) started by neglecting
the mass flows. Then, they interpreted these events in terms of the standing kink mode of a
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finite-length thread in a magnetic flux tube (see Figure 41 and Section 4.5). By using theoretical
results by Diaz et al. (2002) and Dymova and Ruderman (2005) (see Section 4.5), Terradas et al.
(2008) found that, although it is not possible to univocally determine all the physical parameters
of interest, a one-to-one relation between the thread Alfvén speed and the coronal Alfvén speed
could be established. This relation comes in the form of a number of curves relating the two Alfvén
speeds for different values of the length of the magnetic flux tube and the density contrast between
the filament and coronal plasma. Figure 68 shows these curves for the selection of six threads
made by Okamoto et al. (2007). An interesting property of the obtained solution curves is that
they display an asymptotic behaviour for large values of the density contrast, which is typical of
filament to coronal plasmas and, hence, a lower limit for the thread Alfvén speed can be obtained.
Take for instance thread #6. Considering a magnetic flux tube length of 100 Mm, a value of
120 km s ! for the thread Alfvén speed is obtained.

BO “—’zw d pc
0 T T S T T
2L ‘

Figure 67: Sketch of the magnetic and plasma configuration used to represent a flowing thread (shaded
volume) in a thin magnetic tube. The two parallel planes at both ends of the cylinder represent the
photosphere (from Terradas et al., 2008).

Terradas et al. (2008) next incorporated mass flows into their analysis (see Figure 67). First a
simple approximation was made by taking into account that the flow velocity along the cylinder,
vg, enters the linear MHD wave equations through the differential operator

0 0

a + ’UOE.
The terms coming from the equilibrium flow can, in a first approximation, be ignored because, as
noted by Dymova and Ruderman (2005), inside the cylinder the terms with derivatives along the
tube are much smaller than those with radial or azimuthal derivatives. By following this approach
the problem reduces to solving a time-dependent problem with a varying density profile, p(z,t),
representing a dense part moving along the tube with the flow speed. By using the flow velocities
in Table 1 and after solving the two-dimensional wave equations, Terradas et al. (2008) found that
the flow velocities measured by Okamoto et al. (2007) result in slightly shorter kink mode periods
than the ones derived in the absence of flow. Differences are small, however, and produce period
shifts between 3 and 5%. As a consequence, the curves in Figure 68 can be considered a good
approximation to the solution of the inverse problem.

Finally, a more complete approach to the problem was followed by Terradas et al. (2008), who
considered the numerical solution of the non-linear, ideal, low-8 MHD equations with no further
approximations, that is, the thin tube approximation was not used and the flow was maintained in
the equations. The numerical results confirm the previous approximate results regarding the effect
of the flow on the obtained periods and, therefore, on the derived Alfvén speed values. We must
note that in this case, and because of the small value of the flow speeds measured by Okamoto
et al. (2007) in this particular event, there are no significant variations of the wave properties
and, hence, of the inferred Alfvén speeds, although larger flow velocities may have more relevant
consequences on the determination of physical parameters in prominence threads.

In most of the examples shown here, the number of unknowns is larger that that of observed
parameters. This makes difficult to obtain a unique solution that reproduces the observations.
Furthermore, the inversions are performed with information that is incomplete and uncertain. The
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Figure 68: Dependence of the Alfvén velocity in the thread as a function of the coronal Alfvén velocity
for the six threads observed by Okamoto et al. (2007). In each panel, from bottom to top, the curves
correspond to a length of magnetic field lines of 100,000 km, 150,000 km, 200,000 km, and 250,000 km,
respectively. Asterisks, diamonds, triangles, and squares correspond to density ratios of the thread to the
coronal gas ¢ ~ 5, 50, 100, and 200 (from Terradas et al., 2008).
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use of statistical techniques, based on bayesian inference, can help to overcome these limitations,
as shown by Arregui and Asensio Ramos (2011).

7 Open Issues

Solar prominences are among the most complicated structures in the solar corona. A full under-
standing of their formation, magnetic structure, and disappearance has not been reached yet, and
a lot of physical effects remain to be included in prominence models. For this reason, theoretical
models set up to interpret small amplitude oscillations are still poor. High-resolution observa-
tions of filaments suggest that they are made of threads whose thickness is at the the limit of the
available spatial resolution. Then, one may wonder whether future improvements of the spatial
resolution will provide with thinner and thinner threads or, on the contrary, there is a lower limit
for thickness and we will be able to determine it in the future. The presence of these long and
thin threads together with the place where they are anchored and the presence of flows along them
suggest that they are thin flux tubes filled with continuous or discontinuous cool material.

This cool material is probably subject to cooling, heating, ionization, recombination, motions,
etc., which, altogether, makes very difficult a proper theoretical treatment. For instance, in the
case of the considered thermal mechanisms, up to now only optically thin radiation has been taken
into account, while the inclusion of optically thick effects would probably be more realistic; the
prominence heating mechanisms taken usually into account are tentative and “ad hoc”, while true
prominence heating processes are still deeply unknown. An important step ahead would be to
couple radiative transfer with magnetohydrodynamic waves as a mean to establish a relationship
between velocity, density, magnetic field, and temperature perturbations, and the observed sig-
natures of oscillations like spectral line shift, width and intensity. Partial ionization is another
topic of interest for prominence oscillations since, apart from influencing the behaviour of magne-
tohydrodynamic waves, it poses an important problem for prominence equilibrium models since
cross-field diffusion of neutral atoms can give place to flows and drain prominence material.

Another issue which still remains a mystery is the triggering mechanism of small amplitude
oscillations. In the case of large amplitude oscillations, observations provide with information
about the exciting mechanism, but the available observations of small amplitude oscillations show
no signature of their exciting mechanism. Are these oscillations of chromospheric or photospheric
origin? Are they generated inside prominence magnetic structures by small reconnection events?
Are they produced by weak external disturbances coming from far away in the solar atmosphere?

The presence of flows adds another ingredient to be taken into account in the study of promi-
nence oscillations and, up to now, we can only obtain one or two-dimensional information about
the flow behaviour. It would be of great interest to collect information about the three-dimensional
structure of flows and, probably, in the near future we could acquire this information by means of
IRIS (http://iris.1lmsal.com/).

The physical changing conditions of prominence plasmas suggest that for an in-depth theoretical
study of prominence oscillations more complex models together with numerical simulations are
needed. Therefore, and as a step ahead, in the next future numerical studies of the time evolution
of magnetohydrodynamic waves in partially ionized flowing inhomogeneous prominence plasmas,
subject to different physical processes such as ionization, recombination, etc., should be undertaken.
However, a full three-dimensional dynamical prominence model involving magnetic equilibrium,
radiative transfer, etc., whose oscillatory behaviour could be studied seems to be still far away in
the future.
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