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Abstract

Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes.
AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing
and obtain diffraction limited observations. Over the last decade adaptive optics systems
have been deployed at major ground-based solar telescopes and revitalized ground-based solar
astronomy. The relatively small aperture of solar telescopes and the bright source make solar
AO possible for visible wavelengths where the majority of solar observations are still performed.
Solar AO systems enable diffraction limited observations of the Sun for a significant fraction
of the available observing time at ground-based solar telescopes, which often have a larger
aperture than equivalent space based observatories, such as HINODE. New ground breaking
scientific results have been achieved with solar adaptive optics and this trend continues. New
large aperture telescopes are currently being deployed or are under construction. With the
aid of solar AO these telescopes will obtain observations of the highly structured and dynamic
solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics
techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook
to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and
Ground-Layer AO (GLAO) will be given.

This review is licensed under a Creative Commons
Attribution-Non-Commercial-NoDerivs 3.0 Germany License.
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://www.livingreviews.org/lrsp-2011-2
http://www.nso.edu/
http://www.nso.edu/
http://creativecommons.org/licenses/by-nc-nd/3.0/de/


Imprint / Terms of Use

Living Reviews in Solar Physics is a peer reviewed open access journal published by the Max Planck
Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany. ISSN
1614-4961.

This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0
Germany License: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Because a Living Reviews article can evolve over time, we recommend to cite the article as follows:

Thomas R. Rimmele and Jose Marino,
“Solar Adaptive Optics”,

Living Rev. Solar Phys., 8, (2011), 2. [Online Article]: cited [<date>],
http://www.livingreviews.org/lrsp-2011-2

The date given as <date> then uniquely identifies the version of the article you are referring to.

Article Revisions

Living Reviews supports two ways of keeping its articles up-to-date:

Fast-track revision A fast-track revision provides the author with the opportunity to add short
notices of current research results, trends and developments, or important publications to
the article. A fast-track revision is refereed by the responsible subject editor. If an article
has undergone a fast-track revision, a summary of changes will be listed here.

Major update A major update will include substantial changes and additions and is subject to
full external refereeing. It is published with a new publication number.

For detailed documentation of an article’s evolution, please refer to the history document of the
article’s online version at http://www.livingreviews.org/lrsp-2011-2.

http://creativecommons.org/licenses/by-nc-nd/3.0/de/
http://www.livingreviews.org/lrsp-2011-2


Contents

1 Introduction 5

2 Adaptive Optics Basics 11
2.1 Atmospheric turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Design of an AO system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Solar AO challenges: difference between night and day . . . . . . . . . . . . . . . . 15

3 A Brief History of Solar AO 19

4 The Correlating Shack–Hartmann Wavefront Sensor 25

5 AO System Implementation 28
5.1 DST AO system: an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Wavefront sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Wavefront sensor and reconstructor processor unit . . . . . . . . . . . . . . . . . . 31
5.4 Deformable mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 AO76 System Performance and Wavefront Error Budget 33
6.1 Predicted performance based on error budget . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Wavefront fitting error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Aliasing error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.3 Angular anisoplanatism error . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.4 Bandwidth error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.5 Wavefront sensor measuring error . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.6 Wavefront sensor anisoplanatism noise . . . . . . . . . . . . . . . . . . . . . 42
6.1.7 Non-common path error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.8 Tip/tilt error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.9 Total error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Measured performance of AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Long exposure PSF estimation from AO telemetry . . . . . . . . . . . . . . . . . . 44
6.4 Measured AO system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 The Case for Post-Facto Processing 49
7.1 Short exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Long exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Overview of Operational Solar AO Systems 55
8.1 The Swedish Solar Telecope (SST) AO system . . . . . . . . . . . . . . . . . . . . . 55
8.2 Kiepenheuer Institute Adaptive Optics System (KAOS) . . . . . . . . . . . . . . . 55
8.3 Adaptive optics for the infrared at the McMath–Pierce Telescope . . . . . . . . . . 58
8.4 Systems under development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Future Developments 59
9.1 AO for large aperture solar telescopes . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.1.1 GREGOR and NST conventional AO . . . . . . . . . . . . . . . . . . . . . 59
9.1.2 High order AO for the ATST . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.3 Angular anisoplanatism: a serious challenge for large aperture solar telescopes 64
9.1.4 Chromatic ansisoplanatism . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Multi-Conjugate Adaptive Optics (MCAO) . . . . . . . . . . . . . . . . . . . . . . 68



9.3 Ground-Layer Adaptive Optics (GLAO) . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Summary 76

11 Acknowledgements 77

References 78

List of Tables

1 Atmospheric turbulence profiles approximated by discrete layers. . . . . . . . . . . 36
2 System parameters of conventional AO systems for new 1.5 m class solar telescopes 59



Solar Adaptive Optics 5

1 Introduction

Driven by the quest for ever higher spatial resolution observations of the Sun, the development
of solar adaptive optics has excelled tremendously during the last 5 – 10 years. Several solar AO
systems have been deployed at major ground-based solar telescopes and are now routinely oper-
ated. These AO systems have facilitated observations of structure in the solar atmosphere at a
resolution that is at or near the diffraction limit of those telescopes. It is worthwhile to briefly
summarize the main scientific drivers for observations of the Sun at the highest possible resolution
and motivate the need for solar adaptive optics. The solar atmosphere is highly structured and
dynamic. Understanding the physics of the small scale structure observed on the Sun in many
cases is crucial to understanding important scientific questions such as:

� What causes solar luminosity variations that affect the climate on Earth?

� How are magnetic fields generated by dynamo processes?

� How are magnetic fields transported and how is magnetic energy transported and dissipated?

� How is magnetic energy stored and what triggers its release as flares and coronal mass
ejections?

The two important scales that determine the structuring of the solar atmosphere are the pres-
sure scale height and the photon mean free path. Both are of order 70 km or 0.1” in the solar
photosphere and quickly become even smaller at deeper layers of the atmosphere. An angular
resolution of better than 0.1” is required to resolve these fundamental scales. Structures as small
as a few tens of kilometers on the solar surface corresponding to a few tens of milli-arcseconds
on the sky have been predicted by sophisticated MHD models of the solar atmosphere (Cattaneo
et al., 2003; Vögler and Schüssler, 2007; Nordlund and Stein, 2009; Nordlund et al., 2009).

Current high-resolution solar telescopes, such as the Dunn Solar Telescope (DST), the Swedish
Solar Telescope (SST), the Vacuum Tower Telescope (VTT) are in the one-meter class and uti-
lize AO up to > 95% of the observing time to achieve the diffraction limit at visible and NIR
wavelengths. Solar AO has revitalized ground-based solar astronomy at existing telescopes.

Figure 1 shows a sunspot image obtained at the DST using AO and a fast imaging camera that
takes short exposure images in rapid sequence. The sequence of images has been post processed
with a speckle reconstruction algorithm that compensates for the effects of residual wavefront
errors that the AO was not able to correct. The images were recorded with a g-band filter with a
passband centered at 430 nm. At this short wavelength, AO becomes very challenging and post-
facto reconstruction becomes a necessity. Figure 1 illustrates the degree of fine-scale structuring
of the solar atmosphere. Structures, such as penumbral filaments and g-band bright points that
mark the sites of magnetic fields are seen at scales of about 0.12”. The apparent size of these
structures is near the diffraction limit of the telescope and the granulation pattern that is visible
in the photosphere and covers the entire surface of the Sun is seen.

Figure 2 shows several g-band images of sunspot fine-structure obtained at the 97 cm Swedish
Solar Telescope (SST) on La Palma (Scharmer et al., 2007). Adaptive optics and post-processing
techniques were used to reach a resolution that again is near the diffraction limit. Due to the
larger aperture, the diffraction limit of the SST at the wavelength of g-band is 0.1” or about 70 km
on the Sun, i.e., the resolution is higher than that of the DST. With this increase in aperture
and, hence, resolution Scharmer et al. (2002) were able to clearly identify dark cores in penumbral
filaments. This discovery of dark cores has contributed significantly to the development of a better
physical understanding of penumbral fine-structure and sunspots in general. Close inspection of
Figure 1 shows that penumbral dark cores are visible in this image as well, but only the increase
in resolution provided by the larger aperture of the SST enabled the discovery of dark cores as
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6 Thomas R. Rimmele and Jose Marino

Figure 1: Sunspot image obtained with the DST adaptive optics system and post-facto speckle recon-
struction. This diffraction limited image was taken at at a wavelength of 430 nm (courtesy of F. Wöger,
NSO).

a feature with significance to sunspot physics and magneto-convection in general. The fact that
ever more details that allow us to advance our physical understanding of solar magnetic fields are
revealed with even modestly increased resolution demonstrates the importance of fully resolving
solar features. The measured sizes of many small-scale magnetic features are close to the limit set
by diffraction, implying they are not adequately resolved by present solar telescopes.

What kind of resolution is needed to fully resolve the important physical processes? Sophisti-
cated theoretical models and simulations, including radiative energy exchange and cooling, provide
fundamental insights. Figure 3 shows simulated observations with a 4 m aperture telescope used
by the ATST project science team in order to define imaging requirements for the Telescope-AO
system (Rimmele, 2005). The numerical simulation of granular convection (Nordlund and Stein,
2009) is coupled with radiative transfer calculations for the Fe i line 630.2 nm. narrow-band in-
tensity maps and line-of-sight magnetograms are shown over a 8” Ö 8” FOV. The magnetic fields
generated by dynamo action near the surface are small scale, mixed-polarity fields. In order to
simulate AO observations of these features the data were convolved with an AO Point Spread
Function (PSF). The performance of an AO system varies with seeing conditions. The Strehl ratio
measures how close the imaging performance provided by the AO is to that of the ideal diffraction
limited telescope. The theoretical diffraction limited PSF has a Strehl of S = 1 and can not be
achieved in practice. This performance measure will be discussed in detail in Section 6. In this
simulation the Strehl ratio varies from S = 0.001 (seeing limited, virtually no AO correction) to
S = 0.55 (good AO correction). These realistic simulations clearly demonstrate that large aperture
telescopes with a high performance AO system that obtains high Strehl ratios are required in order
to obtain meaningful measurements.

It is this iterative interaction between theoretical modeling and observations with a resolution
that is comparable to that of the models (order 10 km) that is vital in arriving at a physical
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Figure 2: Left: Sunspot region recorded with the Swedish 1 m Solar Telescope using adaptive optics
and after post-facto processing using phase-diversity. A g-band filter centred on 430.5 nm was used. Tick
marks are 1000 km on the Sun. Penumbral filaments with dark cores are seen protruding into the umbra.
Right: Close-up of several penumbral filaments with dark cores. Tick marks are 100 km (from Scharmer
et al., 2002).
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Figure 3: Simulated long exposure observations of granular convection and associated magnetic structure
(courtesy of Stein, Nordlund, Keller). The impact of the achieved long exposure AO Strehl ratio is visual-
ized by convolving the simulated solar data with the long exposure adaptive optics PSF of a 4 m telescope.
The AO system is assumed to provide partial correction quantified by the number of corrected modes and
the resulting Strehl ratio. Shown are intensity images (upper panel) and line-of-sight magnetograms (lower
panel). The assumed Fried parameter in this simulation is r0 = 5 cm. The long exposure Strehl after fully
correcting 0, 100, 400, 600, 1000, 2000 modes is S(0) = 0.001 (no AO case), S(100) = 0.002, S(400) = 0.1,
S(600) = 0.2, S(1000) = 0.35, and S(2000) = 0.554 (images 1 – 6, left to right and top to bottom). The
two images on the lower right in each of the panels show the input data convolved with the ideal 4 m
telescope PSF (image 7) and the input data (image 8).
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understanding of the fundamental astrophysical processes observed on the Sun. New large aperture
telescopes are needed to resolve these features and put models to the test. The development of high-
order solar AO that is capable of delivering high Strehl in the visible will be absolutely essential
for next generation solar telescopes.

Several new solar telescope efforts are currently under way. Telescopes of the 1.5 m class such as
the 1.5 m aperture GREGOR (Volkmer et al., 2003, 2006; Volkmer, 2008; Volkmer et al., 2010) on
Tenerife and the 1.6 m aperture New Solar Telescope (NST) (Goode, 2006; Goode et al., 2010) are
currently in their commissioning phase. The 4 m Advanced Technology Solar Telescope (ATST)
(Rimmele et al., 2006a; Wagner et al., 2008; Rimmele et al., 2010b) is in its construction phase
and is expected to be fully commissioned in 2018. In order for these telescopes to achieve their
scientific goals complex adaptive optics systems are an essential and integral component of the
optical system that feeds the solar instrumentation.

Accurate and precise measurements of physical parameters, such as magnetic field strength
and direction or plasma velocity, require spectroscopy and polarimetry at high spatial, but also
high spectral (R > 300 000), resolution and high polarimetric sensitivity. A sufficient number
of photons has to be collected to achieve the required sensitivity, which leads to long exposure
times since even the Sun turns into a faint object when observed at this ultra high spectral and
spatial resolution. Short exposure observations that allow to fully freeze the seeing and, thus,
retain diffraction limited information in many but not all cases are limited to broad-band imaging
and are of somewhat limited utility for the precise quantitative scientific analysis mentioned above.
However, with highly efficient telescope systems and instrumentation (e.g., CRISP; Scharmer et al.,
2008) that have high throughput, and use slightly compromised spectral resolution, sufficiently
short exposures can be achieved to allow at least partially if not fully freeze the seeing and,
thus, provide short exposure, narrow-band observations. This type of approach is particularly
useful at the red end of the visible spectrum and at near infrared wavelengths where the seeing
time constant is longer. Frame selection and post-facto image processing can be applied to short
exposure, narrow-band images leading to impressive results. High signal-to-noise ratio can in
principle be achieved by accumulating post-processed short exposure filtergrams, although a very
high duty cycle is required to ensure the required temporal resolution.

Even for short exposure imaging applications AO correction provides a significant advantage
in that only small, residual wavefront errors have to be post-facto corrected, which leads to much
higher signal-to-noise of the reconstructed images.

Solar adaptive optics can also provide diffraction limited long exposure spectroscopic and po-
larimetric observations of the solar atmosphere. With a well designed and optimized AO system
the exposure time can be chosen to provide optimal sensitivity of the measurement and does no
longer have to be limited by the desire to freeze the seeing. It should be mentioned that evolution
of the solar structures also limits the length of the exposure interval. The optimal choice of method
and observing parameters will always have to be made based on the specific scientific problem at
hand and the instrumentation available.

This review paper summarizes the current state of solar AO technology and attempts to give
a sense of the impact of AO on the field of high resolution solar astronomy. Section 2 summarizes
basic AO principles. In order to understand AO technology a basic understanding of the problem
– atmospheric turbulence – is pre-requisite. Many of the challenges of solar AO are common to
astronomical AO in general. Section 2.3 discusses the solar AO specific challenges in comparison
to night-time adaptive optics systems. The long and difficult path toward developing operational
and scientifically productive solar AO systems is summarized in Section 3. The vital role the
development of the correlating Shack–Hartmann wavefront sensor played in making solar AO a
successful technology is described in Section 4. A number of highly successful solar AO systems
are now operated at major solar telescopes. Due to the author’s bias, the DST solar AO system
was selected as an example to discuss implementation details (Section 5). In using AO and in-
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terpreting AO data it is important to understand the limitations of solar AO or AO in general.
AO performance is not perfect as is the case for many optical systems, including space borne tele-
scopes. Section 6 details performance limitations of adaptive optics in the context of developing
an AO residual wavefront error budget. Error budgets provide important guidance for the design
of an AO system. Performance limitations can be overcome to some extent by estimating the AO
PSF and subsequent application of post-facto deconvolution techniques (Section 7). An overview
of operational solar AO systems is given in Section 8. Future solar AO developments, including
the development of Multi-conjugate AO are discussed in Section 9.
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2 Adaptive Optics Basics

This section briefly summarizes the basic principles of AO. An extensive body of AO literature
already exists and includes textbooks (Hardy, 1998; Roddier, 1999; Tyson, 2011), review articles
(Beckers, 1993a), and a large collection of conference and workshop proceedings. AO tutorials
are also available at various web sites. The web site of the Center for Adaptive Optics (http:
//cfao.ucolick.org/) contains a large number of links to additional AO web sites and several
AO tutorials. It is not the objective of this section to provide a comprehensive summary of AO
concepts and principles, but to simply recall the important concepts and definitions and set the
stage for the discussion of the solar AO specific problems and their solutions.

2.1 Atmospheric turbulence

The task of an AO system is to correct wavefront aberrations introduced by the turbulent at-
mosphere above the telescope. Turbulent motions in the atmosphere mix eddies with different
temperatures and thus different densities. As a consequence light propagating along different
paths through a turbulent medium experiences a different refractive index. The result is an optical
path difference, which in turn leads to deformations of the incoming wavefronts.

A good understanding of the atmospheric properties above the telescope site and the resulting
wavefront aberrations is crucial for the design and operation of an AO system. The importance
of site survey and site characterization efforts cannot be overemphasized in this context. Key
atmospheric parameters that determine the design and performance of an AO system include the
Fried parameter r0, the Greenwood frequency 𝑓𝑐, and the atmospheric turbulence profile 𝐶𝑛2(ℎ).
𝐶𝑛2 is the refractive index (n = refractive index) structure constant, which will be defined and
discussed below. By using turbulence theory, these properties can be used to design AO systems
and predict their performance. The most widely used model to describe atmospheric turbulence is
the Kolmogorov model (Kolmogorov, 1941, 1991). Energy is introduced into the system by wind
flows at a large scale (the outer scale) and cascades down to ever smaller scales until, finally, energy
is dissipated at molecular scales (the inner scale). The inertial range is bound by the outer and
the inner scale and marks the regime where the turbulent power of the temperature fluctuations
Φ𝑇 as a function of spatial wave number 𝜅 = 2𝜋/𝑙 can be expressed by a power law:

Φ𝑇 (𝜅) ∝ 𝜅−5/3. (1)

Similar power laws can be derived for other quantities such as the refractive index power spectral
density in one dimension (Hardy, 1998; Tatarskii, 1967):

Φ𝑁 (𝜅) =
Γ
(︀
5
3

)︀
sin

(︀
𝜋
3

)︀
(2𝜋)

5/3
𝐶2

𝑛 𝜅
−5/3 = 0.0365𝐶2

𝑛𝜅
−5/3. (2)

The equivalent in three dimensions leads to the well known 𝜅−11/3 power law (Roggemann and
Welsh, 1996; Quirrenbach, 2002):

3𝐷Φ𝑛(𝜅) =
Γ
(︀
8
3

)︀
sin

(︀
𝜋
3

)︀
4𝜋2

𝐶2
𝑛 𝜅

−11/3

= 0.033𝐶2
𝑛 𝜅

−11/3. (3)

The refractive index structure constant 𝐶2
𝑛 is a measure for the strength of the turbulence and

is related to the temperature structure constant 𝐶2
𝑇 by: 𝐶𝑛 = 𝛿𝑛/𝛿𝑇 𝐶𝑇 .

At this point it is convenient to discuss the concept of the structure function, which was intro-
duced by Kolmogorov to describe non stationary random processes such as turbulence. In general,
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structure functions are very useful in assessing the impact of turbulence on the image quality pro-
vided by an imaging system, independent of whether the aberrations are caused by atmospheric
turbulence or optical imperfections. Today, structure functions are used to, for example, specify
optical polishing tolerances.

In the context of atmospheric turbulence the refractive index structure function is assumed to
be isotropic and is defined as:

𝐷𝑛(𝜌) = ⟨|𝑛(𝑟⃗)− 𝑛(𝑟⃗ + 𝜌⃗)|2⟩ = 𝐶2
𝑛𝜌

2/3. (4)

The angled brackets ⟨. . .⟩ indicate an ensemble average and 𝜌⃗ defines a spatial separation, for
example in the pupil plane of a telescope. The refractive index structure function can be related
to the phase structure function, which is essential in determining the performance of an imaging
system in the presence of turbulence. The phase structure function produced by a layer of thickness
𝛿ℎ is given by Hardy (1998), Roggemann and Welsh (1996), and Quirrenbach (2002):

𝐷𝜙(𝜌, ℎ) = 2.914 𝑘2𝛿ℎ𝐶2
𝑛𝑖
(ℎ) 𝜌5/3. (5)

The wavenumber 𝑘 = 2𝜋
𝜆 , where 𝜆 is the wavelength. It should be noted that the phase shift

introduced can be related to the refractive index fluctuations along the optical path by Φ =∫︀
𝑛(ℎ)𝑑ℎ.
Hence, if multiple turbulence layers (or a continuum) are present, Equation (5) has to be

integrated along the line-of-sight. The zenith angle 𝛾 is introduced to account for changes in the
length of the line-of-sight travel path with observing angle:

𝐷𝜙(𝜌) = 2.914 𝑘2(sec 𝛾)𝜌5/3
∫︁

𝐶2
𝑛(ℎ) 𝑑ℎ. (6)

The Fried parameter r0 is a measure for the strength of the turbulence and is defined as (Fried,
1966a,b):

𝑟0 ≡
[︂
0.423 𝑘2(sec 𝛾)

∫︁
𝐶2

𝑛(ℎ) 𝑑ℎ

]︂−3/5

. (7)

The Fried parameter gives the diameter of a patch in the aperture plane over which the wavefront
can be regarded as flat. More precisely, flat in this case means the wavefront variance is less than
1 rad2. In that sense the Fried parameter can be interpreted as the smallest AO relevant scale
of turbulence. Of course, the turbulent spectrum contains much smaller spatial scales. The Fried
parameter is often used to quantify the seeing quality at an astronomical site. The statistical
distribution as well as the temporal evolution of the Fried parameter ultimately determines the
performance of an AO system at the site. The value of the Fried parameter depends on wavelength
according to 𝑟0 ∝ 𝜆6/5. This means r0 has to be specified at a certain wavelength, typically 500 nm.
The Fried parameter r0 is larger for longer wavelengths, which means the seeing is significantly
better at infrared wavelengths. Hence, correcting the seeing with AO becomes easier at longer
wavelengths.

The phase structure function can be expressed in terms of the Fried parameter resulting in a
much simpler form of 𝐷𝜙(𝜌):

𝐷long(𝜌) = 6.88

(︂
𝜌

𝑟0

)︂5/3

. (8)

This phase structure function describes the performance of imaging systems in the presence
of turbulence. Equation 8 is often referred to as the uncorrected, long exposure phase structure
function. This simple form for the structure function is valid only in a statistical sense, i.e.,
when averaged over a sufficient amount of independent realizations of the atmospheric turbulence.
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Marino (2007) showed that, for daytime observations, exposures of only a few seconds can be re-
garded as long exposures. Solar astronomers tend to use such long exposure times when performing
precision polarimetric measurements. High resolution spectroscopy sometimes requires exposure
times of similar length. However, broad-band solar imaging is typically performed with very short
exposures on the order of a few milliseconds with the intention to freeze the seeing. Image motion
(tip and tilt) can essentially be removed in this way and the images contain speckle, i.e., structure
with width of the diffraction limit 𝜆

𝐷 . The fact that diffraction limited information is contained in
the short exposure images can then be used to restore the true image by applying post-facto image
reconstruction techniques. Löfdahl et al. (2007) give a review of various post-facto reconstruction
in solar astronomy.

An analytical expression for the short exposure structure function can also be given (see, e.g.,
Hardy, 1998, p. 92):

𝐷short(𝜌) = 6.88

(︂
𝜌

𝑟0

)︂5/3 (︂
1−

(︁ 𝜌

𝐷

)︁1/3
)︂
. (9)

The negative impact of atmospheric turbulence on imaging systems has been described in detail
in textbooks (e.g., Hardy, 1998, Section 3). It is the de-correlation of the phase over distances larger
than r0 that results in blurred images where the typical width of the blurred long exposure image
is 𝜆

𝑟0
, i.e., the resolution is seeing limited.

The long exposure Optical Transfer Function (OTF) is defined as the ensemble average of the
instantaneous OTFs over the entire exposure:

OTF(𝜌⃗/𝜆) = ⟨OTF(𝜌⃗/𝜆, 𝑡)⟩ =

=
1

𝑆

∫︁
𝑃 (𝑥⃗)𝑃 *(𝑥⃗+ 𝜌⃗)⟨exp [𝑖𝜙(𝑥⃗, 𝑡)− 𝑖𝜙(𝑥⃗+ 𝜌⃗, 𝑡)]⟩𝑑𝑥⃗, (10)

where 𝑃 (𝑥⃗) is the pupil function and 𝑆, the surface area of the pupil, normalizes the energy
contained of the PSF to unity. Using the definition of the structure function the long exposure
OTF can be simplified to:

OTF(𝜌⃗/𝜆) =
1

𝑆

∫︁
𝑃 (𝑥⃗)𝑃 *(𝑥⃗+ 𝜌⃗) exp

[︂
−1

2
𝐷𝜙(𝑥⃗, 𝜌⃗)

]︂
𝑑𝑥⃗, (11)

which leads directly to:

OTFatm(𝜌⃗/𝜆) = exp

[︃
−3.44

(︂
𝜌

𝑟0

)︂5/3
]︃
. (12)

The OTF and the PSF are related through a Fourier transform. Figure 4 shows the OTFs and
PSFs of the seeing limited long exposure (Equation 12), the aberration free, diffraction limited
telescope and a typical AO corrected case. The seeing limited OTF does not transfer high spatial
frequency information. The AO system is able to retain high spatial resolution information poten-
tially up to the diffraction limit. However, the amplitudes are attenuated in particular, for high
spatial frequencies where, depending on the particular observation, noise may begin to dominate
before the theoretical diffraction limit.

The AO corrected PSF consists of two parts. A diffraction limited core and a seeing limited
halo. The width of the core is 𝜆

𝐷 , while the width of the halo is 𝜆
𝑟0
. The Strehl, which is defined

as the ratio of the peak intensity of the observed PSF compared to the peak intensity of the ideal
telescope PSF, of the AO corrected PSF shown in Figure 4 is S = 0.6. The Strehl ratio is also
a measure for the energy contained in the core vs. energy in the halo. The AO corrected long
exposure phase structure function will be revisited in detail in Section 6.3.
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Figure 4: Left: long exposure Point Spread Function (PSF) of the turbulent atmosphere (red,dashed),
the perfect, diffraction limited telescope (black, solid) and a typical partially AO corrected PSF (blue,
dotted). The corresponding modulation transfer functions (MTF) are shown on the right.

The time 𝜏0 after which wavefront aberrations change significantly is another important pa-
rameter that determines and limits the performance of solar AO and also defines the meaning of a
short or long exposure. Using the Taylor hypothesis of frozen in turbulence one can easily derive
an estimate for 𝜏0. The assumption is that a turbulence screen is carried across the telescope
aperture by wind at time scales much faster than the intrinsic evolution of the turbulence. This
assumption has been experimentally verified (Poyneer et al., 2009) and can be used to implement
predictive control of AO systems (e.g., Dessenne et al., 1998, 1999; Poyneer and Véran, 2008; John-
son et al., 2008) in order to improve performance. With this assumption the turbulence or seeing
time constant 𝜏0 can be estimated by the simple equation:

𝜏0 ≡ 𝑟0/𝑣, (13)

where 𝑣 is the wind speed of the dominant turbulence layer. For visible wavelengths typical values
for 𝑟0 ∼ 10 cm and 𝑣 ∼ 10 m/s result in a 𝜏0 ∼ of 10 ms. The wavelengths dependence of 𝜏0 is the

same as for 𝑟0 ∼ 𝜆
6
5 . Thus the bandwidth requirements for AO can be relaxed in the infrared.

2.2 Design of an AO system

The task of the AO system is to restore and maintain sufficient phase coherence across the telescope
aperture to enable formation of a diffraction limited core. The goal is to design a well performing
AO system that achieves high Strehl and, hence, approaches the performance of the ideal telescope.
Figure 5 shows arrangement of the basic components of an AO system, which are:

� a wavefront sensor (WFS) that measures the wavefront aberrations. The wavefront is typi-
cally sensed indirectly by, e.g., measuring wavefront gradients at a number of positions in a
pupil plane. An example of such a WFS is the Shack–Hartmann WFS (SHWFS), which is
shown in Figure 5 and will be explained in detail in Section 4.

� a wavefront corrector, such as a deformable mirror (DM) that corrects phase aberrations by
introducing the correct, compensating optical path difference. The mirror surface is deformed
by actuators located at the back of the thin mirror substrate also referred to as faceplate.
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� a reconstructor, or more generally, a processing unit that computes actuator commands
(e.g., voltages) from the WFS information. The processor unit typically also implements a
closed-loop servo algorithm for driving the DM in the most effective way.

Figure 5: Principle of adaptive optics. The main adaptive optics components are the deformable mirror,
the wavefront sensor and a control system that includes a wavefront reconstructor. A beam splitter sends
a small fraction of the light to the wavefront sensor while most of the light is distributed to the science
instrument(s) (courtesy of Claire Max, Center for Adaptive Optics, UC Santa Cruz).

Different approaches to solar wavefront sensing and different implementations for wavefront cor-
rectors will be discussed briefly in Section 3 in the context of the history of solar AO development.
More information can be found in textbooks and other relevant literature (e.g., Proc. SPIE ). As a
general comment it is noted that the desire to achieve high Strehl ratio leads directly to a require-
ment for high order correction, meaning that the wavefront aberrations have to be sampled with
high density. A similarly large number of DM actuators is required to fit the incoming wavefront
with high fidelity. Furthermore, the temporal bandwidth of the AO system has to be sufficient
with respect to the seeing time constant. The number of corrective elements or degrees-of-freedom

(DOF) of an AO system is roughly DOF ≈
(︁

𝐷
𝑟0

)︁2

. A more detailed analysis will be performed in

the context of developing an wavefront error budget (Section 6).

2.3 Solar AO challenges: difference between night and day

In basic design solar AO systems are quite similar to night-time AO systems. However, compared
to night-time AO, solar AO faces a number of different challenges and solar AO systems are in some
aspects technically more challenging than night-time AO (Rimmele, 2004a). The main challenges
are the poor and time varying daytime seeing, the fact that solar astronomers mostly observe at
visible wavelengths (down to 380 nm), and the solar wavefront sensor, which has to work on low-
contrast, extended, time-varying objects such as solar granulation. Due to heating of the ground
by direct sunlight, the near-ground turbulence layer is much stronger during the day and typical
Fried parameters are of order 10 cm (500 nm) at an excellent site and at a typical telescope height
of 20 – 40 m above ground. The entrance aperture of the Dunn Solar Telescope at Sacramento
Peak, NM was placed at a height of 40 m in order to get above a large fraction of the near-ground
turbulence. Nevertheless, the Fried parameter fluctuates significantly on short time scales (seconds)
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and often drops to values of just a few centimeters (Figure 6). In comparison, night-time seeing
conditions generally provide significantly larger and less fluctuating Fried parameters. In addition,
most night-time AO systems operating on large aperture night-time telescopes operate at infrared
wavelengths where the Fried parameter is again larger. Although some night-time AO systems
are already operating at visible wavelengths (Fugate, 2003) and efforts to implement visible AO at
large aperture night-time telescopes are in progress (Bouchez et al., 2010).

Due to the worse daytime seeing conditions and the fact that much of the science is done at
visible wavelengths, solar AO systems require a large number of corrective elements in spite of
the so-far relatively small (compared to night-time telescopes) apertures of solar telescopes. New
generation solar telescopes such as the 4 m ATST require a much larger number of DOF, and the
AO systems for the ATST and EST approach the complexity of what is referred to as extreme AO.
In addition, the corrected FOV of a high order solar AO system implemented at a 4 m telescope is
significantly smaller than what solar astronomers are accustomed to from their experience with AO
at smaller existing telescopes. This issue will be addressed in much more detail in Section 6.1.3.

r 0
(c
m
)

Time (sec)

May 7th 2004

Figure 6: Fried parameter as a function of time as measured at the DST. The seeing during the daytime
can fluctuate significantly and with short time scales (from Marino et al., 2004).

The small value of r0 at visible wavelengths and with daytime seeing conditions require solar
AO systems to achieve a very high closed loop bandwidth. The incoming wavefront varies rapidly
in time. Figure 7 plots as a function of temporal frequency the Power Spectral Density (PSD)
of Zernike coefficient Z4 (astigmatism) and Z24 as measured with the low order NSO AO system
(Rimmele, 2000). A break point in the PSD occurs at about 10 Hz for Z4 and 20 Hz for Z24.
The frequency at which the break occurs is the Greenwood frequency and increases with the radial
mode number. This demonstrates the well known fact that higher order systems require higher
bandwidth as well. The spectrum contains signal power out to at least 200 Hz at which point
noise becomes dominant. The high Greenwood frequency or more accurately the high temporal
frequency content of the wavefront fluctuations leads to required sampling rates of > 2 kHz and
closed loop bandwidths for high order solar AO systems in excess of 100 Hz (Rimmele, 2004a).

A major challenge for solar AO was the development of a suitable wavefront sensor. Wavefront
sensors used for night-time AO system cannot be directly used for solar AO systems because point
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Figure 7: Corrected and uncorrected modal PSD for Zernikes (Noll, 1976) Z4 and Z24 derived from the
NSO low order AO system. Z24 is not corrected with this system due to its low order of correction of
about 20 modes. The seeing contains frequencies well above 100 Hz (from Rimmele, 2000).
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sources that are used as guide stars (natural or laser) for night-time AO systems are not available
when observing the Sun. A solar AO system has to be able to lock on extended targets such
as pores, sunspots or a substructure of a sunspot and solar granulation. Solar granulation, in
particular, is a challenging target to track on since the granulation pattern is of low contrast and
changes on time scales of about 1 min.

Laser guide stars are not a practical solution for solar AO since either extremely bright lasers
would be needed to project a laser spot against the bright background of the solar disk or very
special narrow-band filters (e.g., magneto-optical filters for sodium) would have to be used (Beckers,
2008). The complexity and cost of this approach has so far prevented any serious efforts in this
direction. A possible application for laser guide stars in solar astronomy may be observations of
the very faint corona. The brightness of the corona is only a few millionths of the disk brightness
and natural guide stars, i.e., coronal structure bright enough to track are not available. The future
use of laser guide star AO may therefore be considered for coronal observations to be performed
with the 4 m Advanced Technology Solar Telescope.
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3 A Brief History of Solar AO

The first adaptive optics experiments with the Sun were performed at the Dunn Solar Telescope by
Hardy in 1979 – 1980 (Hardy, 1980). Hardy used a shearing interferometer for a wavefront sensor
and a 21 actuator continuous faceplate DM. Wavefront sensing targets were stars and sunspots.
This was one of the first on-sky adaptive optics experiments and success was limited.

The National Solar Observatory AO program aimed to develop a solar AO system for the
DST (Dunn, 1987; Dunn et al., 1989; Dunn, 1990) using an in-house built 61 actuator continuous
faceplate DM (Dunn et al., 1992) and a focal plane LCD mask WFS (von der Lühe, 1988). This
wavefront sensor concept can be traced back to the well known Focault knife-edge test (Darvann
and Dunn, 1987), which also places a mask (knife-edge) in a focal plane and visualizes phase
aberrations as intensity fluctuations in a pupil plane. The sensor measures wavefront gradients,
and for small wavefront errors its output has been shown to be equivalent to that of the Shack–
Hartmann sensor (Rimmele and Radick, 1998). For high contrast objects that are limited in spatial
extent (star, pore, small sunspot, planet) a straight knife edge can be used as focal plane mask as
is demonstrated with Figure 8.

Figure 8: Still from a movie showing Focault knife-edge wavefront sensor applied to the planet Venus. A
beam splitter arrangement images four images of Venus onto pairs of orthogonal knife edges. This knife
edge configuration encodes wavefront gradients as intensity fluctuations in the pupil plane. The movie
shows the temporal evolution of these patterns and clearly shows how wavefront aberrations are carried
across the telescope aperture by the wind. (To watch the movie, please go to the online version of this
review article at http://www.livingreviews.org/lrsp-2011-2.)

Granulation, however, requires a rather complicated focal plane mask, an example of which is
shown in Figure 9. The mask is derived from the following equation:

𝑀(𝑥⃗) = 𝐴+𝐵[𝐼(𝑥⃗)− Δ⃗)− 𝐼(𝑥⃗+ Δ⃗)], (14)

where A and B are constants that limit the transmission of the mask between 0 and 1 and Δ
is an image displacement comparable to the spatial scale of, e.g., granulation. By placing this
“derivative mask” in an image plane wavefront errors are encoded as intensity fluctuations that
can be measured in a pupil plane.

Since granulation evolves on time scales of minutes the mask has to be continuously updated;
this can be implemented using a programmable LCD screen. Such a sensor was implemented at the
DST but, in particular when used on granulation, had serious signal-to-noise issues. This approach

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-2

http://www.livingreviews.org/lrsp-2011-2
http://www.livingreviews.org/lrsp-2011-2


20 Thomas R. Rimmele and Jose Marino

Figure 9: Focal plane derivative mask for granulation (see von der Lühe, 1988).

does not divide the pupil into subapertures and therefore does not suffer from the limitations such
as subaperture diffraction. However, the focal plane mask introduces diffraction effects in the pupil
plane and in this way limits the resolution with which the wavefront can be resolved. The concept
was recently investigated further with a laboratory setup (Schmidt and von der Lühe, 2007) but
so far has not been successfully implemented at a solar telescope.

A Shack–Hartmann based solar AO system was developed by Lockheed (Acton and Smithson,
1992; Acton and Dunn, 1993) and tested at the DST. The system was based on a custom built
19 element segmented mirror combined with a Shack–Hartmann sensor. The SHWFS used analog
quad-cell detectors to sense image shifts, which limited its application to small high contrast ob-
jects, i.e., solar pores and thus severely limited the system’s scientific use. In addition, due to the
complexity of the system, it could be characterized as an optical experiment rather than a science
instrument. Figure 10 shows the segmented DM and the quad-cell SHWFS of the Lockheed AO
system. A particular challenge of the segmented mirror approach is phasing the segments. Exper-
tise developed for the Lockheed AO system has since been useful to segmented mirror telescope
projects such as Keck and JWST.

These early solar AO efforts were forced to custom-develop all components, such as DM, re-
constructor and control hardware, and WFS. Many of these components were not available com-
mercially, and development (either in-house or through development contracts) was extremely
expensive, time consuming and plagued by frequent setbacks. A viable and practical solution to
the solar wavefront sensor problem was also lacking. A breakthrough in solar AO came with the
development of the correlating Shack–Hartmann wavefront sensor and its implementation in the
NSO low-order adaptive optics system. The NSO low-order solar AO system was the first fully
operational solar AO system that was also capable of tracking on granulation. The design of this
24 subaperture solar AO system is described in detail by Rimmele and Radick (1998) and Rimmele
(2000).
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Figure 10: The 19 element Lockheed AO system. Shown are the segmented deformable mirror and the
Shack–Hartmann wavefront sensor. Both subsystems were custom built. The images of a small sunspot
recorded with and without AO correction demonstrate the systems ability to partially correct seeing
aberrations (from Acton and Smithson, 1992).
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This system was successfully tested in 1998 at the DST and was operated on a routine basis at
the DST for a number of years. The low-order solar AO system achieved diffraction limited imaging
with high Strehl ratios (up to 0.6) in good seeing conditions (r0 (500 nm) > 12 cm). The success was
made possible by rapid development of computer technology that allowed the implementation of
the compute and data transfer intensive correlation algorithm described in more detail in Section 4.

The NSO low-order AO system made use of components that at the time had just become
commercially available. An off-the-shelf XINETICS DM with 97 (Ealey and Wellman, 1994) actu-
ators and sophisticated control electronics could be implemented. A correlating Shack–Hartmann
wavefront sensor with 24 subapertures was developed based on Digital Signal Processor (DSP)
technology. The correlating Shack–Hartmann wavefront sensor uses the same principle that had
been used for quite some time to provide tip/tilt correction at solar telescopes with a device called
Correlation Tracker (von der Lühe et al., 1989). The challenge for low-order AO system develop-
ment was implementing 24 correlation tracker channels running in parallel, at high update rates
and with low latency. In 1998 the NSO low-order solar AO was the first system to demonstrate
that AO can work on granulation and represented an important and timely milestone in making
a compelling case for the ATST through the US decadel review process. A solar AO system was
installed at the 50 cm Swedish Solar Telescope in 1999 (Scharmer et al., 2000, 2003). Following
the successful implementation of these systems other solar AO systems were developed at major
solar telescopes (von der Lühe et al., 2003; Scharmer et al., 2003; Keller et al., 2003) some of which
are still in operation. All solar AO systems currently in operation are based on the correlating
Shack–Hartmann wavefront sensor. Section 8 summarizes the characteristics of these systems.

The NSO low-order AO system was the first to demonstrate adaptive optics on granulation
and scientific utility of solar AO. Hence, some early results from this system are shown here,
even though, this system has since been surpassed by higher performing systems installed at solar
telescopes such as the SST on La Palma, the German VTT on Tenerife, and the DST in New
Mexico.

Figure 11 shows observations of a sunspot obtained with the low-order adaptive optics system at
the DST. The observations were performed using a CCD camera behind the Universal Birefringent
Filter (UBF), which has a passband of about 250 mÅ. The images shown were obtained by co-
adding 12 individual 1.5 s exposures resulting in a 18 s effective exposure time. The top row images
show a narrow-band filtergram and the corresponding line-of-sight magnetic field map obtained by
analyzing the circular polarization states. As expected, the bright points surrounding the sunspot
seen in the intensity map are co-located with magnetic field elements. The size of these bright
points is on the order of the diffraction limit of 0.2” at 630 nm: demonstrating that diffraction
limited resolution has been achieved in these long exposure data. Similarly, diffraction limited
resolution is achieved in the intensity (bottom left) and velocity (bottom right – bright: upflow;
dark: downflow) map, respectively, taken with the UBF tuned to the wings of an Fe i line at
557.6 nm.

In the above examples the high contrast sunspot structure was used as a wavefront sensing
target. However as discussed above, the noise of a correlating Shack–Hartmann wavefront sensor
increases as the image contrast of the object decreases. Figure 12 shows a narrow-band filtergram
of solar granulation recorded with an effective exposure time of 30 s. The AO was locked on a
10” Ö 10” FOV in the center of the image. These images demonstrate that the diffraction limit is
still achieved when the low contrast granulation is used as a wavefront sensor target.

The low-order AO system has produced a number of impressive results. However, the low-order
system was not well matched to median seeing conditions at Sacramento Peak. An early site survey
determined that the median seeing at Sac Peak is r0 (500 nm) = 8.7 cm (Brandt et al., 1987).
The ATST site survey (Hill et al., 2004, 2006) performed a much more extensive and systematic
measurement of the Fried parameter at Sac Peak and determined a lower median r0 of less than
5 cm for the Sac Peak daytime seeing. The Fried parameter fluctuates on time scales of seconds
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Figure 11: Diffraction limited long exposure (18 s) images of a small sunspot collected at the DST with the
NSO low order solar AO system. Upper left: narrow-band image at 630 nm. Upper right: corresponding
line-of-sight magnetogram. Lower left: narrow-band image at 557.6 nm. Lower right: corresponding
velocity map (see Rimmele, 2004b).
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Figure 12: Left: Diffraction limited long exposure (30 s) granulation image recorded with the NSO low
order AO at 630 nm. Tick marks are 1”. Right: Granule with surrounding bright point structure (500 nm,
exposure: several seconds).

during the highly variable daytime seeing conditions. This results in large variations in the Strehl
ratio, which are mostly due to the wavefront errors in the uncorrected higher order modes (see
Figure 13).

The variations in Strehl ratio also make the interpretation of spectral and polarimetric data
very difficult. Difference images are often used to produce magnetograms (left circular – right
circular polarization) or dopplergrams (blue wing – red wing of a spectral line), examples of which
are seen in Figure 11. In general, those images are not taken simultaneously and variations in
Strehl between the, e.g., LCP and RCP images result in spurious magnetic signals. For many
science applications time sequences of high resolution images or spectra a needed in order to study
the highly dynamic solar atmosphere. For these applications consistent and good image quality
is needed for all images/spectra in the time sequence. Correcting more spatial modes mitigates
this problem to some extent. Provided that seeing fluctuations are not too severe a high order AO
system is more likely to provide sustained high Strehl ratios in variable daytime seeing conditions
(see Figure 13). This motivated the development of a high order solar AO system – the AO76
system – for the DST, which is discussed in Section 5.

For completeness it should be mentioned that curvature wavefront sensors that have been
implemented with great success in night-time AO systems (Roddier, 1988, 1990, 1991; Roddier
et al., 1992; Graves et al., 1998) have also been proposed for solar AO. Although some effort has gone
into the development of curvature sensing techniques for solar adaptive optics application (Kupke
et al., 1994, 1998; Molodij et al., 2002) those efforts have not yet led to practical implementation of
this concept, which is likely due to fundamental signal-to-noise problems with this approach when
applied to an extended object like solar granulation (Fienup et al., 1998).
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Figure 13: Strehl as function of the number of corrected modes and with r0 as a parameter. A low
order system such as the NSO LOAO, which corrected between 15 – 24 modes (vertical lines on the left),
produces high Strehl only for the best seeing conditions. Fluctuations of the Fried parameter result in
large variations of the Strehl. A high order system such as the DST AO76, which corrects up to about 75
modes (vertical line on the right), can significantly reduce but not entirely eliminate Strehl fluctuations.
These Strehl calculations are theoretical but assume realistic conditions and, as will be shown later, actual
Strehl measurements closely match the modeled Strehl predictions.

4 The Correlating Shack–Hartmann Wavefront Sensor

The previous section summarized the vital role of the correlating SHWFS for solar adaptive optics.
The principle of a correlating SHWFS is quite simple and is shown in Figure 14. The telescope
aperture is sampled by an array of lenslets, which in turn forms an array of images of the object.
In this case the object is solar granulation and typically 20 Ö 20 pixels are used to image a field of
view of about 10” Ö 10” or less. The field can not be much larger to avoid averaging of wavefront
information, in particular, from high turbulence layers. On the other hand, the FOV has to be
large enough to contain a sufficient number of granules for the correlation algorithm to work in a
robust manner (von der Lühe, 1983). As will be discussed in Section 6 depending on the severity
of turbulence at high altitudes in the atmosphere and the zenith angle a WFS FOV of 10” Ö 10”
can already severely limit the Strehl performance when compared to a point source WFS that is
not subject to the directional averaging effect. The main challenge is to compute cross correlations
in real-time between subaperture-images and a randomly selected subaperture-image, which serves
as reference. The cross correlations are computed using:

𝐶𝐶(Δ⃗𝑖) =
∑︁∑︁

𝐼𝑀 (𝑥⃗)× 𝐼𝑅(𝑥⃗+ Δ⃗𝑖), (15)

where 𝐼𝑀 (𝑥⃗) is the subaperture image, 𝐼𝑅(𝑥⃗) is the reference image, and Δ⃗𝑖 is the pixel shift
between image and reference. The number of shifts between reference and image can be limited
to just a few pixels in either direction, assuming the local tilts are small, i.e., the number of sums
that have to be computed can be limited to a small number. Typically, computing the cross
correlation on a pixel array of 5 Ö 5 pixels is sufficient, in particular once the control loop is closed.
Alternatively the cross correlations can be computed using Fourier Transforms (FT) (von der
Lühe et al., 1989). Using the FT approach may be of advantage on some processor platforms and
provides the cross correlation for the entire FOV.

Variations of the classical cross-correlation algorithm have been proposed and are used in some
solar AO systems (e.g., Shand et al., 1999; Scharmer et al., 2003). Computing the Square Dif-
ference Function or the Absolute Difference Function Squared may actually have slightly better
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performance (Löfdahl, 2010). The Absolute Difference Squared algorithm can be efficiently im-
plemented on general purpose microprocessors using multimedia instruction set extensions (Shand
et al., 1999).

Figure 14: Still from a movie showing Principle of correlating Shack–Hartmann wavefront sensor. Cross-
correlation techniques are used to track the low contrast granulation images or any other extended object
of sufficient contrast (Rimmele and Radick, 1998). The movie shows a time sequence of wavefront sensor
camera images with 12 subapertures across the pupil of the DST. The cross-correlation functions of the
subaperture images of granulation are shown on the right. (To watch the movie, please go to the online
version of this review article at http://www.livingreviews.org/lrsp-2011-2.)

The full field cross correlations are shown in Figure 14, upper right. By locating the maximum
of the cross correlation the displacement of the images with respect to the reference is determined,
thereby measuring the local wavefront gradients or tilts. Image displacements are computed to
subpixel precision by fitting a parabola to the correlation peak using and interpolating between
pixels. Alternatively, a centroiding algorithm, commonly used for tracking point sources, can
be used to track the correlation peaks since those closely resemble point sources. A tilt map
is shown in the lower right corner of Figure 14. From the tilt vector map an estimate of the
wavefront distortions is derived, i.e., the drive signals for the actuators of the deformable mirror
using the same modal or zonal reconstruction schemes used for night-time AO systems (Hardy,
1998; Roddier, 1999; Tyson, 2011) are computed. Therefore, the main difference when compared
to the night-time, SHWFS is the additional step required to compute the cross correlations, which
adds significant computational expense.

Computing the cross correlations for a large number of subapertures requires not only substan-
tial processing but also significant I/O capabilities. At the time when the first solar AO efforts
were undertaken these capabilities were just not available. However, with the advances in the
development of computer technology of recent years the processing power and I/O bandwidth are
now readily available, for the most part as off-the-shelf products. The correlating Shack–Hartmann
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WFS is also of interest for tracking extended (elongated) “spots” produced by laser guide stars
(e.g., Gratadour et al., 2010). It is interesting to note that images of the retina of the human eye
with its cone structure look very similar to images of granulation, which in principle would make
this wavefront sensor approach also interesting for vision science applications (Williams, 2000;
Carroll et al., 2004). However, sufficient illumination of the retina is a problem and, hence, vision
science AO systems project laser point sources onto the retina as wavefront sensing targets.

The subaperture size of Figure 14 is 7 cm and diffraction at this small aperture limits the rms
contrast of the granulation images to 1 – 3%, depending on the seeing conditions (Berkefeld and
Soltau, 2010). This compares to typically 6 – 8% when imaged through the full aperture of the
DST and an intrinsic contrast of about 13%. The low rms image contrast limits the sensitivity
and ability to maintain lock of a correlating Shack–Hartmann wavefront sensor.

Potential alternatives to the correlating SHWFS

In the near future phase diversity (PD) might become an alternative to a correlating SHWFS, which
currently appears to be the only viable choice for solar AO. Phase diversity has been used as a
post-facto image reconstruction technique for solar high resolution imaging (Löfdahl and Scharmer,
1994). The implementation of real-time PD (Georges III et al., 2007; Warmuth et al., 2008) has
made significant progress in recent years. Paxman et al. (2007) summarizes the current state and
future prospects of real time PD and specifically compares performance and information content
of PD and correlating SHWFS. Currently existing laboratory PD systems achieve 100 Hz frame
rates, which is insufficient for solar AO applications. However, a number of speed-up factors may
result in update rates for real time PD systems of 450 Hz to 5.4 kHz with a PD WFS sampling of
128 Ö 128 pixels or 1.6 to 20 kHz with sampling of 64 Ö 64 pixels and, thus, promises to provide
a high performance alternative to the, by now, conventional correlating SHWFS approach.
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5 AO System Implementation

5.1 DST AO system: an example

The DST high order AO76 system (Rimmele, 2004a) will be used as an example to describe common
implementation aspects of solar AO. Two of these systems are operated at the DST and a copy of
this system was operated at the BBSO 60 cm telescope until the removal of the telescope. With
the recent commissioning of the 1.6 m NST the AO76 is now (2010) reinstalled at the NST. This
high-order solar AO system is able to correct seeing during median seeing conditions at the DST
site. The high-order system design uses a parallel processing approach with mostly off-the-shelf
components. The problem of computing cross correlations for a large number of images (76 in this
case, hence the name AO76) is well suited for parallel processing and the use of DSPs.

Figure 16 shows a picture of the high order AO76 system at the DST (Rimmele, 2004a). Since
the DST was retrofitted with AO, integration of the DM and tip/tilt mirror into the main telescope
optics was not possible. Instead an AO bench had to be inserted between prime focus and the
instruments. Since the DST has two instrument stations, two identical AO benches were installed
that feed the diverse instrumentation. Figure 15 shows a comparison of a long exposure (3 s)
image of granulation obtained with the AO76 operating (top) and with just tip/tilt compensation
(bottom).

Calibration of the AO system is extremely important to obtain optimal performance. Hence
calibration tools are an integral part of the AO setup. A motorized aperture wheel placed at
prime focus holds field-stops, a resolution target, a calibration pinhole, and a small mirror, which
optionally feeds light from a single-mode fiber into the setup. The pinhole serves as artificial object
for alignment of actuator and wavefront sensor grids. The pinhole also can be used to flatten the
DM and co-align the focal plane of the WFS and prime focus. The laser feed is used to test and
align the AO optics and to flatten the DM to very high precision using a interferometer (Ren
et al., 2003). The laser interferometer can be placed at or near a instrument detector focal plane.
Non-common path optical aberrations can be measured and calibrated out in this way.

A spherical collimator mirror follows prime focus and forms an image of the pupil on the 30 mm
tip/tilt mirror. The tip/tilt mirror is mounted at a 45-degree angle and directs the light into the
horizontal axis, i.e., onto the AO bench. Two off-axis parabolas (OAP) serve as collimator and
camera mirrors, respectively. The collimator forms a 77 mm image of the pupil on the deformable
mirror. The camera parabola forms an image of the Sun. This is a very common approach to
implementing AO into the optical path between telescope and instruments. A cube beam splitter
near the focal plane of OAP2 transmits about 5% of the light to the WFS assembly. The rest of
the light is reflected to the science instrumentation.

Separate pupil imaging for tip/tilt and deformable mirrors is implemented to allow a signifi-
cantly smaller tip/tilt device that achieves high bandwidth. The importance of high bandwidth
tip/tilt correction has been pointed out by Conan et al. (1995). Because of the large variance
contained in the tip and tilt modes it is extremely important to correct these modes efficiently
with high gain and high bandwidth. For example, if a reduction of tip/tilt variance by a factor
of ten is achieved, the residual tip/tilt variance is still of the same order as the variance in all the
higher modes combined. A small tip/tilt device is also favorable in terms of cost.

The small fraction of light directed to the wavefront sensor path is split further by additional
5% cube beam-splitters to provide light for a video camera for visual performance control and
target selection, and for the detector of the stand alone tip/tilt compensation system (correlation
tracker (von der Lühe et al., 1989) that is implemented as an option in the AO system. A tip/tilt
measurement can also be directly derived from the AO76 wavefront sensor.
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Figure 15: Still from a movie showing Long exposure (3 s) granulation image recorded with AO76 (top)
and with just tip/tilt correction applied (bottom). The movie shows the real time video sequence obtained
during first light with AO76. The system is locked on a small pore. The AO is turned off several time
during the sequence to show the uncorrected image quality delivered by the DST. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2011-2.)
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Figure 16: Implementation of AO76 system at the DST.

5.2 Wavefront sensor

The wavefront sensor is a correlating Shack–Hartmann Wavefront Sensor (SHWFS). The SHWFS
processes 76 subaperture images of 20 Ö 20 pixels. The 76 cm telescope aperture is sampled with
10 subapertures across the pupil resulting in d = 7.5 cm per subaperture. It has been demon-
strated that a subaperture of about 8 cm is the smallest allowable subaperture size that delivers a
theoretical granulation contrast of a few percent (Berkefeld et al., 2010). In comparison the photon
noise on the subaperture images for a typical SHWFS detector is of order 0.5%. The wavefront
sensor noise is discussed in more detail in Section 6.1.5. The condition 𝑟0 ≤ 𝑑 results in additional
wavefront sensor noise due to anisoplanatism effects within the SHWFS FOV (Section 6.1.6).

The optical design of the correlating SHWFS is also simple. Figure 17 from Richards et al.
(2010) shows the main components of a SHWFS assembly. An adjustable square field stop is placed
at the WFS focal plane. A lens is used to collimate the field and at the same time image the pupil
onto the lenslet array. The lenslet forms the array of subimages. Lenslet arrays of different focal
length can be used to vary the size of the WFS FOV. A typical FOV is 10” Ö 10”. The square
field stop is needed to prevent overlap of the subfields in the focal plane of the lenslet array. In
addition the stop contains a motorized pinhole mask that can be inserted at the WFS entrance in
order to calibrate out aberrations internal to the WFS.

The WFS camera might be placed directly into the focal plane of the lenslet array. However, the
subimages have to be matched in size and location to a fixed pixel pattern on the WFS detector.
This is achieved by adding a re-imaging optical zoom system.

The relatively high read noise of about 60 electrons of the CMOS WFS camera is not an issue
for the solar wavefront sensor since the noise is dominated by shot noise. The camera achieves a
frame rate of 2500 fps for a 200 Ö 200 pixels imaging area. The camera is highly configurable. In its
nominal configuration the AO camera reads out 76 subapertures, 20Ö 20 pixel each. The 76 20Ö 20
pixel subaperture images are processed by 40 DSPs. Ten parallel output ports of the camera, one
for each cluster of DSPs, allow fast readout. The camera is programmable to accommodate different
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Figure 17: Schematic implementation of a SHWFS. Adjustable components are motorized to automate
alignment and calibration procedures (from Richards et al., 2010).

formats and frame rates and, thus, is usable for a variety of applications, including Multi-Conjugate
AO (MCAO). The camera for the AO76 system is only one implementation example that was driven
by the available technology at the time the system was developed. With the steady progression
of detector development many off-the-shelf WFS camera options have become available, including
interfaces to various processing platforms.

5.3 Wavefront sensor and reconstructor processor unit

The DST AO76 uses a DSP system to perform all computations for sensing and reconstructing
the wavefront. The processing unit (Figure 18) is built from off-the-shelf components based on the
ADSP-21160 SHARC DSP. Newer generation DSPs with much higher performance are of course
available now. In addition, CPUs and GPUs in the meantime have enough processing power to
perform the processing functions at the high update rates required and several solar AO systems
currently operating use either a high-end PC (Shand et al., 1999; Scharmer et al., 2000, 2003) or
high-end workstations (von der Lühe et al., 2003) to perform this function.

The real time processing functions includes the following (see also Berkefeld, 2007):

� Reading the subaperture images into the processors.

� Apply flat and dark field corrections to the subimages.

� Optionally, an intensity gradient can be removed from each subaperture image using a bilinear
fit when the lock-target is, e.g., near the solar limb. This avoids a systematic bias in the shift
measurements as was described by von der Lühe (1983).

� The cross correlation between its two subapertures and a reference subaperture. The reference
subaperture in principle can be picked at random from the set of 76 subapertures. However,
apertures near the edge of the pupil that are occasionally vignetted are avoided. Partially
illuminated apertures are also avoided.

� The maximum of each cross correlation is located to subpixel precision by fitting a parabola
around the maximum pixel.

� Calibration offsets are removed from the x/y shifts.
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Figure 18: Left: functional block diagram of AO76 DSP based real time control (RTC) system. Right:
image of RTC (see Rimmele et al. (2004) for details).

� Global tilt is computed and removed from the x/y shifts. The global tilt measurements
determined in this way are used to drive the tip/tilt mirror.

� The x/y shifts are multiplied with the predetermined reconstruction matrix to compute
actuator commands. After applying a PI servo algorithm and gain and offset corrections for
each actuator the actuator commands are sent to the DM drive electronics.

The host computer serves as user interface and is not involved in any of the real time processing.

5.4 Deformable mirror

The 97 actuator deformable mirror system used is a commercially available unit (Ealey and Well-
man, 1994) and has been successfully operated as part of the NSO low order AO system. The
continuous facesheet, stacked actuator mirror has very localized influence functions with only 10%
crosstalk between adjacent actuators. It has been argued that a larger crosstalk may actually be
of advantage (Fusco et al., 2006a,b). The DM system has proven to be very robust.
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6 AO76 System Performance and Wavefront Error Budget

Nothing is perfect! AO systems in general provide partial correction only. Residual wavefront
errors from various sources prevent the AO system from providing the ideal telescope performance,
i.e., the achieved Strehl is less than S = 1. In this context it should be emphasized that no
optical system, whether on the ground or in space, provides the theoretically possible performance.
The Solar Optical Telescope onboard the HINODE satellite achieves a Strehl of about S = 0.7
(Suematsu et al., 2007). How closely can ground-based solar telescopes with AO match this kind
of performance? This question can be answered by developing a budget of the residual wavefront
errors of the solar AO.

6.1 Predicted performance based on error budget

The development of an error budget for solar AO is exactly the same as for a night-time AO system
with the exception of the noise sources related to the wavefront sensor. Hence the solar AO specific
wavefront sensor error budget terms will be discussed in some detail while other contributors will
be briefly summarized only since those are discussed at length in textbooks (see, e.g., Hardy, 1998).

The following sources of residual wavefront errors have to be considered:

6.1.1 Wavefront fitting error

The fitting error term is due to the limited number of actuators, which leads to an imperfect fit of
the incoming wavefront by the DM and depends on the ration 𝑑

𝑟0
:

𝜎2
𝐹 = 𝑎

(︂
𝑑

𝑟0

)︂5/3

. (16)

The coefficient 𝑎 is DM specific. For a continuous deformable mirror 𝑎 = 0.28.

6.1.2 Aliasing error

The aliasing error term is due to the limited spatial sampling of the wavefront by the wavefront
sensor. High-order modes can alias into low-order modes and, thus, contribute noise to those
modes. The aliasing term is typically of order 30% of the fitting error variance:

𝜎2
𝐹 = 0.08

(︂
𝑑

𝑟0

)︂5/3

. (17)

6.1.3 Angular anisoplanatism error

A conventional adaptive optics system with the DM typically conjugated to the pupil plane provides
optimal correction in one direction on the sky only. The wavefront sensor is measuring the wavefront
aberrations typically for the center of the extended FOV. For field points offset from the center the
light waves travel from different field directions and, hence, sample different turbulent volumes of
the atmosphere. For that reason the wavefront sensor measurement and, thus, the AO correction
becomes increasingly invalid as the separation from the lock center increases. For an extended
object such as the Sun this effect can be and, in many cases, is a severe limitation. The error that
is introduced when measuring the wavefront at an off-axis point can be derived from the phase
structure function. For the condition 𝐷 ≫ 𝑟0 the anisoplanatic error variance at angular distance
𝜃 can be expressed as (see Hardy, 1998; Quirrenbach, 2002):
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⟨𝜎2
𝜃⟩ = 2.914 𝑘2(sec 𝑧)8/3𝜃5/3

∫︁
𝐶2

𝑁 (ℎ)ℎ5/3𝑑ℎ. (18)

The condition 𝐷 ≫ 𝑟0 is typically valid for large aperture astronomical telescopes but may not
hold for small aperture solar telescopes during excellent seeing conditions.

The isoplantic angle 𝜃0 can be defined as the angular distance for which the anisoplanatic error
variance is 𝜎(𝜃)

2 ≤ 1 rad2. A wavefront that has a variance ≤ 1 rad2 is sometimes referred to as
“flat”. With this definition the isoplanatic angle 𝜃0 can be expressed as (see Hardy, 1998):

𝜃0 =

[︂
2.914 𝑘2(sec 𝛾)8/3

∫︁
𝐶2

𝑁 (ℎ)ℎ5/3𝑑ℎ

]︂−3/5

. (19)

The anisoplanatism error then becomes simply:

𝜎2
𝜃 =

(︂
𝜃

𝜃0

)︂5/3

. (20)

The wavelength dependence of 𝜃0 again derives from the wavelength dependence of r0 and is
𝜃0 ∝ 𝜆

5
6 , i.e., the isoplanatic angle increases significantly towards infrared wavelengths.

With the above definition of the isoplanatic angle the residual wavefront variance amounts
to ∼ 1 rad2 at an angular separation of 𝜃0, corresponding to a Strehl ratio of S = 0.37. The
isoplanatic angle can be quite small in this case if 𝐷

𝑟0
for the high altitude turbulence is large. For

current small aperture solar telescopes, however, 𝐷
𝑟0

(for the upper atmosphere) at a good site can
be of order one. In this case the aberrations contributed by the upper atmosphere are dominated
by low orders, which de-correlate less rapidly than the high order modes as we move away from
the lock center. Similarly, if only a limited number of modes is corrected by the AO system the
AO performance, in a relative sense, deteriorates less rapidly with angular separation because
of the slower de-correlation of low order modes. Normalized modal correlation functions can be
defined to quantify the de-correlation as a function of angular separation for individual modes,
e.g., Zernikes (Valley and Wandzura, 1979; Fusco and Conan, 2004). If the correlation for a given
mode falls below 0.5, adaptive correction for that mode degrades the phase as much as correcting
it. Depending on the application and, in particular, the FOV requirements it may make sense to
restrict the number of corrected modes in order to optimize correction over a larger FOV. The
extreme case is tip/tilt correction only. The isoplanatic angle for tip/tilt, sometimes also referred
to as isokinetic angle (Beckers, 1993a), can be many tens of arc seconds.

The size of the isoplanatic patch is determined by a height weighted (ℎ5/3) integral over 𝐶𝑛(ℎ)2.
If strong turbulence is located high in the atmosphere the isoplanatic patch can become quite small
as 𝐷

𝑟0
of the upper atmosphere becomes large. For example, at the DST site the jet stream occa-

sionally moves far enough south and above the DST causing severe high altitude seeing. Although
a 𝐶𝑛2(ℎ) meter is not installed at the DST the presence of high altitude seeing is usually quite
easy to identify by assessing the real time video image and comparing the visual seeing to the
readings of the Seykora seeing meter (Seykora, 1993). This seeing meter measures scintillation
of an extended object (the solar disk) and, hence, provides a measure of the turbulence heavily
weighted towards seeing layers close to the ground (Beckers, 1993b). Conditions where the video
image indicates bad seeing but at the same time the Seykora meter reading indicates relatively
good seeing are a clear indication of strong high altitude seeing.

In these conditions the dominant seeing layer produced by the jet stream shear layer is at about
h = 10 km and the isoplanatic patch is only of order a few arcsec. This can be seen in Figure 19,
left, which shows a long exposure image of solar granulation with the AO locked on the center of the
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Figure 19: Visualizing the isoplanatic patch. These long exposure (11 s) granulation images were obtained
with the DST AO76 system locked at the center of the FOV. The image on the left was recorded in bad
seeing conditions with a significant fraction of the seeing located at higher altitudes due to the jet stream.
The isoplanatic patch over which the AO corrects optimally is rather small (circle, about 10” diameter).
The long exposure image on the right was recorded under good seeing conditions and the jet stream not
passing right over the telescope site, i.e., a larger fraction of the turbulence is located at low altitudes
resulting in a larger isoplanatic patch.
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field. The optimally corrected FOV is of order 5 – 10”, while the surrounding FOV is significantly
blurred. The high zenith angle 𝛾 under which solar observations are generally performed to take
advantage of the best seeing in the early morning hours adversely affects the isoplanatic patch size.
Fortunately, these conditions are the exception and the jet stream usually passes north of the DST
site (a reason for selecting sites in the south). In this case the seeing is generally dominated by
ground layer turbulence caused by heating of the ground layer and the majority of the turbulence
is located close to the telescope aperture. The isoplanatic patch for a small aperture telescope as
the DST appears to be quite large under these conditions, which is shown in Figure 19, right.

This somewhat qualitative picture is based on observing experience and might be considered
anecdotal. Nevertheless, this experience based knowledge can be helpful when trying to predict
observing conditions in order to optimize observing programs ahead of time. More sophisticated
prediction of seeing conditions use detailed and comprehensive atmospheric modeling (Vernin et al.,
1998; Masciadri et al., 2001; Cherubini et al., 2008a,b, 2009).

The limiting effect of anisoplanatism can be pursued in more depth and more quantitatively
with simulations that consider different turbulence profiles as well as the effect of aperture size
(Marino and Rimmele, 2011). Results for current small aperture solar telescopes can be related to
the observations shown in Figure 19.

Two atmospheric turbulence profiles are considered by Marino and Rimmele (2011) and are
shown in Table 1. The first turbulence profile used represents realistic good, daytime conditions
at the ATST site on Haleakala (see Rimmele et al., 2006c). The second model is built from
measurements above Mt. Graham and Mt. Hopkins in Arizona (Milton et al., 2003; McKenna
et al., 2003).

The Haleakala profile represents a case of relatively weak turbulence at high altitude with just
5% of the power above 6 km. If an total r0 of 10 cm is assumed this profile produces a layer r0
at an altitude of 13.5 km of 1.5 m. The Mt. Graham profile is measured at night-time, i.e., the
represented case has a much stronger higher atmosphere with 40% of the power above 6 km.

The intention here is not to compare sites but to illustrate the impact of the 𝐶𝑛2 profile on the
solar AO Strehl ratio and the isoplanatic angle. For each turbulence profile two seeing cases are
modeled by setting the overall r0 to 10 cm (good seeing) and 20 cm (excellent seeing), respectively.

Table 1: Atmospheric turbulence profiles approximated by discrete layers (from Marino and Rimmele,
2011).

Haleakala Mt. Graham

Height Fraction of Height Fraction of
(m) total power (m) total power

0 0.715 200 0.34
1852 0.232 2000 0.07
6052 0.042 3400 0.19
13552 0.011 6000 0.09

7600 0.06
13300 0.21
16000 0.04

In order to model an existing, small aperture solar telescope Marino and Rimmele (2011)
(virtually) place the DST and its high order AO system on Haleakala and the AO76 performance
in terms of Strehl is modeled as a function of field angle and with zenith angle and number of
corrected modes as parameters. The adaptive optics performance is modeled using a large number
of phase screens that obey Kolmogorov statistics at each of the turbulence layers. The fractional
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Figure 20: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 76 subapertures and 97 actuators was modeled using the
Haleakala atmospheric model of Table 1, which simulates a case of very low high altitude turbulence. The
FOV of the WFS is 10”. Two seeing cases were modeled using an overall Fried parameter of r0 = 10 cm
and r0 = 20 cm, respectively (from Marino and Rimmele, 2011).

distribution of turbulent power and the corresponding layer r0 are shown in Table 1. The turbulence
screens are projected onto the extended wavefront sensor with a FOV of 10” Ö 10”. This ensures
that anisoplanatic effects are accurately taken into account also in modeling the extended field
wavefront sensor measurement (see Section 6.1.6). Drive signals for the DM, which is modeled
using realistic influence functions, are derived from the extended WFS FOV. The model assumes
correction of 80 KL modes and also includes a realistic implementation of the servo loop.

Results are shown in Figures 20 and 21. Several interesting points can be made. The Strehl
ratio at the lock point drops significantly for high zenith angle observations. Whereas the Strehl
at the lock-point would be independent of zenith angle (r0 is assumed to be the same for each
zenith distance in this model calculation) if a point-source WFS is used, the extended source
WFS averages wavefront information from many different sky directions. In the extreme case of a
very large WFS FOV a ground-layer AO is realized, i.e., the upper atmospheric turbulence is not
corrected at all (see Section 9.3). This effect is more pronounced at high zenith angles and worse
high altitude seeing due to the geometric projection of the turbulent phase screens. In addition to
the high airmass solar AO therefore faces this additional disadvantage in achieving high Strehl in
the early morning hours (zenith angle > 70°). Where a WFS FOV of 10” Ö 10” may be adequate
for r0 of 20 cm Figures 20 and, in particular, Figure 21 indicate that for worse seeing conditions
a smaller WFS FOV would be of advantage if high Strehl is the objective. For excellent seeing,
reasonably low zenith angle and low altitude turbulence the isoplanatic patch size can be quite
large. For the most ideal and, thus, rare case (Figure 20, r0 = 20 cm, vertical pointing) the Strehl
dropps to 0.37 at an off-axis angle of about 30”; the isoplanatic patch size is 60”. Reasonably
high Strehl is observed over an even larger FOV. It is also obvious that under less ideal conditions
the isoplanatic patch size rapidly becomes smaller. Substantial high altitude turbulence leads to
significantly reduced Strehl performance and a small isoplanatic patch as can be seen in Figure 21,
right. A site with low high altitude turbulence is clearly preferable from the solar AO point of
view and this was an important factor in the selection of the ATST site.

The equivalent and very important simulation results for future large aperture telescopes will
be presented in Section 9 where it is demonstrated that anisoplanatism is even more of a challenge.
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Figure 21: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 76 subapertures and 97 actuators was modeled using
the Mt. Graham atmospheric model of Table 1, which simulates a case with significant high altitude
turbulence. The FOV of the WFS is 10”. Two seeing cases were modeled using an overall Fried parameter
of r0 = 10 cm and r0 = 20 cm, respectively (from Marino and Rimmele, 2011).

6.1.4 Bandwidth error

The bandwidth error is due to the limited correcting bandwidth of the AO system. The band-
width error is proportional to the ratio between the frequency of the turbulence, quantified by
the Greenwood frequency 𝑓𝐺 (Greenwood, 1977), and the bandwidth 𝑓𝑆 of the AO system (e.g.,
Hardy, 1998):

𝜎2
BW =

(︂
𝑓𝐺
𝑓𝑆

)︂5/3

. (21)

In the special case of a single turbulent layer moving at a speed 𝑣, the Greenwood frequency
𝑓𝐺 can be written as (Hardy, 1998; Tyson, 2011):

𝑓𝐺 = 0.427
𝑣

𝑟0
. (22)

As discussed in Section 2.3, closed loop bandwidths in excess of 100 Hz are required for solar
AO systems.

Closed loop bandwidth should not be confused with sampling rate and using a meaningful
definition of closed loop bandwidth is similarly important (Madec, 1999). A reasonable and con-
servative measure of closed-loop bandwidth is given by the 0 dB error rejection crossover frequency,
which for the DST AO76 system is about 120 Hz. As pointed out in Madec (1999) it is of critical
importance to minimize compute and other latencies in order to obtain high closed-loop band-
width. Equation 21 provides an estimate of the bandwidth error. A more accurate value for 𝜎2

BW

can be computed if the closed loop error rejection transfer function can be measured or modeled
and the PSD of the wavefront aberrations is known.

Often the incoming wavefront is decomposed into the well known Zernike modes (Noll, 1976).
The Greenwood frequency depends on the radial mode number in the following way:

𝑓𝐺(𝑛) ∝ 0.3(𝑛+ 1)𝑣/𝐷, (23)

where 𝑛 is the radial degree of the mode, 𝑣 is the wind speed, and 𝐷 is the telescope aperture.
This modal dependence of 𝑓𝐺 can be inferred from Figure 7, which shows modal PSDs for two
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Zernike modes. The Greenwood frequency for Z4 (astigmatism) is of order 5 Hz, while 𝑓𝐺 for Z21
is about 20 Hz. This means that the higher the order of correction, the more bandwidth will be
required. Therefore, low-order systems require less bandwidth. Figure 7 also plots the corrected
or residual wavefront error PSD, from which the residual wavefront error as a function of mode
can be computed. This information can in principle be used to derive or optimize mode dependent
servo gain factors as is done for some night-time AO systems (Gendron and Léna, 1994, 1995).
However, because of the low wavefront sensor noise of the solar correlating SHWFS the advantage
of setting individual signal-to-noise dependent gains for the modes may not be as convincing as it
is for a photon starved night-time WFS.

6.1.5 Wavefront sensor measuring error

The WFS noise for a correlating Shack–Hartmann WFS has been studied by Michau et al. (1993,
2006). Michau et al. (1993) derived the following equation for the variance of the image position
measurement by tracking the center-of-gravity of the cross-correlation peak:

𝜎2
𝑥 =

5𝑚2𝜎2
𝑏

4𝑛2
𝑟𝜎

2
𝑖

(waves2), (24)

where 𝜎2
𝑏 is the background noise variance, 𝑛2

𝑟 is the subimage size in pixels (typically 16 Ö 16
pixels), and 𝑛2

𝑟 𝜎2
𝑖 is the total “energy” in the image, i.e., 𝜎𝑖/Imean is the rms image contrast.

Nyquist sampling of the image is assumed. A quantitative analysis of the wavefront sensor noise
of a correlating Shack–Hartmann wavefront sensor was given by Poyneer (2003). Equation 24
indicates that the WFS S/N ratio is fundamentally given by the ratio of background noise to
image contrast. It is of advantage to use more pixels per subaperture in order to reduce the WFS
noise (Berkefeld, 2007).

It is important to realize that in the case of a solar wavefront sensor a large number of pho-
tons are available in the wavefront sensor path since the WFS can work with broad-band light
(interference filters that can be several 100 A wide or simple color glass can be used). In praxis
the number of photons that can be collected by the correlating SH wavefront sensor is limited
by the well depth of the detector used. A typical well depth of a CCD is of order 50 ke-. This
means that the shot noise completely dominates the background noise even if relatively noisy CCD
detectors or CMOS devices with read-noise levels of order 50 e- are used. The low noise (∼ 1e-)
wavefront sensor detectors needed for tracking faint guide stars in the night sky are not needed
for the solar application. However, because of the extended FOV (∼ 20 Ö 20 pixels/subaperture)
the correlating SHWFS requires large format detectors and in order to achieve the required high
bandwidths, the frame rates have to be very high (> 2 kHz). This means that detectors for the
solar wavefront sensor typically need to have some sort of parallel readout. The signal to noise
ratio might be improved by collecting more photons, which has to be achieved within an update
rate time of typically 400 µs. A deep well detector or averaging multiple exposures of a extremely
fast framing camera could potentially be used to achieve this and, thus, potentially allow smaller
subapertures.

It should be noted that the wavefront sensor noise is object dependent in the sense that high
signal to noise ratios can be achieved for high contrast objects, such as sunspots, whereas the S/N
ratio for tracking the low contrast granulation is much lower. This is true, in particular, near the
solar limb where the granulation contrast is even lower. Bright faculae near the limb can be used
to lock the correlating SHWFS. The contrast of granulation imaged through a subaperture drops
as the size of the subaperture becomes smaller. Granulation has a typical spatial scale of about 1”.
This means that granulation will be “smeared out” by diffraction if a subaperture size much smaller
than 10 cm is used. There is a “limiting image contrast” below which a correlating SHWFS will
not work anymore. According to practical experience with existing systems the limiting contrast is
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Figure 22: Noise of the correlating Shack–Hartmann wavefront sensor as a function of detector well
depth. The different curves are for subaperture image contrast of (top – bottom): 0.015, 0.025, 0.05, 0.1.

between 1.5 – 2%. The limiting contrast can be compared to the “limiting magnitude” that exists
for the photon starved night-time AO. Because of the dependence of the wavefront sensor noise
on image contrast and the limiting contrast the seeing at the site is extremely important for the
performance of a solar AO systems. Matching a small Fried parameter at a bad site with a smaller
and smaller subaperture size is not possible if granulation is to be used as tracking target.

One could consider substantially increasing the FOV of the subaperture images in order to
be able to track on large-scale intensity structures on the Sun. It has been demonstrated in the
context of active optics wavefront sensing for large solar telescopes that a larger FOV can provide
more robust tracking performance of the cross correlation algorithm (Owner-Petersen et al., 1993).
However, in this case the wavefront sensor averages over many isoplanatic patches and essentially
only the near ground turbulence can be corrected in this way. Although Ground-Layer AO (GLAO)
may be an attractive option for some solar applications (Rimmele, 2000; Rimmele et al., 2010c)
the general conclusion is that scientific productivity of solar AO depends critically on the site
performance.

Michau (2002) argued that Equation 24 overestimates the noise by a factor of two. Cain (2004)
studied an image projection approach to the extended source wavefront sensor problem and found
close agreement with the noise estimates from Equation 24 and his own wavefront sensor noise
estimates. Figure 22 shows the subaperture tilt noise estimates based on Equation 24 as a function
of number of photons collected by the wavefront sensor camera. Nyquist sampling (0.5”/pix) and
20 pixels across the subaperture are assumed. The number of photons collected during an exposure
is only limited by the well depth of the CCD or CMOS device used. For example, the DST AO
systems wavefront sensor camera uses a CMOS camera with well depth of 70 ke-, i.e., the shot
noise is 264 e- compared to the camera read noise of about 50 e-, leading to a total noise of 268 e-.
The different curves in Figure 22 are for subaperture contrasts of 0.015 (granulation, r0 = 5 cm),
0.025 (granulation, r0 > 10 cm), 0.05 (pore, r0 = 7 cm), and 0.1 (sunspot umbra, r0 = 7 cm) and,
thus, give the range of typical observing targets and observing conditions considered in developing
error budgets. It is obvious from Figure 22 that a detector with deep wells is desired. However,
exceeding a well depth of about 40 ke- results in insignificant gains in performance.

The DST AO system was used to verify the noise levels predicted by Equation 24. Open-
loop subaperture tilt PSDs with a sampling rate of 2500 Hz were collected. The example PSD
of Figure 23 clearly shows a flat noise tail that, assuming white noise, can be used to directly
determine the noise of the subaperture tilt measurements. The following subaperture tilt noise
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Figure 23: Subaperture tilt power spectral density (PSD). Top panel: granulation excellent seeing.
Subaperture tilt noise: 15 nm. Bottom panel: sunspot, good seeing. Subaperture tilt noise: 8 nm.
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levels for different observing targets and seeing conditions were obtained:

� Sunspot, median to good seeing conditions: 5 – 8 nm

� Granulation, good to excellent seeing conditions: 15 – 25 nm.

The DST AO camera is operated at about 75% of its well depth or 52 ke- for granulation.
If a sunspot is tracked the number of photons collected per exposure can be as low as 30 ke-.
Comparing the measurements with the predicted noise levels one finds that Equation 24 seems to
slightly overestimate the WFS noise. The WFS noise is propagated onto the actuator commands
by the reconstruction process. The details of this noise propagation are again discussed in text-
books (Hardy, 1998; Roddier, 1999; Tyson, 2011). If B is the reconstruction matrix that converts
wavefront sensor slope measurements into actuator commands, then the mean wavefront error over
the aperture after the reconstruction is (Southwell, 1980):

𝜎2
wavefront =

1

𝑁
trace(BB𝑡)𝜎2

wfs. (25)

The simplifying assumption has been made that the noise covariance matrix is diagonal, i.e., the
noise is uncorrelated. The important point is that the error propagation coefficient 1

𝑁 trace(BB𝑡)
is of order one or less.

6.1.6 Wavefront sensor anisoplanatism noise

The wavefront sensor noise due to anisoplanatism within the extended FOV of the SHWFS can
be an important term that highly depends on seeing conditions and the size of the WFS FOV.
Equation 24 was developed with the assumption that the correlated reference and live images are
shifted copies of each other. However, reference and live image are taken at different times or
from different subapertures. Distortion of the images due to anisoplanatism within the extended
subimage is not considered. The subimage size of the reference and live image of the solar feature
is typically between 5” Ö 5” to 10” Ö 10”. Depending on the seeing conditions and wavelength
larger FOVs may contain several isoplanatic patches, which will compromise Strehl due to the
already discussed field averaging effect. If the highest possible Strehl at or near the lock point
is the objective a smaller WFS FOV is needed. Unfortunately, the field size can not be smaller
than about 5” Ö 5” since a minimum number of granules are required within the FOV to obtain
a distinct correlation peak that can provide an accurate tracking signal (von der Lühe, 1983).

It has been pointed out by Robert et al. (2006) and Védrenne et al. (2007) that anisoplanatism
effects result in an additional noise term from the WFS. This noise term originates from a broad-
ening of the PSF, which is an average over many different directions in the sky. Equivalently the
cross-correlation function is broadened, which lead to a less precise determination of the maximum
position. Scintillation effects and cross-coupling between anisoplanatic and scintillation effects may
produce yet another WFS noise terms of significant magnitude. Wöger and Rimmele (2009) per-
formed a study to evaluate the effects of phase aberrations and scintillation within a subaperture
of a correlating Shack–Hartmann wavefront sensor and compared the contribution of these effects
to the wavefront sensor noise for both isoplanatic and anisoplanatic imaging. Realistic represen-
tations of the object, i.e., solar structure, and a close approximatation for a typical 𝐶2

𝑛(ℎ)-profile
were used in these simulations. Wöger and Rimmele (2009) found that anisoplanatism in wavefront
sensor subapertures can increase the measurement error of Equation 24 by 50% or more depending
on the specifics of the WFS, such as pixel sampling and FOV. They also found that the effect
of scintillation can be neglected in the solar AO case. The anisoplanatism can only be avoided
by making the WFS FOV small enough to only cover one isoplanatic patch, which for practical
purposes is not always possible.
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6.1.7 Non-common path error

The WFS and the science instrument in most cases do not share the entire optical path. In the
simplest case the only difference is a beamsplitter. The science camera might be placed in the focal
plane produced by the beam passing through the beamsplitter while the WFS is placed in the focal
plan reflected off the beamsplitter. The aberrations introduced by the beamsplitter are different for
transmitted and reflected beams and, in this example, the AO will correct what is introduced into
the reflected beam and, in turn, add the aberration to the transmitted beam. In general, with more
complex science instruments many more optical elements are non-common. Since the instrument
and WFS optical paths in the laboratory style environment typical for solar telescopes are through
air, bench seeing adds to the non-common path errors. In a well controlled lab environment local
seeing can add 0.5 – 1 nm of wavefront error per meter optical path lengths (Biérent et al., 2008).
Optical non-common path errors can be calibrated out as described in Section 5.2.

6.1.8 Tip/tilt error

Residual tip/tilt errors can severely lower the Strehl and degrade resolution. Residual image motion
broadens the otherwise diffraction limited core of the PSF. Details can again be found in textbooks
(Hardy, 1998). A separate tip/tilt error budget that considers most if not all terms discussed in
this section should be developed, in particular, if a a separate tip/tilt system (e.g., correlation
tracker (CT)) is used. The WFS noise of the CT sensor, the bandwidth and other terms may be
different for the tip/tilt system.

6.1.9 Total error

Assuming statistical independence, which is usually a valid assumption in this case, the overall
residual wavefront error can be computed as the Root-Sum-Squared (RSS) of the individual error
terms:

𝜎2
tot = 𝜎2

BW + 𝜎2
𝜃 + 𝜎2

fit + 𝜎2
aliasing + 𝜎2

wfs + 𝜎2
wfsaniso + 𝜎2

ncp + 𝜎2
𝑇/𝑇 + 𝜎2

other, (26)

𝜎2
other may, for example, include optical and seeing aberrations within the instrument, if not

already accounted for in the non-common path term.
Obviously the goal is to minimize the residual wavefront variance. This is a difficult task, in

particular, for visible AO systems, which most solar AO systems are. At a wavelength of 500 nm
the total allowable error 𝜎2

tot is less than 50 nm if a Strehl of S = 0.7 is to be achieved. A Strehl
of 0.7 in some textbooks is referred to a diffraction limited performance.

A careful error budget analysis during the design phase and careful attention to each of the
error budget terms while building the AO system followed by a detailed evaluation of the actual
performance are essential steps in ensuring that optimal performance is achieved. During the
design a general goal of systems engineering is to produce a well balanced error budget, i.e., all
terms should be of about equal magnitude. It does not pay to devote significant effort and expense
to reduce one particular error term while other terms remain significantly larger.

6.2 Measured performance of AO

Figures of merit for AO system performance include the achieved Strehl ratio and the residual
wavefront error. However, it is most desirable to have knowledge of the AO corrected PSF because
the most detailed AO performance analysis and optimization of the system can be performed.
Furthermore, if the PSF is known, image reconstruction techniques can be deployed to further
improve the AO corrected images. Solar AO is at a distinct disadvantage here because estimation
of the PSF is not straightforward. For night-time AO the observed object is often a point source
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or a point source can be found nearby. The PSF can be estimated directly from the corrected
image of the point source (Roberts Jr et al., 2004). For solar images one could deploy post-facto
PSF estimation techniques such as phase diversity. However, for estimating the long exposure PSF
provided by the AO system as a function of r0 it is convenient and efficient to use the information
the AO system itself can provide. Some post-facto reconstruction techniques, such as speckle
interferometry (Wöger et al., 2008) that work with short exposure imaging also require this AO
telemetry information.

6.3 Long exposure PSF estimation from AO telemetry

This section explains in some detail the shape of the typical AO corrected long exposure PSF
already shown in Section 2. In particular, it will become clear why the PSF has two components
– a diffraction limited core and a seeing limited halo. In order to derive an estimate for the solar
AO corrected PSF (or equivalently the OTF) the AO structure function needs to be determined
(Marino, 2007; Marino and Rimmele, 2010). The phase structure function produced by isotropic
and uniform Kolmogorov turbulence depends on the separation parameter 𝜌 only. This is no
longer true once AO correction has been applied and the phase structure function now depends on
separation 𝜌⃗ and position 𝑥⃗ in the pupil plane: 𝐷𝜙𝜖(𝑥⃗, 𝜌⃗ ). It should be noted that the fact that the
residual phase structure function no longer can be described with Kolmogorov statistics complicates
post-facto image reconstruction of AO corrected images. Speckle interferometry algorithms have to
be adapted to account for the field dependent AO correction (Wöger et al., 2008). Phase-diversity
and MOMFBD, in principle, do not rely on atmospheric model information. However, as pointed
out by Scharmer et al. (2010) in order to correct for stray-light from high order atmospheric
aberrations that remain uncompensated by these methods, statistical estimation of the average
effect of high order modes is required, which again relies on Kolmogorov statistics.

The AO system corrects a limited number of aberration modes. In the case of AO76 the system
is typically able to correct between 65 – 80 Karhunen–Loève (KL) or Zernike modes. Higher order
modes remain uncorrected. Hence, the AO system acts as an imperfect high pass filter. The
corrected modes are not corrected perfectly, as was discussed in Section 6, and a residual variance
remains for each corrected mode. The magnitude of the residual variance is mode dependent.

Closely following Veran et al. (1997), Marino (2007), and Marino and Rimmele (2010), the
residual phase after correction can then be expressed as:

𝜙𝜖(𝑥⃗, 𝑡) =
[︀
𝜙atm‖(𝑥⃗, 𝑡)− 𝜙𝑚(𝑥⃗, 𝑡)

]︀⏟  ⏞  
𝜙𝜖‖(𝑥⃗,𝑡)

+𝜙atm⊥(𝑥⃗, 𝑡)

= 𝜙𝜖‖(𝑥⃗, 𝑡) + 𝜙atm⊥(𝑥⃗, 𝑡), (27)

where 𝜙𝜖‖ is the residual phase of the corrected modes and 𝜙atm⊥ for the uncorrected, respectively.
The phase structure function can then be written as:

𝐷̄𝜙𝜖
(𝜌⃗) ≈ 𝐷̄𝜙𝜖‖(𝜌⃗) + 𝐷̄𝜙atm⊥(𝜌⃗), (28)

where cross terms have been assumed to be negligible (Veran et al., 1997). 𝐷𝜙atm⊥ is a function
of 𝜌⃗ only since the uncorrected atmospheric phase errors in a statistical sense (long exposure) are
homogeneous and isotropic. Hence, 𝐷𝜙atm⊥ can be placed in front of the integral in Equation 11
resulting in a long exposure OTF that can be written as the product of three independent terms:

OTFao(𝜌⃗/𝜆) = OTF𝜑𝜖‖(𝜌⃗/𝜆) OTF𝜑𝜖⊥(𝜌⃗/𝜆) OTFtel(𝜌⃗/𝜆), (29)

where

OTF𝜑𝜖‖(𝜌⃗/𝜆) = exp

[︂
−1

2
𝐷̄𝜙𝜖‖(𝜌⃗)

]︂
(30)
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and

OTF𝜑𝜖⊥(𝜌⃗/𝜆) = exp

[︂
−1

2
𝐷𝜙atm⊥(𝜌⃗)

]︂
. (31)

OTF𝜑𝜖‖ is the contribution from the residual variance of the corrected modes and can be derived
from the residual wavefront errors measured by the WFS with the AO in closed loop. OTF𝜑𝜖⊥
derives from the high order modes that the AO system cannot correct. OTFtel is simply the
diffraction limited telescope OTF. OTF𝜑𝜖⊥ is the main contributor to the seeing halo of the PSF,
while the core of the PSF is formed by the other two terms.

𝜙𝜖‖ can be extracted from the WFS measurements after accounting for various noise terms,
such as the WFS noise described above and aliasing noise (Herrmann, 1981; Dai, 1996). A detailed
description of this process and the calibration procedures involved is given by Veran et al. (1997)
and Marino (2007).

The residual wavefront variance after correction 𝜙𝜖‖ can be expressed as:

𝜙𝜖‖(𝑥⃗, 𝑡) =

𝑁∑︁
𝑖=1

[𝑎𝑖(𝑡)− 𝑘𝑖(𝑡)]𝐾𝑖(𝑥⃗)

=

𝑁∑︁
𝑖=1

𝜖𝑖(𝑡)𝐾𝑖(𝑥⃗), (32)

where 𝑎𝑖 are the coefficients KL modes 𝐾𝑖 of the uncorrected phase, 𝑘𝑖 are the KL coefficients of
the applied correction, and the 𝜖𝑖 are the noise free residual KL coefficients. The phase structure
function of the residual corrected phase becomes:

𝐷𝜙𝜖‖(𝑥⃗, 𝜌⃗) = ⟨
⃒⃒
𝜙𝜖‖(𝑥⃗, 𝑡)− 𝜙𝜖‖(𝑥⃗+ 𝜌⃗, 𝑡)

⃒⃒2⟩ (33)

and using Equation (32):

𝐷𝜙𝜖‖(𝑥⃗, 𝜌⃗) =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

⟨𝜖𝑖𝜖𝑗⟩ [𝐾𝑖(𝑥⃗)−𝐾𝑖(𝑥⃗+ 𝜌⃗)] [𝐾𝑗(𝑥⃗)−𝐾𝑗(𝑥⃗+ 𝜌⃗)] . (34)

Due to the isotropy assumption mentioned above computing the mean phase structure function
of the residuals averaged over the pupil is sufficient in this case:

𝐷̄𝜙𝜖‖(𝜌⃗) =

∫︀
𝑃 (𝑥⃗)𝑃 (𝑥⃗+ 𝜌⃗)𝐷𝜙𝜖‖(𝑥⃗, 𝜌⃗)𝑑𝑥⃗∫︀

𝑃 (𝑥⃗)𝑃 (𝑥⃗+ 𝜌⃗)𝑑𝑥⃗
, (35)

where 𝑃 is the pupil function. Combining Equations (34) and (35) leads to:

𝐷̄𝜙𝜖‖(𝜌⃗) =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

⟨𝜖𝑖𝜖𝑗⟩𝑈𝑖𝑗(𝜌⃗), (36)

where the 𝑈𝑖𝑗 functions are defined as:

𝑈𝑖𝑗(𝜌⃗) =

∫︀
𝑃 (𝑥⃗)𝑃 (𝑥⃗+ 𝜌⃗) [𝐾𝑖(𝑥⃗)−𝐾𝑖(𝑥⃗+ 𝜌⃗)] [𝐾𝑗(𝑥⃗)−𝐾𝑗(𝑥⃗+ 𝜌⃗)] 𝑑𝑥⃗∫︀

𝑃 (𝑥⃗)𝑃 (𝑥⃗+ 𝜌⃗)𝑑𝑥⃗
. (37)

The important conclusion is that the information, which the AO telemetry has to deliver is the
covariance of the noise free residual KL coefficients: ⟨𝜖𝑖𝜖𝑗⟩. The 𝑈𝑖𝑗 functions can be pre-computed
and stored. The computation of the covariance for the exposure interval can be performed within
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the AO system, which reduces the telemetry data rates and storage requirements significantly. The
computation of the covariance is typically initiated and terminated by an external trigger signal
from the science camera.

The term 𝜙atm⊥ in Equation 31 can be derived from the Kolmogorov model (Kolmogorov, 1941,
1991) if the Fried parameter r0 is known. The residual uncorrected phase after correction of N KL
modes can be expressed in terms of KL modes:

𝜙atm⊥(𝑥⃗, 𝑡) =

𝑁∞∑︁
𝑖=𝑁+1

𝑎𝑖(𝑡)𝐾𝑖(𝑥⃗). (38)

Using the definition of the phase structure function the residual uncorrected phase structure
function can be expressed as:

𝐷𝜙⊥(𝑥⃗, 𝜌⃗) = ⟨|𝜙atm⊥(𝑥⃗, 𝑡)− 𝜙atm⊥(𝑥⃗+ 𝜌⃗, 𝑡)|2⟩

=

𝑁∞∑︁
𝑖,𝑗=𝑁+1

⟨𝑎𝑖𝑎𝑗⟩ [𝐾𝑖(𝑥⃗)−𝐾𝑖(𝑥⃗+ 𝜌⃗)] [𝐾𝑗(𝑥⃗)−𝐾𝑗(𝑥⃗+ 𝜌⃗)] . (39)

The covariances ⟨𝑎𝑖𝑎𝑗⟩ for Zernike modes was given by Noll (1976) and scales with (𝐷/𝑟0)
5/3,

where 𝐷 is the aperture size of the telescope. A similar scaling law for the KL covariances can be
derived. Only r0 needs to be determined, which can be estimated from the actuator commands.
The modal variance of the DM actuator commands is compared in a least squares sense to the
modal variance predicted by the Kolmogorov model in order to derive an estimation of the Fried
parameter (r0).

Figure 24 summarizes the major steps of the PSF estimation method.

Figure 24: Schematic block diagram describing the method to estimate the long exposure PSF from solar
AO loop data (from Marino, 2007).
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6.4 Measured AO system performance

The PSF estimation method described in the previous section can be used to measure and optimize
the performance of an AO system with the caveat that non-common path errors are not detected.
The performance is estimated at the WFS focal plane. Since the PSF is measured indirectly by
this method it is desirable to verify its results in some independent fashion. This was done by
Marino (2007) and Marino and Rimmele (2010) who modified the AO76 at the DST to enable the
system to lock on bright stars (e.g., Sirius), albeit with significantly reduced AO performance due
to S/N issues. Figure 25, from Marino and Rimmele (2010), shows several comparisons between
estimated PSF and the actual PSF (the Sirius image). In spite of the low Strehl achieved with
the solar AO running in night-time mode the agreement between actual and estimated PSF is
excellent. Significant deviation is visible only for the images with lowest Strehl and tends to affect
the residual seeing halo more than the core of the PSF.

Figure 25: Estimated PSF vs. actual PSF. The AO76 was looked on the bright star Sirius. Long exposure
images of this point source directly measure the AO PSF, which can be compared to the estimated PSF
provided by the AO76 telemetry (from Marino and Rimmele, 2010).

With some confidence the PSF estimation can now be applied to solar AO. Figure 26 plots
Strehl ratio versus the Fried parameter r0. Both Strehl ratio and r0 were estimated from the AO
telemetry data as part of the PSF estimation algorithm. A Strehl of S = 0.9 or greater achieved
for excellent seeing conditions of r0 = 20 cm. A Strehl of S = 0.3 is achieved for an r0 of about
4 cm.

The solid line follows the Strehl ratio expected from the wavefront error variances that include
the most significant AO error sources: fitting error, aliasing error, bandwidth error, and wavefront
sensor noise error. The agreement between the model expectation and the actual performance is
remarkably good, indicating that the error budget of the AO76 system is in general well understood
and that close to theoretical performance is achieved.

The second solid line traces a branch where apparently non-optimal AO performance was
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achieved. This branch can be modeled by adding a constant noise term. The source of this
additional noise term is not yet well understood. Possible candidates are misalignment due to
pupil wobble, which the DST is prone to, or wavefront sensor noise due to strong anisoplanatism
(Wöger and Rimmele, 2009).

Figure 26: Strehl vs. Fried parameter r0. The Strehl was estimated using the AO76 telemetry data and
the long exposure PSF estimation method. The AO was locked on a small sunspot. Seeing was highly
variable spanning a wide range of r0 (from Marino and Rimmele, 2010).

Reconstruction of solar imagery using estimated long exposure PSFs will be discussed in Sec-
tion 7. It should be mentioned that in spite of the encouraging agreement shown in Figure 25 the
contrast of reconstructed solar images appears to be consistently too low when compared to model
predictions. Entering this ongoing scientific debate would be beyond the scope of this article.
Stray-light from uncorrected high order modes (Scharmer et al., 2010) or other stray-light sources
is one possible explanation for this discrepancy.
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7 The Case for Post-Facto Processing

7.1 Short exposure

Adaptive optics provides only partial correction and the correction becomes increasingly worse
when science observations are performed at short wavelengths (e.g., g-band, Ca ii K). In addition,
for conventional AO the correction is optimal only within the isoplanatic patch and deteriorates as
one moves away from the AO lock point. Post-processing can correct for residual phase aberrations
and, in principle, restore the correct amplitudes. Furthermore, post processing can provide uniform
image quality across the entire FOV. It is beyond the scope of this article to review the various
techniques used to reconstruct short exposure AO images. The reader is referred to Löfdahl et al.
(2007) for an in-depth discussion of post-facto reconstruction techniques used in solar astronomy.
In addition, individual methods are discussed by: speckle interferometry (Wöger et al., 2008;
Wöger and von der Lühe, 2008), phase-diversity and phase-diverse speckle (Löfdahl and Scharmer,
1994; Seldin and Paxman, 1994; Paxman et al., 1996; Seldin et al., 1999; Löfdahl et al., 2007;
Valenzuela et al., 2010), multi-frame-blind-deconvolution (MFBD) (van Kampen and Paxman,
1998; Löfdahl, 2007; Scharmer et al., 2010), and Multi-Object-Multi-Frame-Blind Deconvolution
(MOMFBD) (van Noort et al., 2005).

Figure 27: Still from a movie showing Speckle reconstructed g-band movie of granulation and g-band
bright points near the solar limb. The FOV is 2’ Ö 2’. The lower left corner zooms in on an area with
magnetic bright points (courtesy of F. Wöger, NSO). (To watch the movie, please go to the online version
of this review article at http://www.livingreviews.org/lrsp-2011-2.)

The power of these techniques, in particular when combined with AO, is exemplified by just
a few images and movies. Figure 27 shows a speckle reconstructed (Wöger and von der Lühe,
2008) time sequence of g-band images of a plage region observed near the limb. Uniform diffrac-
tion limited resolution is achieved over a 2’ Ö 2’ FOV. The algorithm takes into account the
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Figure 28: Still from a movie showing Speckle reconstructed g-band image sequence that captures the
formation of a sunspot penumbra (from Schlichenmaier et al., 2010). (To watch the movie, please go to
the online version of this review article at http://www.livingreviews.org/lrsp-2011-2.)

adaptive optics correction by utilizing the AO telemetry data in order to achieve high precision
photometry (Wöger et al., 2008). Some nice examples of MOMFBD reconstructed images and
movies can be downloaded from http://www.iac.es/galeria/svargas/movies.html (see also
Vargas Domı́nguez et al., 2008). The movie shown in Figure 28 shows evolution of a pore that
develops a penumbra (Schlichenmaier et al., 2010). This speckle reconstructed sequence covers a
period of 4 hours and 40 minutes with occasional gaps. This movie is a nice case study of penumbra
formation. Figure 29 shows a MOMFBD processed movie of chromospheric structure and is an
impressive example of highly dynamic chromospheric fibrils seen in H𝛼 (image and movie from van
Noort and Rouppe van der Voort, 2006).

These are just a few examples of many that can be found in the literature that demonstrate
how new scientific results can be achieved from a combination of AO and post-facto processing.
Real-time instead of post-facto processing of the AO data is of advantage and is now considered
for implementation at the ATST (Wöger et al., 2010). Using GLAO, once operational, instead of
conventional AO may be the better choice for some of these reconstruction methods since GLAO
provides uniform and potentially subarcsec seeing across the FOV, i.e., there is no field dependence
of AO performance which complicates the reconstruction algorithm.

The MOMFBD reconstructed movie of chromospheric H𝛼 structure of Figure 29 has been ob-
tained with a relatively narrow filter passband of 12.8 pm and an exposure time of 15 ms. At
red, and in particular infrared wavelengths, the longer seeing time constant allows for increasing
the maximum exposure time the still freezes the seeing. With efficient instrumentation such as
IBIS (Cavallini, 2002; Righini et al., 2010), CRISP (Scharmer et al., 2008), and the GREGOR
Fabry–Pérot interferometer (GFPI) (Denker et al., 2010) reconstruction techniques can be applied
to very narrow-band images. A recent example is shown with Figure 30, which displays speckle
reconstructions of a sunspot region observed with the IBIS instrument tuned to the core of the Ca ii
8542 Å line. The passband at this wavelengths is about 4 pm and the exposure time was 30 ms.
The large FOV of 240” Ö 240” was constructed by mosaicing the 90” Ö 90” FOV of the IBIS. This
example demonstrates that, in principle, reconstruction techniques that are typically associated

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-2

http://www.livingreviews.org/lrsp-2011-2
http://www.iac.es/galeria/svargas/movies.html
http://www.livingreviews.org/lrsp-2011-2


Solar Adaptive Optics 51

Figure 29: Still from a movie showing MOMFBD reconstructed image and movie of chromospheric H𝛼
fine structure (from van Noort and Rouppe van der Voort, 2006). (To watch the movie, please go to the
online version of this review article at http://www.livingreviews.org/lrsp-2011-2.)

with broad-band imaging can be used to perform spectroscopy with high spectral resolution. Ca-
dence, i.e., temporal resolution becomes the issue since multiple (50 in the example presented here)
exposures are required at each spectral position the filter is tuned to. If polarimetry is performed
even more images have to be collected. In principle, adding many short exposures is equivalent
to a single long exposure in terms of S/N as long a the photon noise dominates over read noise
for each exposure, and the read-out time is small relative to the exposure time. This means that
with appropriate detectors this potential drawback can be overcome. Remaining issues the high
data storage and processing requirements. However, given the rapid and continuous advances with
these technologies these issues are not expected to be a limitation. Nevertheless, the capability to
post-process and improve long exposure AO images may also be of interest for some applications.

7.2 Long exposure

Besides aiding in understanding and optimizing the AO performance estimates of the AO PSF
can be used to post-facto deconvolve long exposure images. The advantage of applying post-facto
deconvolution techniques was clearly demonstrated by Marino and Rimmele (2010). Accurate pho-
tometry, for example, requires that the PSF is well known. Measurements of physical parameters
often are performed by computing difference images. A dopplergram that measures flows on the
solar surface is essentially computed by subtracting the images taken in the red and blue wing of a
spectral line. If the red and blue wing images are recorded sequentially the impact of varying seeing
conditions and the resulting variations in AO Strehl on the quantitative velocity measurements can
be so severe that the scientific interpretation becomes impossible. Most notably, wing images with
significantly different Strehl produce dopplergrams that display residual intensity signal. This is
referred to as intensity-velocity cross talk that in severe cases can render the velocity measurement
completely useless. The same issue exists when polarimetric measurements are performed. PSF
estimation and subsequent deconvolution of line wing images can restore the relevant information
to a large extent and, thus, lead to useful scientific results.

Figure 31 shows a sample pair of long exposure images, which compare images before and
after deconvolution. The top row shows the AO corrected red wing images captured within a few
seconds of each other but during vastly different seeing conditions. The image on the right was

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-2

http://www.livingreviews.org/lrsp-2011-2
http://www.livingreviews.org/lrsp-2011-2


52 Thomas R. Rimmele and Jose Marino

Figure 30: Line-center intensity of an active region at disk center in the Ca ii 854.2 nm line. The
extended 240” Ö 240” field-of-view was constructed by mosaicing the 90” Ö 90” FOV of the Interferometric
Bidimensional Spectrometer (IBIS). Speckle interferometry was applied to the sequences of images obtained
at each of the nine mosaic positions, and the reconstructed images were stitched together to produce the
final mosaic (courtesy of K. Reardon, Florence).
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Figure 31: Long exposure narrow-band images taken in the red wing of the spectral line Fe i 5576 Å. The
image on the top right was recorded with a Fried parameter r0 = 16.5 cm and a Strehl of S = 0.88. The
image on the top left has a significantly lower Strehl of S = 0.46 and was recorded with r0 = 5.4 cm. The
high spatial frequency information is still present in the poor seeing image on the left but the contrast is
reduced significantly. The corresponding deconvolved images are displayed at the bottom. Post processing
these long exposure images can restore the contrast, i.e., the amplitudes.

Figure 32: Radial PSDs of long exposure narrow-band images shown in Figure 31.
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Figure 33: Doppler maps obtained from long exposure filtergrams shown in Figure 31. Top: unprocessed.
Bottom: dopplergram from deconvolved filtergrams.

recorded with a Fried parameter r0 = 16.5 cm and a Strehl of S = 0.88. The image on the left
has a significantly lower Strehl of S = 0.46 and was recorded at r0 = 5.4 cm. The high spatial
frequency information is still present in the poor seeing image on the left but the contrast is reduced
significantly and the image appears “soft”. The corresponding deconvolved images are displayed at
the bottom row of Figure 31. The deconvolution process clearly enhances the contrast of the poor
seeing image close to the level of the restored high Strehl image. The power spectra of these images
are shown in Figure 32. The restored PSDs closely match each other throughout the frequency
range.

The top row of Figure 33 displays the velocity maps obtained from the two sets of unprocessed
blue and red wing pairs, the first (left) captured during different seeing conditions and the second
(right) set during very good seeing conditions. The bottom row of the figure displays the velocity
maps obtained from the deconvolved wing images. The dopplergram produced from raw filter-
grams exhibits severe intensity-velocity crosstalk. In particular, velocities measured in the sunspot
umbra display the resulting artifacts and spurious velocities. Deconvolution of the wing images
significantly reduces intensity-velocity crosstalk.

Rimmele and Marino (2006) give an example of science results achieved by deploying PSF
estimation and post-facto deconvolution. In general, quantitative analysis of AO data can be
significantly improved by applying post-facto deconvolution techniques even in the case of long
exposures. At present, solar astronomers are very familiar with and heavily apply post-facto
reconstruction to short exposure images and do so with much success.
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8 Overview of Operational Solar AO Systems

The DST AO system was already described in some detail in the previous sections. A copy of AO76
is now operating at the NST integrated with an optical system designed and optimized for the NST
(Cao et al., 2010). Several other AO systems are successfully operating at solar telescopes and have
significantly increased the scientific productivity of these facilities. Without claiming completeness
a few of these systems, which arguably might be considered scientifically most productive, are
described in the following sections.

8.1 The Swedish Solar Telecope (SST) AO system

The SST is a 97 cm aperture vacuum telescope located on La Palma, Spain (Scharmer et al.,
2003). Adaptive optics is an essential component of the telescope. The SST was built after the
power of solar AO had been demonstrated and consequently the DM is integrated into the optical
path that feeds the instrumentation. A separate correlation tracker is used to measure the tip/tilt
component, which is corrected by a tip/tilt stage located close to the DM. The optical layout of
the system is very simple, compact, and efficient (Scharmer et al., 2000). The 37-element bimorph
mirror is combined with a 37 subaperture correlating Shack–Hartmann wavefront sensor. The
system corrects about 35 modes. The lenslet array with a hexagonal arrangement provides a
subaperture size of d = 13.8 cm. The off-the-shelf CCD camera reads the Shack–Hartmann images
with a frame rate of 955 fps, which limit the bandwidth of the system to about 65 Hz (0 dB
crossover of error rejection). The data is processed by an off-the-shelf general purpose computer.
Processing of subapertures, reconstruction, and servo control, as well as other control tasks, are
all performed by this commercially available computer, which allows for easy upgrade of hardware
since the software can be easily ported to faster computers as they become available.

The large aperture of the NSST combined with the 37-element AO system and post-facto
processing techniques have produced many of the highest resolution images and movies of the Sun
so far, a few examples of which were shown in previous sections. However, the 35 mode correction
provided by the SST AO system has to be considered a low order correction that provides good
results under excellent seeing conditions. An upgrade of the SST AO system to a 85-element
bimorph DM is already in progress and will enable diffraction limited observations for a wider
range of seeing conditions and, thus, further increase the scientific productivity of the SST.

8.2 Kiepenheuer Institute Adaptive Optics System (KAOS)

The Kiepenheuer Institute Adaptive Optics System has been operating at the 70 cm Vacuum Tower
Telescope (VTT) on Tenerife, Spain, since 2002 (von der Lühe et al., 2003). The system is very
similar in design and implementation to the SST system in that it uses a correlating SHWFS with
36 subapertures (d = 10 cm) with a hexagonal arrangement and a 35 element bimorph mirror. The
FOV of the subaperture images is 12” Ö 12” sampled with 24 Ö 24 pixels. Using more pixels per
subaperture increases the tracking stability (Berkefeld, 2007). Significant effort has been spent to
automate many system calibration functions, which is essential for making the system operational
to the non-expert user and enabling remote system support. The system frame rate was increased
in 2006 in order to increase the system bandwidth to approximately 100 Hz. The minimum seeing
needed to achieve diffraction limited observations is 0.8”. The processor unit is a general purpose
Sun Fire V880. Figure 34 shows the optical implementation of KAOS into the German VTT
on Tenerife. Figure 35 (left) shows quantitatively what level of correction can be achieved with
KAOS as a function of the Fried parameter. The uncorrected and corrected power spectral density
is plotted as well in Figure 35 (right) and indicates that a bandwidth of about 100 Hz is achieved.
The residual rms wavefront error is 0.1 waves and a Strehl of S = 0.7 is achieved for seeing of
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about r0 = 20 cm. In comparison, the high order DST AO76 system achieves a Strehl of S = 0.7
for seeing of r0 = 8 cm. Figures 36 and 37 show uncorrected and corrected granulation movies,
respectively, that demonstrate the ability of KAOS to compensate for atmospheric turbulence and
fixed aberrations of the optical system.

Figure 34: Opto-mechanical implementation of KAOS at the VTT on Tenerife (from Rimmele, 2004a).

RMS wavefront error [λ]

r0 [cm]

Figure 35: Performance of KAOS. Left: Residual wavefront errors are plotted vs. the Fried parameter
r0 (from Berkefeld, 2007). Right: Corrected and un-corrected temporal PSD of wavefront errors. The
crossover occurs at a bandwidth of about 100 Hz (from Berkefeld et al., 2007).
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Figure 36: Still from a movie showing KAOS: uncorrected granulation movie (courtesy of T. Berke-
feld, KIS). (To watch the movie, please go to the online version of this review article at http://www.

livingreviews.org/lrsp-2011-2.)

Figure 37: Still from a movie showing KAOS: corrected granulation movie (courtesy of T. Berkefeld, KIS).
(To watch the movie, please go to the online version of this review article at http://www.livingreviews.
org/lrsp-2011-2.)
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8.3 Adaptive optics for the infrared at the McMath–Pierce Telescope

Due to the increased Fried parameter in the infrared low cost AO systems specifically designed
for the infrared are an option. A low-cost adaptive optics system with a 37 actuator electrostatic
membrane deformable mirror and a fast tip/tilt mirror was developed for the 1.5 m McMath–Pierce
main telescope (Keller et al., 2003) and has been operating for a number of years. The system
uses a general purpose PC to accomplish all processing tasks. Up to 200 8 Ö 8 pixel subapertures
can be processed at a 1 kHz rate. The number of subapertures does not seem to be well matched
to the number of degrees of freedom on the DM, leaving room for upgrading the system to higher
order. The system works on sunspots and pores and can also track on the solar limb.

8.4 Systems under development

AO systems currently under development to upgrade existing solar telescopes include AO for
the 60 cm Hida Observatory in Japan (Miura et al., 2008a, 2009, 2010, 2008b), AO at the CSUN,
Northridge (Ren et al., 2009), and an AO upgrade of THEMIS, Tenerife. Themis is building a solar
AO system with the goal to improve the output of the polarimetric spectro-imaging instruments
that are being built and tested as part of the EST project. The system uses a 66 subaperture
Shack–Hartmann (d = 9 cm) working at 1000 fps (goal: 1500 Hz), and a 59 actuator Micro
Machined DM mirror from OKOTECH. Modal control is implemented on a low cost Intel Core 2
Quad core processor (López Ariste, 2010).
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9 Future Developments

Solar AO, of course, is a continually developing field. The two major areas of development are AO
for large aperture solar telescopes and MCAO. Where building larger conventional AO systems
can be regarded as a increase in system size of a, by now, well understood technology, MCAO
at this point must be considered as a development effort for a new, significantly more complex
technology. MCAO is considered a vital technology for large aperture solar telescopes. As has
been shown in Section 6.1.3, classical AO can provide a reasonable correction over a large FOV for
current small aperture solar telescopes. Post-facto processing techniques can be used efficiently to
obtain diffraction limited data over large FOVs. Achieving this for a 4 m class solar telescope will
be much more challenging, as will be discussed in detail in Section 9.1.3.

9.1 AO for large aperture solar telescopes

Several new, large aperture telescopes are currently under development. Those include the 1.5 m
GREGOR telescope on Tenerife and the 1.6 m New Solar Telescope (NST) at BBSO. Both of these
telescopes are currently in the commissioning phase. Since the aperture of GREGOR and NST is
roughly twice that of the DST the AO systems needed for these telescopes require four times the
number of actuators (order 300 – 400). The 2 – 4 m aperture solar telescopes of the future include
the proposed 2 m class National Large Solar Telescope (NLST) by Indian Institute of Astrophysics
(Hasan, 2010), the 4 m Advanced Technology Solar Telescope currently under construction at the
US National Solar Observatory and its partners, and the 4 m European Solar Telescope (EST)
(Zuccarello, 2009), which is currently in its design phase. The 4 m telescopes require AO systems
of order 1500 – 2000 DOF, i.e., more than an order of magnitude in size over currently existing
solar AO systems but well within the realm of already operating night-time AO systems.

9.1.1 GREGOR and NST conventional AO

Initially, the 1.5 m GREGOR and the 1.6 m NST will be outfitted with high order conventional
AO systems. The main parameters that describe these systems are listed in Table 2.

Table 2: System parameters of conventional AO systems for new 1.5 m class solar telescopes

Telescope aperture actuators subapertures d pix/subap. bandwidth

GREGOR 1.5 m 196 156 10 cm 24 Ö 24 130 Hz
NST 1.6 m 357 308 8.4 cm 20 Ö 20 130 Hz

Both systems plan to operate with a correlating SHWFS and use stacked actuator, continuous
facesheet DMs. The NST system is designed as a scaled up version of the DST AO76 and utilizes
a new generation of DSPs (TIGERSHARC) while the GREGOR is based on the KAOS heritage
and uses general purpose processing.

Predictions of the Strehl ratio achieved in the detector plane of post-focus instruments of the
NST can be derived from detailed performance modeling as described in Section 6. The analysis
uses the ATST site survey data and is partially based on the extensive error budget modeling
that was done for the ATST since both NST and ATST are similar off-axis designs with ventilated
enclosures and face similar non-common path issues. The results are shown in Figure 38 in the form
of histograms of the predicted Strehl at visible and NIR wavelengths. This figure compares the
Strehl performance of the AO76 currently operating at the NST with the predicted performance
of the high order 357 actuator system. The conclusion is that with the NST and AO76 diffraction
limited observations of reasonable Strehl at visible wavelengths are only possible for the most
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Figure 38: Histograms of expected Strehl ratios that can be obtained at the NST with the currently
installed AO76 (left) and the new, high order 357 actuator (308 subaperture) AO system currently under
development (right). The frequency of occurrence (normalized to maximum occurrence) of a certain Strehl
(y-axis) is plotted vs. the Strehl. The Strehl distributions are derived from the r0 distribution measured
at the BBSO site. The predicted Strehl has been modeled as if it were measured at the detector plane of a
science instrument, i.e., and end-to-end wavefront error budget was used. In each of the plots the dotted
line is for visible (0.5 µm) and the solid line for NIR (1.6 µm) wavelengths. The AO76 performance is
satisfactory only for near infrared wavelengths. The AO308 operated at visible wavelengths is expected to
achieve satisfactory most common Strehl of about S = 0.35, while for the NIR the distribution is narrowly
centered at high Strehls between S = 0.7 – 0.85. The upper limit of these distributions is caused by wavefront
errors that are uncorrectable by the AO, such as the wavefront errors introduced by the instrument and
other non-common path aberrations. For some applications it might be possible to calibrate out some of
these non-common errors, i.e., shift the distribution toward higher Strehls.

extraordinary seeing conditions. In comparison, the high order 357 actuator system is expected to
provide reasonable Strehl in the visible for a significant fraction of the observing time. Figure 38
clearly demonstrates the need for an upgrade to a high order AO system for the NST. GREGOR
will have a similar high order system. These systems will be essential to realize full scientific benefit
from these 1.5 m class aperture telescopes.

These conventional high order AO systems should be regarded as intermediate steps toward
the implementation of MCAO systems at both GREGOR and NST (see Section 9.2).

9.1.2 High order AO for the ATST

As an example of an extremely high order solar AO system this section summarizes the design
characteristics of the ATST conventional AO system, which is the centerpiece of the ATST wave-
front correction system (Rimmele et al., 2006a). The AO system planned for the 4 m EST will
be discussed in Section 9.2 in the broader context of MCAO since both ATST and EST plan to
implement MCAO systems as soon as the technology has been demonstrated at the 1.5 m class
solar telescopes.

The ATST wavefront correction system is required to achieve the high Strehl requirements
at visible and infrared wavelengths called for in the Science Requirements Document (Rimmele,
2005).

The ATST uses a comprehensive wavefront correction strategy with several correctors and
wavefront sensors including:
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� Quasi-static alignment (QSA) for keeping the entire optical path – most importantly M1 and
M2 – aligned in closed-loop. Decenter and tilt of M2 are used to correct coma and astigma-
tism. Due to the off-axis design coma is actually not the dominant aberration introduced (or
compensated) by decenter/tilt of M2.

� Active optics (aO), the main function of which is to keep the figure of M1 within specified
tolerances. M1 compensates for deformation due to gravitational and thermal distortions.

� Tip/tilt devices for image stabilization used for seeing limited on disk observations and
diffraction limited AO observations

� Hgh order adaptive optics (HOAO) as the centerpiece of the WFC system. Details about the
functions of the various ATST WFC subsystems and their design can be found at Rimmele
et al. (2006c) and Richards et al. (2010). This section focuses on the HOAO.

The HOAO system of the ATST has been integrated into the ATST’s optical path from the
start and will correct atmospheric seeing and any internal seeing and optical aberrations along the
optical path to the WFS. The top-level science requirements that drive the ATST AO design are:

� Strehl > 0.3 for r0 (500 nm) > 7 cm. This requirement defines the ATST imaging performance
for seeing conditions for which the solar AO will function effectively. According to the ATST
site survey r0 (500 nm) > 7 cm describes seeing conditions slightly better than median seeing
at the Haleakala site (Beckers, 2004).

� Strehl > 0.6 for r0 (630 nm) > 20 cm. This requirement defines the ATST imaging perfor-
mance for excellent seeing conditions, during which high-priority science objectives will be
achieved.

The original baseline design used a 1313 actuator DM and a correlating SHWFS with 1280
subapertures operating at > 2 kHz rates. It is interesting to note that with the ATST entering
construction and further refinement of error budgets the system size has now been increased to
about 1700 actuators in order to accommodate pressures on the error budget exerted by vari-
ous subsystems including instrumentation (Richards et al., 2010). This clearly demonstrated the
importance of careful and continuously updated error budget analysis and systems engineering
approach in general. To further illustrate this point Figure 39 plots predicted Strehl histograms
for the ATST baseline HOAO design at visible and near infrared wavelengths. Considering the at-
mospheric fitting error only, which unfortunately sometimes is done to provide crude performance
predictions, results in an overly optimistic performance estimate (visible histogram, dashed line).
The dotted line is produced by including atmospheric fitting error, aliasing error, bandwidth error,
and WFS measurement error, which sometimes are referred to as the AO system errors. However,
a realistic error budget has to include all possible error sources (visible histogram, solid line). The
science instrument, for example a spectrograph, introduces wavefront errors that are not sensed
by the AO wavefront sensor and, therefore, are not corrected. It is not always possible to calibrate
out these non-common path errors. In particular, in a multi-instrument experiment calibration of
non-common path wavefront errors of one instrument results in adding these errors to all other
instruments involved in the experiment. Multi-instrument experiments are becoming the norm in
solar observations. The imaging performance of AO instrumentation, in particular in the visible,
is driven to much higher imaging quality standards than used to be the case for seeing limited
instruments. The NIR (1.6 µm) wavelengths Strehl histogram indicates that with the ATST Strehl
ratios of S ≥ 0.6 might be achieved for most of the clear time, i.e., space quality observations with
a resolution of ≤ 0.1” will be possible for the majority of the available observing hours.

The real time control (RTC) system of the HOAO system is modeled after the AO76. A
top level block diagram that details the functionality was described by (Rimmele et al., 2006c;
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Figure 39: Histogram of expected Strehl ratio distribution. Plotted vs. the Strehl ratio (x-axis) is the
number of occurance (y-axis, normalized to maximum occurance) derived from the r0 distribution at
Haleakala and the ATST comprehensive error wavefront error budget for diffraction limited observations.
The predicted Strehl has been modeled for the detector plane of a ATST science instrument. Left: The
visible (0.63 µm) wavelengths histograms are for atmospheric fitting error only (dashed), all AO errors,
which include fitting error, aliasing error, bandwidth error, and WFS measurement error (dotted), and a
realistic error budget that includes all error contributors, including the science instrument (solid). This
figure demonstrates the need for performing a comprehensive systems wavefront error budget analysis.
Right: The NIR (1.6 µm) wavelengths Strehl histogram derived by including all error sources indicates
that with the ATST Strehl ratios of S ≥ 0.6 might be achieved for most of the clear time.

Richards et al., 2010). This unit performs the cross correlations of the 1232 subapertures as well
as the reconstruction. Servo algorithms for the DM and tip/tilt mirrors are also implemented on
the RTC unit. Telemetry data is collected and streamed to a local disk via the auxiliary PCs.
The size and complexity of the significantly higher order ATST HOAO RTC is not much increased
compared to the RTC of the AO76. This is due to advances in processing hardware (Moore’s law)
(Rimmele et al., 2006c).

Figure 40 shows the layout of the ATST HOAO system in the ATST coude instrument lab
(Richards et al., 2010). The HOAO is highly integrated with the instrumentation and feeds a
number of first light facility instruments that will be used from visible to infrared wavelengths.
The long instrument feed optical paths can result in significant non-common path local seeing
errors (Biérent et al., 2008). The ATST mitigates this by careful thermal control of the entire
instrument laboratory (Phelps et al., 2010).

With a 4 m collecting area thermal control of the corrective optical elements such as the DM
and the tip/tilt devices becomes essential. These devices are typically kept small for performance
(bandwidth) and optical packaging reasons. With a diameter of the device of 200 mm and a FOV
of 2.83’ circular the absorbed heat flux is about 100 W/m2 assuming a high reflection silver coating.
Without active cooling the surface of the DM or tip/tilt device could heat up by tens of degrees
C above ambient causing serious local seeing degradation. Active cooling is required to keep the
mirror surface temperature with 0 � to –2 �, which is the allowable range where local seeing
can be avoided. Air cross flows could also be used to mitigate image degradation (Hubbard et al.,
2006). However, actuator drifts, time dependent changes of actuator characteristics, and thermal
deformations of the assembly due to a changing heat load are problems that also need to be dealt
with if no thermal control is applied. Figure 41 shows, as an example for the potential added
complexity of thermal control, an air cooled tip/tilt device envisioned for implementation at the
ATST.
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Figure 40: Layout of the wavefront correction system, including the High Order Adaptive Optics (HOAO),
of the ATST. The HOAO is integrated into the telescope optical path. DM and wavefront sensors are
located in the thermally controlled coude lab on a rotating platform that serves as image de-rotator.

Figure 41: Fast tip/tilt device of the ATST with integrated air cooling system. This example illustrates
the complexity added by the thermal control requirement.
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9.1.3 Angular anisoplanatism: a serious challenge for large aperture solar telescopes

In addition to the technical challenges involved in building high order solar AO systems for 4 m
class telescopes anisoplanatism poses a much more serious challenge at these larger telescopes. As
was shown in Section 6.1.3 the residual wavefront errors introduced by anisopanatism limit the size
of the AO corrected FOV. For current small solar telescopes and under certain conditions 𝐷

𝑟0
can be

small and acceptable AO performance can be achieved over a FOV of tens of arcsec (see Figure 20).
Reasonable or useful Strehl ratios (in terms of being able to apply post-facto reconstruction meth-
ods) can be achieved over even larger FOVs. For large aperture telescopes, however, even during
excellent seeing conditions 𝐷

𝑟0
is generally large also for the upper atmosphere. Figure 42 (Marino

and Rimmele, 2011) shows the result of repeating the simulations presented in Section 6.1.3 but
for a 4 m aperture telescope with an AO system that has about 1300 actuators. These parameters
closely match the ATST AO system and, therefore, predict anisoplanatic behavior expected for
the ATST.
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Figure 42: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 1236 subapertures and 1313 actuators was modeled for a
4 m telescope using the Haleakala atmospheric model of Table 1, which simulates a case of very low high
altitude turbulence. The FOV of the WFS is 8”. Two seeing cases were modeled using an overall Fried
parameter of r0 (500 nm) = 10 cm and r0 (500 nm) = 20 cm, respectively. The observing wavelengths is
500 nm (from Marino and Rimmele, 2011).

The isoplanatic angle for a best case scenario of vertical pointing and r0 of 20 cm is now only
about 10 arcsec for the Haleakala profile (Figure 42, right) and 2 – 3 arcsec for the Mt. Graham
profile (Figure 43, right). The Strehl drops quickly away from the lock center and for near horizon
pointing. The Haleakala profile yields an isoplanatic angle of about 3” and about 10” away from
the lock center the Strehl is virtually zero. The Mt. Graham profile does not yield satisfactory
Strehl for near horizon pointing even if excellent seeing (r0 = 20 cm) is assumed. For more common
seeing conditions (r0 = 10 cm) only the Haleakala profile leads to good Strehl performance and
reasonable corrected FOV.

The impact of using an extended FOV of 8” Ö 8”, that is required for the correlating Shack–
Hartmann wavefront sensor, is clearly revealed in Figure 43. Even for vertical pointing the di-
rectional averaging effect is significant as can be inferred by comparing Figures 42 (left) and 43
(left). For near horizon pointing averaging wavefront sensor information from different directions
is devastating and leads to substantial Strehl reduction. The early morning hours are, of course,
exactly when conditions for solar observations are considered best because the strong ground layer
turbulence has not formed yet. Hence, high resolution solar observations are generally performed
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Figure 43: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 1236 subapertures and 1313 actuators was modeled for
a 4 m telescope using the Mt. Graham atmospheric profile of Table 1, which simulates a case of very low
high altitude turbulence. The FOV of the WFS is 8”. Two seeing cases were modeled using an overall
Fried parameter of r0 (500 nm) =10 cm and r0 (500 nm) = 20 cm, respectively. The observing wavelengths
is 500 nm (from Marino and Rimmele, 2011).

at fairly high zenith angles. These results emphasize the relative importance of MCAO for large
aperture telescopes in comparison to the small aperture current solar telescopes. It is important to
note that the negative impact of anisoplanatism makes post-facto processing of conventional solar
AO imagery a necessity for many applications. As a side note it should be mentioned that the
dominance of the ground layer seeing during the daytime might make Ground-Layer AO (GLAO)
an attractive option for solar telescopes and for some scientific applications.

As pointed out in a previous section at near infrared wavelengths high Strehl AO performance
can be expected for a considerable fraction of the available observing time. In addition, the
isoplanatic angle increases with 𝜆

6
5 and, thus, one might expect roughly a factor of four increase in

isoplanatic patch size when near infrared instead of visible observations are performed. Figures 44
and 45 show the equivalent plots to what was shown in Figures 42 and 43 but for 1.6 micron
instead of visible. These plots confirm that the isoplanatic angle (patch) is indeed about 4 times
larger at near infrared wavelengths compared to visible wavelengths. The Haleakala profile yields
an isoplanatic angle of about 17 arcsec (isoplanatic patch = 34 arcsec) for r0 = 10 cm and zenith
angle of 45°, i.e., the isoplanatic patch covers the size of a small sunspot. These results indicate that
with the development of 4 m solar telescopes infrared observations are likely to gain in importance.
A 4 m aperture will provide better than 0.1 arcsec diffraction limited resolution at a wavelength
of 1.6 microns.

9.1.4 Chromatic ansisoplanatism

Another form of anisoplanatism that effects and limits solar AO performance is chromatic anisopla-
natism. A detailed discussion of chromatic anisoplanatism is given by Hardy (1998, Section 9.3).
Due to atmospheric dispersion light of different wavelength propagates through different parts of
the atmosphere and, thus, samples different turbulence volumes. Atmospheric dispersion becomes
a limiting factor for large zenith angle observations, which solar observations usually are.

The most significant error caused by chromatic anisoplanatism is the multi-spectral error. The
vast majority solar observations are multi-spectral typically covering wavelengths that range from
UV to near infrared. The wavefront sensor of existing solar AO systems operates at a particular
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Figure 44: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 1236 subapertures and 1313 actuators was modeled for a
4 m telescope using the Haleakala atmospheric model of Table 1, which simulates a case of very low high
altitude turbulence. The FOV of the WFS is 8”. Two seeing cases were modeled using an overall Fried
parameter of r0 = 10 cm and r0 = 20 cm, respectively. The observing wavelength is 1600 nm (from Marino
and Rimmele, 2011).
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Figure 45: Strehl ratio as function of field position (zero = AO lock center) and elevation (90°-zenith
angle) of the Sun in the sky. An AO system with 1236 subapertures and 1313 actuators was modeled for
a 4 m telescope using the Mt. Graham atmospheric profile of Table 1, which simulates a case of very low
high altitude turbulence. The FOV of the WFS is 8”. Two seeing cases were modeled using an overall
Fried parameter of r0 = 10 cm and r0 = 20 cm, respectively. The observing wavelength is 1600 nm (from
Marino and Rimmele, 2011).
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Figure 46: Strehl ratio as function of elevation of the Sun in the sky. The same model parameters as
used in the previous figures were used to compare Strehl performance between mono-chromatic wavefront
sensing and the case where wavefront sensor and observing wavelengths are significantly different. The
Haleakala profile was used for this simulation. The Fried parameter is 10 cm (from Marino and Rimmele,
2011).

visible wavelengths with a fairly narrow passband. For example, the atmospheric dispersion be-
tween 430 nm, the observing wavelength of the science camera, and 500 nm, the wavefront sensor
wavelength, is about 1 arcsec. For early morning observations with the Sun at 20° elevation (zenith
angle = 80°) and with a single turbulence layer at 10 km the 430 nm phase screen that needs to
be corrected by the AO is shifted by about 0.14 m with respect to the 500 nm phase screen that is
actually measured by the AO wavefront sensor. This simple estimate gives the order of magnitude
of the effect. The exact equations for calculating the ray displacement can again be found in Hardy
(1998, Section 9.3).

This misregistration of the science beam wavefront and the sensor beam wavefront can be of
order r0, which results in significant reduction of Strehl when compared to an AO system that
senses at the same wavelength as the science detector. This is demonstrated with Figure 46, which
plots the Strehl ratio as a function of elevation for a number of wavelengths. This simulation
again models the four layer Haleakala turbulence profile and the ATST 1300 actuator AO system.
The r0 is assumed to be 10 cm in all cases. The dotted, solid, dashed, and dashed-dotted lines
represent the expected Strehl performance for the ideal mono-chromatic AO system, which senses
at 430 nm, 500 nm, 630 nm, and 1600 nm, respectively, and observations are performed at these
same wavelengths. The same lines with over-plotted symbols show the performance of the multi-
spectral AO, which senses the wavefront errors at 500 nm but the correction is evaluated at 430 nm
(diamonds), 630 nm (stars), and 1600 nm (circles), respectively. For elevation angles smaller than
30° (zenith angle ≤ 70°) the curves diverge with significantly reduced Strehl for the multi-spectral
AO. Figure 46 suggests that solar multi-spectral observations could gain form careful selection of
the WFS wavelength taking into account the primary wavelengths, science priorities of the multi-
spectral experiment and the possibility of performing post-facto reconstruction of some instruments
that might not exist for other participating instruments. For example, post-facto reconstruction
is more difficult for spectrograph instruments than it is for imaging devices. One might, therefore,
in some cases, decide to optimize the AO performance for 630.2 nm polarimetry and accept a
performance hit with the secondary instrument, the g-band imager, since the g-band images will
be post-fact reconstructed (e.g., speckle). A WFS that can operate at different, user-selectable
wavelengths would be of advantage.
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Solar AO has the luxury of using a relatively narrow bandpass WFS. Science observations are
usually performed within a very limited wavelengths range as well. In this way other error sources
that would have to be considered for broad-band WFS and broad-band science observations, such
as the angular dispersion error and the dispersion displacement error can be largely neglected.
It should be noted that solar astronomers often use the term broad-band to describe filtergraph
observations with passbands of 10 nm or even less. In the context of atmospheric dispersion such
passbands would still be considered narrow-band.

9.2 Multi-Conjugate Adaptive Optics (MCAO)

A severe limitation of conventional AO is its ability to fully correct only the seeing aberrations
within the isoplanatic patch. Anisoplanatism causes the quality of the AO correction to gradu-
ally decline away from the diffraction limit with distance from the chosen lock center and as a
consequence, the Strehl ratio decreases. In the visible, conventional AO limits the corrected FOV
to a few arcseconds diameter or less (Equation 20). At near infrared wavelengths, where r0 is
larger, a corrected FOV of a few tens of arcseconds might be achieved (Rimmele et al., 2006c). As
was shown in Sections 6.1.3 and 9.1.3 the actual size of the isoplanatic patch depends strongly on
telescope aperture size, the Fried parameter, wavelength, and, of course, the particular turbulence
profile.

A sunspot or active region extends typically over 1 – 2’. Flares can occur “unannounced”
anywhere in the extended FOV. Flare trigger mechanisms operate rapidly and on the smallest
spatial scales and their location within the FOV is difficult to predict. Diffraction limited resolution
over a FOV of 1 – 2’ is required in these cases.

Figure 1. Sketch of the MCAO principle.

to an inversion process, and usual constraints apply, like for instance the number of GSs has to be larger than the
number of layers to be reconstructed, to insure stability.

Tomography as such was �rst conceived as an open loop measurement scheme. One of the problem associated
with open-loop tomography is that the GSs, signi�cantly o� axis, will not be compensated, and therefore the phase
excursion in their directions will be quite large. As in the technique of deconvolution by wavefront sensing8, a clean
reconstruction process requires clean and accurate measurements, therefore wavefront sensors with large dynamic
range, and good (or well calibrated) linearity. In general, this is impractical or means less sensibility. Indeed, for any
known sensor schemes (Shack-Hartmann, Curvature, shearing interferometer, pyramidic), a larger dynamic range is
at the expense of sensitivity: For Shack-Hartmann, it means more pixels in each subapertures (thus more noise if
the detector is not noiseless), for curvature, it means using larger extra-focal distances, etc...

Tomographic MCAO provides a solution to the later point: By using several deformable mirrors (DMs), a MCAO
system compensates for the phase distortion in a 3-D fashion, and therefore provides a uniform compensation over
an extended �eld of view. This �eld of view may include the GSs, which means that the wavefront sensing will be
done in close-loop. The goal of the close loop is now to null the wavefront sensor measurements, and tomographic
MCAO becomes a straightforward extension of classical AO: An interaction matrix is done between the N sensors
and the M mirrors, and this matrix is inverted -folding into the process whatever constraints are deemed necessary,
for intance, one may use the expected Cn2 pro�le and build a minimal variance or a MAP7 estimator- and used for
the system control.

Figure 1 presents a sketch of a MCAO system: Two wavefront sensors look at two GSs, and control two DMs
through a control computer. It has to be underlined that the information from all the sensors are used to control
any and each DM. In this sketch, one of the DM is optically conjugated close to the ground, and the other one is
conjugated to altitude.

To summarize, MCAO has the following advantages:

� It extends the compensated �eld of view of the AO system. This by itself is a considerable advantage. The
consequence of the enlargement of the FoV is not only that more �eld is available, but also that one of the
main variable has been removed, that is the anisoplanatic degradation, and therefore the compensation will be
more stable. If the PSF is spatially uniform, it will be in most cases possible to �nd a PSF calibrator in the
�eld itself. This is of prime importance for a reliable extraction of the photometry, which has been one of the
main limitations in the astronomical exploitation of AO images to date.

Figure 47: Principle of MCAO (from Rigaut et al., 2000).

MCAO is a technique that can provide real-time diffraction limited imaging over an extended
FOV of 1 – 2’ (Beckers, 1988; Rigaut et al., 2000). Figure 47 illustrates the basic principle is
tomography. Guide stars in different sky directions are used to probe the turbulent volume above
the telescope. Two or more DMs are placed at conjugates of the main turbulence layers and provide
correction over an extended FOV as is illustrated with Figure 48. The operation of multiple DMs
poses a challenging controls problem.

Night-time MCAO development has progressed to a point where scientific results with MCAO
have been obtained. The ESO MAD system (Marchetti et al., 2003, 2008), which uses natural guide
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Figure 48: Strehl vs. FOV for conventional AO and a 2DM MCAO system. This figure is intended to
demonstrate the principle of MCAO and does not represent a realistic performance prediction for a solar
MCAO system. Realistic performance estimates of MCAO at a 4 m solar telescope will be shown later in
this section (courtesy of T. Berkefeld).

stars, demonstrated the power of MCAO for scientific discovery even with a demonstrator system.
Wavefront sensing in night-time MCAO is difficult because for general use, multiple laser guide
stars (LGSs) are needed for tomographic wavefront reconstruction. Thus, to accurately reconstruct
3-D turbulence, generally a number of laser guide stars are needed. The Sun, on the other hand,
is an ideal target for MCAO. Any number and any configuration of “guide stars” can in principle
be created from the omni-present granulation the same but multiple correlating SHWFS used for
conventional AO. Implementing operational solar MCAO is an essential, but challenging task that
faces the NST, GREGOR, ATST, and EST.

A number of successful on-the-sky MCAO experiments were performed at the DST and at the
German VTT (Vacuum Tower Telescope) on the Canary Islands (Berkefeld et al., 2003; Langlois
et al., 2004; Berkefeld et al., 2005; von der Lühe et al., 2005; Rimmele et al., 2009). As an example
the KIS MCAO approach is shown in Figure 49. A common theme of the solar MCAO experiments
is the two stage approach, which uses the high order conventional AO to provide a good correction
of the ground layer, and a second, low-order MCAO stage with multiple off-axis, extended “guide
fields”, which are equivalent to the night-time MCAO guide stars. Figure 50 shows results from
solar MCAO experiments performed at the VTT, Tenerife (von der Lühe et al., 2005) and at the
DST (Rimmele et al., 2010a,c). Both examples clearly demonstrate the MCAO’s ability to extend
the corrected FOV significantly beyond the conventional AO FOV.

As an example of a typical MCAO optical implementation Figure 51 shows the MCAO optical
path of GREGOR (Berkefeld et al., 2006). The collimator M12 images the entrance pupil onto the
tip/tilt mirror M13 which is followed by the pupil plane DM1. The combination of M15MCAO and
M16 produce 25 km and 8 km conjugate images at a convenient beam size in order to accommodate
the MCAO DMs. The DMs can easily be moved to adjust the conjugate heights. M19 produces
the final image at f/37.

The 1.5 m GREGOR telescope project is planning to implement a MCAO system shortly
after first light (Berkefeld et al., 2006). The system is currently being tested in the lab. Further
development is progressing at the DST with the goal to provide the ground work for operational
solar MCAO at the BBSO NST. The optical path of the 4 m ATST, currently under construction,
is designed to allow the high order conventional AO system to be easily upgraded to high order
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Figure 49: WFS Lenslet and subaperture image arrangement of the conventional AO stage (high order,
narrow field, right) and the additional MCAO stage (low order, wide field, left) (from Berkefeld et al.,
2006). The upper panel shows a top level schematic of the conventional and MCAO stages (from von der
Lühe et al., 2005).
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Figure 50: Top: Results from KIS MCAO experiment at the VTT, Tenerife. Shown is the field depen-
dence of the generalized Fried parameter 𝜌0 derived from speckle interferometry. Without adaptive optics
(left) 𝜌0 equals r0 and amounts to about 7 cm at 430 nm and is uniformly distributed across the field.
Conventional adaptive optics (middle) corrects a FOV of a few arcseconds where 𝜌0 is about 10.5 cm.
The correction extends over a much larger area with MCAO (right). The data for MCAO and without
AO were taken about a minute apart (from von der Lühe et al., 2005). Bottom: Results from the DST
MCAO experiment. Shown are maps of residual image motion measured with conventional AO (left) and
the MCAO (right). Dark blue areas in these images indicate good correction. This example was obtained
with the five guide region “asterism”. The square FOV is about 45” Ö 45”. The MCAO corrects to a best
level of 0.01” rms and over a FOV of about 40 – 45” compared to typically less than 10” of the conventional
AO (from Rimmele et al., 2010c).

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-2

http://www.livingreviews.org/lrsp-2011-2


72 Thomas R. Rimmele and Jose Marino

M2

M1

M3

M5

M8-M10 (derotator)

f1

f2

M12 (collimator)
M13 (tiptilt)

M14 (DM 1@0km)
M15MCAO (reimager)

M17 (DM 3@25km)

M18 (DM 2@8km)
M19 (reimager)

M16

science focus

f3

x

xM11

M20

M15CAO (reimager)

Figure 51: Optical implementation of MCAO for GREGOR (from Berkefeld, 2007)
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MCAO once the solar MCAO technology is mature (Rimmele et al., 2006b). The EST project is
considering MCAO as a first light capability (Berkefeld et al., 2010; Soltau et al., 2010).

The EST MCAO goals are quite ambitious (Berkefeld et al., 2010). The requirement to achieve
a Strehl ratio of S = 0.3 for r0 = 7 cm and S = 0.6 at r0 = 20 cm across a corrected FOV of 1’ at
visible wavelengths is extremely challenging. The design uses a large number of DMs and off-axis
WFS. In addition to the tip/tilt device there are five (5) DMs at conjugate heights of 0, 5, 9, 15, and
30 km as shown in Figure 52. The science FOV envisioned is 60” square. Performance modeling
of such a system was presented by Berkefeld et al. (2010) and illustrates the difficult issues facing
solar MCAO. The best seeing conditions at solar telescopes are generally in the morning hours
when ground layer turbulence due to ground heating is minimal. On the other hand the zenith
angle is large and, consequently, the air mass through which the Sun is observed is multiple times
that of observations performed at near zenith pointing.

The impact of zenith angle on MCAO field performance is seen in Figure 53. The achievable
maximum Strehl drops drastically with increasing zenith angle. The simulation indicates that even
with a 5 DM MCAO system the Strehl does not exceed S = 0.2 once the zenith angle is 60 degrees
or larger. In comparison, for zenith pointing high Strehl can be achieved with only four DMs. If
the MCAO performance is optimized for a reduced FOV of 30” diameter good Strehl performance
can be achieved at large zenith angles (Figure 53, right).

These results point to fundamental issues with the implementation of solar MCAO. Trade-
offs will have to be performed in order to optimize the MCAO performance toward specific science
experiments. The FOV over which diffraction limited observations have to be performed to achieve
scientific goals as well as the desired Strehl will drive the complexity of the MCAO and the zenith
distance for which the observations are possible. Achieving a high visible Strehl over a large
(≥ 2’) FOV does not appear to be practical during the typical prime solar observing hours. The
probability of obtaining large corrected FOVs with MCAO in the infrared is much higher because of
the 𝜆

6
5 dependence of key atmospheric parameters, such as the Fried parameter and the isoplanatic

angle. MCAO observations are best performed for near zenith pointing. However, the build up
of ground turbulence will increasingly stress the ground layer DM and drive it toward the highest
possible order of correction. As was noted above the minimum subaperture size of the correlating
SHWFS is around 7 – 8 cm. The order of the ground-layer DM can not be increased much beyond
this limit unless ways to significantly improve the SNR performance of this WFS approach can
be found (see Section 6.1.5) or different WFS approaches that do not have this limitation can be
developed for solar AO application. The phase diversity approach (Paxman et al., 2007) to the
solar WFS appears to be the most promising in this regard since it deploys full aperture WFS and,
thus, is not limited by subaperture diffraction. The information content of the PD sensor is higher
compared to the correlating SHWFS.

9.3 Ground-Layer Adaptive Optics (GLAO)

Ground-Layer Adaptive Optics is an attractive option for solar AO (Rimmele et al., 2010c). During
the daytime most of the turbulence is located near the ground. Up to 90% of the turbulence can
be located within the first 100 – 200 m while the r0 of the upper atmosphere can be rather large.
Fried parameters of 20 – 40 cm are possible at those higher layers. Excluding the ground layer and
assuming an overall r0 in the visible of 10 cm (20 cm) the Haleakala turbulence profile shown in

Table 1 would yield an effective r0 for all higher layers of 22 cm (42 cm). Because of the 𝜆
−6
5

dependence of r0 the best utility of GLAO at large aperture telescopes may be at near infrared
wavelengths. This means that with a simple high order ground layer correction it is theoretically
possible to achieve subarcsecond resolution over a very wide field. A number of science objectives
can be addressed with a resolution of 0.25 – 0.5” that potentially might be provided by GLAO. At
this reduced resolution (with GLAO the diffraction limit can not be reached at visible wavelengths)
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Figure 52: EST MCAO linear optical arrangement. M1 and M2 constitute the main telescope. M5 and
M8 are the collimator and camera optics of the conventional AO. The tip/tilt mirror is M6; the ground
layer (AO) DM is M7. The four MCAO DMs M9-M12 are at conjugate heights of 30, 15, 9, and 5 km
(from Berkefeld et al., 2010).

Figure 53: Left: Strehl as a function of the field angle and zenith angles = 0° (upper curve), 30° (middle
curve), 60° (lower curve). Even with 5 DMs the performance is unsatisfactory for large zenith angles.
Right: Strehl as a function of the field angle and zenith angle 45° for a corrected FOV of 60” and 30”,
respectively, and modified MCAO DM conjugated heights (from Berkefeld et al., 2010).
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a large aperture solar telescope, such as the 4 m ATST, would provide a tremendous photon flux
and, thus, a significant cadence and/or sensitivity advantage. Sensitive vector magnetic field
measurements of active regions that currently take on the order of an hour and, hence, miss much
of the very dynamic nature of active region evolution could be performed in a few minutes provided
efficient instrumentation is used.

Experiments with the goal to provide a ground layer correction by using a wide field SHWFS
were performed at the DST (Rimmele et al., 2010c). Modeling of wide field SHWFS was performed
by Wöger and Rimmele (2009). As the WFS FOV is increased from the small field of the conven-
tional AO to larger and larger field size the correction applied with the DM is an average over an
increasingly larger number of field directions, i.e., a large number of isoplanatic patches. The field
averaging of wavefront information is essentially done optically and by the correlation algorithm.
However, this simple implementation of GLAO has its limitations as is seen in Figure 54, which
shows the variance of residual image motion overlaid on the speckle reconstructed granulation.
The WFS FOV was 42” Ö 42”. The residual image motion variance is fairly uniform across the
field but residual field dependence is still visible.

It has been demonstrated that a wide field WFS can increase the sensitivity of the correlating
WFS and, thus, is expected to work for worse seeing conditions (Owner-Petersen et al., 1993). As
pointed out by Rimmele et al. (2010c) GLAO may be a tool to improve telescope efficiency. Bad
seeing periods during which conventional AO provides very low Strehl or simply does not work at
all can still be utilized for certain science projects that require subarcsecond but not diffraction
limited resolution. Such observations would gain from the available photon flux of a large aperture.
In particular, in the near infrared a modestly sized GLAO system could potentially open up a new
window for high cadence polarimetry.

GLAO might also be an attractive option for synoptic solar telescopes such as SOLIS and a
future larger aperture GONG network. Depending on the site characteristics the 50 cm SOLIS
telescope could potentially operate close to its diffraction limit for the full solar disk with a relatively
modest GLAO system.

Figure 54: Maps of the variance of residual image motion measured with GLAO mode at the DST.
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10 Summary

Solar adaptive optics has to be considered a success story. The success of solar AO can be measured
not only by the impressive imagery obtained with AO but most importantly by new scientific
results, the use-rate of solar AO and the numerous scientific publications that were enabled by AO.
Ground-based solar astronomy is experiencing a renaissance. New large aperture adaptive optics
telescopes such as the ATST are currently under construction and will provide observations of the
Sun with unprecedented resolution. These observations will allow us to put to the test and guide
theoretical models and simulations and, thus, advance tremendously our physical understanding of
solar phenomena. The successful development of solar AO and the demonstration of its scientific
potential contributed in no small part to the community’s success in making the case for funding
of large aperture ground-based solar telescopes.

This article summarized the difficult path that led to the successful implementation of solar
AO at ground-based solar telescopes. It is fair to say that the rapid development of fast computer
technology needed for the implementation of the correlating SHWFS as well as the commercial
availability of deformable mirrors were major prerequisites in bring solar adaptive optics to fruition.
As with any instrument a good understanding of potential error sources is crucial for estimating
and optimizing the systems performance and, in turn, maximizing scientific productivity. The
combination of AO and post facto image processing provides ground-based solar astronomers with
a powerful tool that can rival or even surpass space based observations. AO enables diffraction
limited observing at large aperture telescopes where similar size aperture telescopes from space are
likely cost prohibitive.

New developments in the field of solar AO include the construction of extreme solar AO systems
with thousands of actuators for the 4 m class telescopes, the very challenging development of MCAO
and the possible use of GLAO. MCAO will mitigate one of the major limitations of conventional
AO – the small corrected FOV. Compared to current small aperture solar telescopes the isoplanatic
patch will be significantly smaller at 4 m solar telescopes. Some level of partial correction can be
achieved over wide fields at small aperture solar telescopes with conventional AO. The correction
level is sufficient to facilitate post-facto processing and diffraction limited imaging can be obtained
over sizable FOVs even at visible wavelengths. This will be extremely challenging at 4 m solar
telescopes. MCAO is, therefore, considered a vital technology for these next generation telescopes.
The large 4 m aperture, in principle, provides 0.1” diffraction limited resolution at near infrared
wavelengths. Because of the 𝜆

6
5 dependence of the Fried parameter the size of r0 increases by

about a factor of four (4) for observations in the near infrared (1.6 µ). This means that the 𝐷
𝑟0

for
a 4 m telescope and for near infrared wavelengths is roughly the same ratio as for a 1 m telescope
operating at visible wavelengths and conventional AO performance is expected to be comparable.
This may lead to more focus being placed on infrared instrumentation at these larger telescopes at
least initially and until MCAO is fully operational at a level comparable to current conventional
solar AO systems.

The implementation of MCAO at solar telescopes is aided by the fact that the multiple “guide
stars” required to perform tomography of the turbulent volume are provided by the Sun’s om-
nipresent granulation pattern. The complexity of multiple laser guide stars needed for night-time
MCAO is avoided. The initial success achieved with solar MCAO development is encouraging.
Nevertheless, much work remains to be done before fully operational MCAO will be available
at solar telescopes. GREGOR and NST will soon allow us to gain operational experience with
solar MCAO. The use of GLAO may be of advantage for certain applications where sub-arcsec
(but not diffraction limited resolution) and high photon flux is required. GLAO can be used in
combination with post-facto reconstruction techniques, although at 4 m telescopes and at visible
wavelengths achieving large, well corrected FOVs will be a serious challenge. GLAO also seems to
be an attractive option for synoptic telescopes of moderate aperture (e.g., SOLIS).
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Clénet, Y., Conan, J.-M., Fusco, T., Rousset, G., EDP Sciences, Les Ulis. [DOI], [ADS] (Cited
on page 69.)

Rimmele, T.R., Wagner, J., Keil, S., Elmore, D., Hubbard, R.P., Hansen, E., Warner, M., Jeffers,
P., Phelps, L., Marshall, H., Goodrich, B., Richards, K., Hegwer, S., Kneale, R. and Ditsler,
J., 2010b, “The Advanced Technology Solar Telescope: beginning construction of the world’s
largest telescope”, in Ground-based and Airborne Telescopes III , 27 June – 2 July 2010, San
Diego, California, USA, (Eds.) Stepp, L.M., Gilmozzi, R., Hall, H.J., vol. 7733 of Proc. SPIE,
SPIE, Bellingham, WA. [DOI] (Cited on page 9.)

Rimmele, T.R., Wöger, F., Marino, J., Richards, K., Hegwer, S., Berkefeld, T., Soltau, D., Schmidt,
D. and Waldmann, T., 2010c, “Solar multi-conjugate adaptive optics at the Dunn Solar Tele-
scope”, in Adaptive Optics Systems II , 27 June 2010 – 2 July, San Diego, California, USA, (Eds.)
Ellerbroek, B.L., Hart, M., Hubin, N., Wizinowich, P.L., vol. 7736 of Proc. SPIE, SPIE, Belling-
ham, WA. [DOI] (Cited on pages 40, 69, 71, 73, and 75.)

Robert, C., Conan, J.-M., Michau, V., Fusco, T. and Vedrenne, N., 2006, “Scintillation and phase
anisoplanatism in Shack-Hartmann wavefront sensing”, J. Opt. Soc. Am. A, 23, 613–624. [DOI],
[ADS] (Cited on page 42.)

Roberts Jr, L.C., Perrin, M.D., Marchis, F., Sivaramakrishnan, A., Makidon, R.B., Christou, J.C.,
Macintosh, B.A., Poyneer, L.A., van Dam, M.A. and Troy, M., 2004, “Is that really your Strehl

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-2

http://dx.doi.org/10.1117/12.508513
http://adsabs.harvard.edu/abs/2004SPIE.5171..179R
http://adsabs.harvard.edu/abs/2006cosp...36.3186R
http://dx.doi.org/10.1117/12.671603
http://adsabs.harvard.edu/abs/2006SPIE.6272E...5R
http://dx.doi.org/10.1117/12.672330
http://adsabs.harvard.edu/abs/2006SPIE.6272E..33R
http://adsabs.harvard.edu/abs/2008amos.confE..18R
http://www.amostech.com/TechnicalPapers/2008.cfm
http://dx.doi.org/10.1051/ao4elt/201008002
http://adsabs.harvard.edu/abs/2010aoel.confE8002R
http://dx.doi.org/10.1117/12.857714
http://dx.doi.org/10.1117/12.857485
http://dx.doi.org/10.1364/JOSAA.23.000613
http://adsabs.harvard.edu/abs/2006JOSAA..23..613R
http://www.livingreviews.org/lrsp-2011-2


88 Thomas R. Rimmele and Jose Marino

ratio?”, in Advancements in Adaptive Optics, Glasgow, Scotland, UK, 21 June 2004, (Eds.)
Bonaccini Calia, D., Ellerbroek, B.L., Ragazzoni, R., vol. 5490 of Proc. SPIE, pp. 504–515,
SPIE, Bellingham, WA. [DOI], [ADS] (Cited on page 44.)

Roddier, F., 1988, “Curvature sensing and compensation: a new concept in adaptive optics”, Appl.
Opt., 27, 1223–1225. [DOI], [ADS] (Cited on page 24.)

Roddier, F., 1990, “Wavefront sensing and the irradiance transport equation”, Appl. Opt., 29,
1402–1403. [DOI], [ADS] (Cited on page 24.)

Roddier, F. (Ed.), 1999, Adaptive Optics in Astronomy , Cambridge University Press, Cambridge;
New York. [ADS], [Google Books] (Cited on pages 11, 26, and 42.)

Roddier, F., Graves, J.E., McKenna, D.L. and Northcott, M.J., 1992, “The UH (University of
Hawaii) wavefront curvature sensor”, in Adaptive Optics for Large Telescopes, Summaries of
papers presented at the Topical Meeting, August 17 – 21, 1992, Lahaina, Maui, Hawaii, vol. 19
of Technical Digest, pp. 170–172, Optical Society of America, Washington, DC. [ADS] (Cited
on page 24.)

Roddier, F.J., 1991, “Wavefront curvature sensing and compensation methods in adaptive optics”,
in Propagation Engineering: Fourth in a Series, Orlando, FL, USA, 3 April 1991, (Eds.) Bisson-
nette, L.R., Miller, W.B., vol. 1487 of Proc. SPIE, pp. 123–128, SPIE, Bellingham, WA. [DOI],
[ADS] (Cited on page 24.)

Roggemann, M.C. and Welsh, B., 1996, Imaging Through Turbulence, CRC Press, Boca Raton,
FL (Cited on pages 11 and 12.)
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