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Abstract

Several km-scale gravitational-wave detectors have been constructed world wide. These
instruments combine a number of advanced technologies to push the limits of precision length
measurement. The core devices are laser interferometers of a new kind; developed from the
classical Michelson topology these interferometers integrate additional optical elements, which
significantly change the properties of the optical system. Much of the design and analy-
sis of these laser interferometers can be performed using well-known classical optical tech-
niques, however, the complex optical layouts provide a new challenge. In this review we give
a textbook-style introduction to the optical science required for the understanding of modern
gravitational wave detectors, as well as other high-precision laser interferometers. In addition,
we provide a number of examples for a freely available interferometer simulation software and
encourage the reader to use these examples to gain hands-on experience with the discussed
optical methods.
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Interferometer Techniques for Gravitational-Wave Detection 5

1 Introduction

1.1 The scope and style of the review

The historical development of laser interferometers for application as gravitational-wave detec-
tors [47] has involved the combination of relatively simple optical subsystems into more and more
complex assemblies. The individual elements that compose the interferometers, including mirrors,
beam splitters, lasers, modulators, various polarising optics, photo detectors and so forth, are
individually well described by relatively simple, mostly-classical physics. Complexity arises from
the combination of multiple mirrors, beam splitters etc. into optical cavity systems, have narrow
resonant features, and the consequent requirement to stabilise relative separations of the various
components to sub-wavelength accuracy, and indeed in many cases to very small fractions of a
wavelength.

Thus, classical physics describes the interferometer techniques and the operation of current
gravitational-wave detectors. However, we note that at signal frequencies above a couple of hun-
dreds of Hertz, the sensitivity of current detectors is limited by the photon counting noise at the
interferometer readout, also called shot-noise. The next generation systems such as Advanced
LIGO [23, 5], Advanced Virgo [4] and LCGT [36] are expected to operate in a regime where the
quantum physics of both light and mirror motion couple to each other. Then, a rigorous quantum-
mechanical description is certainly required. Sensitivity improvements beyond these ‘Advanced’
detectors necessitate the development of non-classical techniques. The present review, in its first
version, does not consider quantum effects but reserves them for future updates.

The components employed tend to behave in a linear fashion with respect to the optical field,
i.e., nonlinear optical effects need hardly be considered. Indeed, almost all aspects of the design
of laser interferometers are dealt with in the linear regime. Therefore the underlying mathematics
is relatively simple and many standard techniques are available, including those that naturally
allow numerical solution by computer models. Such computer models are in fact necessary as the
exact solutions can become quite complicated even for systems of a few components. In practice,
workers in the field rarely calculate the behaviour of the optical systems from first principles, but
instead rely on various well-established numerical modelling techniques. An example of software
that enables modelling of either time-dependent or frequency-domain behaviour of interferometers
and their component systems is Finesse [22, 19]. This was developed by one of us (AF), has
been validated in a wide range of situations, and was used to prepare the examples included in the
present review.

The target readership we have in mind is the student or researcher who desires to get to grips
with practical issues in the design of interferometers or component parts thereof. For that reason,
this review consists of sections covering the basic physics and approaches to simulation, intermixed
with some practical examples. To make this as useful as possible, the examples are intended to
be realistic with sensible parameters reflecting typical application in gravitational wave detectors.
The examples, prepared using Finesse, are designed to illustrate the methods typically applied in
designing gravitational wave detectors. We encourage the reader to obtain Finesse and to follow
the examples (see Appendix A).

1.2 Overview of the goals of interferometer design

As set out in very many works, gravitational-wave detectors strive to pick out signals carried by
passing gravitational waves from a background of self-generated noise. The principles of operation
are set out at various points in the review, but in essence, the goal has been to prepare many
photons, stored for as long as practical in the ‘arms’ of a laser interferometer (traditionally the
two arms are at right angles), so that tiny phase shifts induced by the gravitational waves form
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6 Andreas Freise and Kenneth Strain

as large as possible a signal, when the light leaving the appropriate ‘port’ of the interferometer is
detected and the resulting signal analysed.

The evolution of gravitational-wave detectors can be seen by following their development from
prototypes and early observing systems towards the Advanced detectors, which are currently in
the final stages of planning or early stages of construction. Starting from the simplest Michelson
interferometer [18], then by the application of techniques to increase the number of photons stored
in the arms: delay lines [31], Fabry–Pérot arm cavities [16, 17] and power recycling [15]. The final
step in the development of classical interferometry was the inclusion of signal recycling [41, 30],
which, among other effects, allows the signal from a gravitational-wave signal of approximately-
known spectrum to be enhanced above the noise.

Reading out a signal from even the most basic interferometer requires minimising the cou-
pling of local environmental effects to the detected output. Thus, the relative positions of all
the components must be stabilised. This is commonly achieved by suspending the mirrors etc.
as pendulums, often multi-stage pendulums in series, and then applying closed-loop control to
maintain the desired operating condition. The careful engineering required to provide low-noise
suspensions with the correct vibration isolation, and also low-noise actuation, is described in many
works. As the interferometer optics become more complicated, the resonance conditions, i.e., the
allowed combinations of inter-component path lengths required to allow the photon number in the
interferometer arms to reach maximum, become more narrowly defined. It is likewise necessary
to maintain angular alignment of all components, such that beams required to interfere are cor-
rectly co-aligned. Typically the beams need to be aligned within a small fraction (and sometimes
a very small fraction) of the far-field diffraction angle, and the requirement can be in the low
nanoradian range for km-scale detectors [44, 21]. Therefore, for each optical component there is
typically one longitudinal (i.e., along the direction of light propagation), plus two angular degrees
of freedom (pitch and yaw about the longitudinal axis). A complex interferometer can consist of
up to around seven highly sensitive components and so there can be of order 20 degrees of freedom
to be measured and controlled [3, 57].

Although the light fields are linear, the coupling between the position of a mirror and the
complex amplitude of the detected light field typically shows strongly nonlinear dependence on
mirror positions due to the sharp resonance features exhibited by cavity systems. However, the
fields do vary linearly or at least smoothly close to the desired operating point. So, while well-
understood linear control theory suffices to design the control system needed to maintain the
optical configuration at its operating point, bringing the system to that operating condition is
often a separate and more challenging nonlinear problem. In the current version of this work we
consider only the linear aspects of sensing and control.

Control systems require actuators, and those employed are typically electrical-force transducers
that act on the suspended optical components, either directly or – to provide enhanced noise
rejection – at upper stages of multi-stage suspensions. The transducers are normally coil-magnet
actuators, with the magnets on the moving part, or, less frequently, electrostatic actuators of
varying design. The actuators are frequently regarded as part of the mirror suspension subsystem
and are not discussed in the current work.

1.3 Overview of the physics of the primary interferometer components

To give order to our review we consider the main physics describing the operation of the basic
optical components (mirrors, beam splitters, modulators, etc.) required to construct interferom-
eters. Although all of the relevant physics is generally well known and not new, we take it as a
starting point that permits the introduction of notation and conventions. It is also true that the
interferometry employed for gravitational-wave detection has a different emphasis than other inter-
ferometer applications. As a consequence, descriptions or examples of a number of crucial optical
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properties for gravitational wave detectors cannot be found in the literature. The purpose of this
first version of the review is especially to provide a coherent theoretical framework for describing
such effects. With the basics established, it can be seen that the interferometer configurations that
have been employed in gravitational-wave detection may be built up and simulated in a relatively
straightforward manner.

As mentioned above, we do not address the newer physics associated with operation at or
beyond the standard quantum limit. The interested reader can begin to explore this topic from
the following references.

• The standard quantum limit [10, 32]

• Squeezing [38, 53]

• Quantum nondemolition interferometry [9, 24]

These matters are to be included in a future revision of this review.

1.4 Plane-wave analysis

The main optical systems of interferometric gravitational-wave detectors are designed such that
all system parameters are well known and stable over time. The stability is achieved through a
mixture of passive isolation systems and active feedback control. In particular, the light sources are
some of the most stable, low-noise continuous-wave laser systems so that electromagnetic fields can
be assumed to be essentially monochromatic. Additional frequency components can be modelled as
small modulations (in amplitude or phase). The laser beams are well collimated, propagate along
a well-defined optical axis and remain always very much smaller than the optical elements they
interact with. Therefore, these beams can be described as paraxial and the well-known paraxial
approximations can be applied.

It is useful to first derive a mathematical model based on monochromatic, scalar, plane waves.
As it turns out, a more detailed model including the polarisation and the shape of the laser beam
as well as multiple frequency components, can be derived as an extension to the plane-wave model.
A plane electromagnetic wave is typically described by its electric field component:

~E(x, y, z, t) = E0 ~ep cos
(

ωt − ~k~r + ϕ

)

field amplitude

direction of polarisation

ω = 2π f is the angular frequency

~k gives the direction of the wave with k = ω/c

phase offset

Figure 1

with 𝐸0 as the (constant) field amplitude in V/m, �⃗�𝑝 the unit vector in the direction of polarisation,
such as, for example, �⃗�𝑦 for S -polarised light, 𝜔 the angular oscillation frequency of the wave,
and �⃗� = �⃗�𝑘𝜔/𝑐 the wave vector pointing the in the direction of propagation. The absolute phase
𝜙 only becomes meaningful when the field is superposed with other light fields.

In this document we will consider waves propagating along the optical axis given by the z -axis,
so that �⃗��⃗� = 𝑘𝑧. For the moment we will ignore the polarisation and use scalar waves, which can
be written as

𝐸(𝑧, 𝑡) = 𝐸0 cos(𝜔𝑡− 𝑘𝑧 + 𝜙). (1)
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Further, in this document we use complex notation, i.e.,

𝐸 = ℜ{𝐸′} with 𝐸′ = 𝐸′
0 exp

(︀
i (𝜔𝑡− 𝑘𝑧)

)︀
. (2)

This has the advantage that the scalar amplitude and the phase 𝜙 can be given by one, now complex,
amplitude 𝐸′

0 = 𝐸0 exp(i 𝜙). We will use this notation with complex numbers throughout. For
clarity we will simply use the unprimed letters for the auxiliary field. In particular, we will use
the letter 𝐸 and also 𝑎 and 𝑏 to denote complex electric-field amplitudes. But remember that, for
example, in 𝐸 = 𝐸0 exp(−i 𝑘𝑧) neither 𝐸 nor 𝐸0 are physical quantities. Only the real part of 𝐸
exists and deserves the name field amplitude.

1.5 Frequency domain analysis

In most cases we are either interested in the fields at one particular location, for example, on the
surface of an optical element, or we want to know the fields at all places in the interferometer but
at one particular point in time. The latter is usually true for the steady state approach: assuming
that the interferometer is in a steady state, all solutions must be independent of time so that we
can perform all computations at 𝑡 = 0 without loss of generality. In that case, the scalar plane
wave can be written as

𝐸 = 𝐸0 exp(−i 𝑘𝑧). (3)

The frequency domain is of special interest as numerical models of gravitational-wave detectors
tend to be much faster to compute in the frequency domain than in the time domain.
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2 Optical Components: Coupling of Field Amplitudes

When an electromagnetic wave interacts with an optical system, all of its parameters can be
changed as a result. Typically optical components are designed such that, ideally, they only affect
one of the parameters, i.e., either the amplitude or the polarisation or the shape. Therefore, it is
convenient to derive separate descriptions concerning each parameter. This section introduces the
coupling of the complex field amplitude at optical components. Typically, the optical components
are described in the simplest possible way, as illustrated by the use of abstract schematics such as
those shown in Figure 2.

optical axis

mirror

Ein

Erefl

Etrans

Ein2

optics

E1

E4

E3

E2

optics

E1

E4

E3

E2

E5 E8

E7 E6

Figure 2: This set of figures introduces an abstract form of illustration, which will be used in this
document. The top figure shows a typical example taken from the analysis of an optical system: an
incident field 𝐸in is reflected and transmitted by a semi-transparent mirror; there might be the possibility
of second incident field 𝐸𝑖𝑛2. The lower left figure shows the abstract form we choose to represent the
same system. The lower right figure depicts how this can be extended to include a beam splitter object,
which connects two optical axes.

2.1 Mirrors and spaces: reflection, transmission and propagation

The core optical systems of current interferometric gravitational interferometers are composed of
two building blocks: a) resonant optical cavities, such as Fabry–Pérot resonators, and b) beam
splitters, as in a Michelson interferometer. In other words, the laser beam is either propagated
through a vacuum system or interacts with a partially-reflecting optical surface.

The term optical surface generally refers to a boundary between two media with possibly
different indices of refraction 𝑛, for example, the boundary between air and glass or between two
types of glass. A real fused silica mirror in an interferometer features two surfaces, which interact
with a reflected or transmitted laser beam. However, in some cases, one of these surfaces has been
treated with an anti-reflection (AR) coating to minimise the effect on the transmitted beam.

The terms mirror and beam splitter are sometimes used to describe a (theoretical) optical
surface in a model. We define real amplitude coefficients for reflection and transmission 𝑟 and 𝑡,
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with 0 ≤ 𝑟, 𝑡 ≤ 1, so that the field amplitudes can be written as

E2 = rE3 + i tE1

E4 = rE1 + i tE3

optical axis

mirror
(optical surface described by coefficients r and t)

E1

E4

E2

E3

Figure 3

The 𝜋/2 phase shift upon transmission (here given by the factor i ) refers to a phase convention
explained in Section 2.4.

The free propagation of a distance 𝐷 through a medium with index of refraction 𝑛 can be
described with the following set of equations:

E2 = E1 exp(−i k n D)

E4 = E3 exp(−i k n D)

optical axis

space
(propagation defined by coefficients D and n)

E1

E4

E2

E3

Figure 4

In the following we use 𝑛 = 1 for simplicity.
Note that we use above relations to demonstrate various mathematical methods for the analysis

of optical systems. However, refined versions of the coupling equations for optical components,
including those for spaces and mirrors, are also required, see, for example, Section 2.6.

2.2 The two-mirror resonator

The linear optical resonator, also called a cavity is formed by two partially-transparent mirrors,
arranged in parallel as shown in Figure 5. This simple setup makes a very good example with which
to illustrate how a mathematical model of an interferometer can be derived, using the equations
introduced in Section 2.1.

optical axis

Dr1, t1

mirror 1

a0

a4

a1

a′
3

r2, t2

mirror 2
a′
1

a3

a2

Figure 5: Simplified schematic of a two mirror cavity. The two mirrors are defined by the amplitude
coefficients for reflection and transmission. Further, the resulting cavity is characterised by its length 𝐷.
Light field amplitudes are shown and identified by a variable name, where necessary to permit their mutual
coupling to be computed.
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The cavity is defined by a propagation length 𝐷 (in vacuum), the amplitude reflectivities 𝑟1,
𝑟2 and the amplitude transmittances 𝑡1, 𝑡2. The amplitude at each point in the cavity can be
computed simply as the superposition of fields. The entire set of equations can be written as

𝑎1 = i 𝑡1𝑎0 + 𝑟1𝑎
′
3

𝑎′1 = exp(−i 𝑘𝐷) 𝑎1

𝑎2 = i 𝑡2𝑎′1
𝑎3 = 𝑟2𝑎

′
1

𝑎′3 = exp(−i 𝑘𝐷) 𝑎3

𝑎4 = 𝑟1𝑎0 + i 𝑡1𝑎′3

(4)

The circulating field impinging on the first mirror (surface) 𝑎′3 can now be computed as

𝑎′3 = exp(−i 𝑘𝐷) 𝑎3 = exp(−i 𝑘𝐷) 𝑟2𝑎
′
1 = exp(−i 2𝑘𝐷) 𝑟2𝑎1

= exp(−i 2𝑘𝐷) 𝑟2 (i 𝑡1𝑎0 + 𝑟1𝑎
′
3).

(5)

This then yields

𝑎′3 = 𝑎0
i 𝑟2𝑡1 exp(−i 2𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)
. (6)

We can directly compute the reflected field to be

𝑎4 = 𝑎0

(︂
𝑟1 −

𝑟2𝑡
2
1 exp(−i 2𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)

)︂
= 𝑎0

(︂
𝑟1 − 𝑟2(𝑟2

1 + 𝑡21) exp(−i 2𝑘𝐷)
1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)

)︂
, (7)

while the transmitted field becomes

𝑎2 = 𝑎0
−𝑡1𝑡2 exp(−i 𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)
. (8)

The properties of two mirror cavities will be discussed in more detail in Section 5.1.

2.3 Coupling matrices

Computations that involve sets of linear equations as shown in Section 2.2 can often be done or
written efficiently with matrices. Two methods of applying matrices to coupling field amplitudes
are demonstrated below, using again the example of a two mirror cavity. First of all, we can rewrite
the coupling equations in matrix form. The mirror coupling as given in Figure 3 becomes

(
a2

a4

)
=

(
i t r
r i t

) (
a1

a3

)

mirror (r, t)

a1

a4

a2

a3

Figure 6
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12 Andreas Freise and Kenneth Strain

and the amplitude coupling at a ‘space’, as given in Figure 4, can be written as

(
a2

a4

)
=

(
exp(−i kD) 0

0 exp(−i kD)

) (
a1

a3

)

space (D)

a1

a4

a2

a3

Figure 7

In these examples the matrix simply transforms the ‘known’ impinging amplitudes into the ‘un-
known’ outgoing amplitudes.

Coupling matrices for numerical computations

An obvious application of the matrices introduced above would be to construct a large matrix for
an extended optical system appropriate for computerisation. A very flexible method is to setup
one equation for each field amplitude. The set of linear equations for a mirror would expand to

⎛
⎜⎜⎝

1 0 0 0
−i 𝑡 1 0 −𝑟
0 0 1 0
−𝑟 0 −i 𝑡 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

𝑎1

𝑎2

𝑎3

𝑎4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

𝑎1

0
𝑎3

0

⎞
⎟⎟⎠ = 𝑀system �⃗�sol = �⃗�input, (9)

where the input vector1 �⃗�input has non-zero values for the impinging fields and �⃗�sol is the ‘solution’
vector, i.e., after solving the system of equations the amplitudes of the impinging as well as those
of the outgoing fields are stored in that vector.

As an example we apply this method to the two mirror cavity. The system matrix for the
optical setup shown in Figure 5 becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
−i 𝑡1 1 0 −𝑟1 0 0 0
−𝑟1 0 1 −i 𝑡1 0 0 0
0 0 0 1 0 0 −𝑒−i 𝑘𝐷

0 −𝑒−i 𝑘𝐷 0 0 1 0 0
0 0 0 0 −i 𝑡2 1 0
0 0 0 0 0 −𝑟2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0

𝑎1

𝑎4

𝑎′3
𝑎′1
𝑎2

𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

This is a sparse matrix. Sparse matrices are an important subclass of linear algebra problems
and many efficient numerical algorithms for solving sparse matrices are freely available (see, for
example, [13]). The advantage of this method of constructing a single matrix for an entire optical
system is the direct access to all field amplitudes. It also stores each coupling coefficient in one
or more dedicated matrix elements, so that numerical values for each parameter can be read out
or changed after the matrix has been constructed and, for example, stored in computer memory.
The obvious disadvantage is that the size of the matrix quickly grows with the number of optical
elements (and with the degrees of freedom of the system, see, for example, Section 7).

1In many implementations of numerical matrix solvers the input vector is also called the right-hand side vector.
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Coupling matrices for a compact system descriptions

The following method is probably most useful for analytic computations, or for optimisation as-
pects of a numerical computation. The idea behind the scheme, which is used for computing the
characteristics of dielectric coatings [28, 40] and has been demonstrated for analysing gravitational
wave detectors [43], is to rearrange equations as in Figure 6 and Figure 7 such that the overall
matrix describing a series of components can be obtained by multiplication of the component ma-
trices. In order to achieve this, the coupling equations have to be re-ordered so that the input
vector consists of two field amplitudes at one side of the component. For the mirror, this gives a
coupling matrix of (︂

𝑎1

𝑎4

)︂
=

i
𝑡

(︂
−1 𝑟
−𝑟 𝑟2 + 𝑡2

)︂ (︂
𝑎2

𝑎3

)︂
. (11)

In the special case of the lossless mirror this matrix simplifies as we have 𝑟2 + 𝑡2 = 𝑅 + 𝑇 = 1.
The space component would be described by the following matrix:

(︂
𝑎1

𝑎4

)︂
=

(︂
exp(i 𝑘𝐷) 0

0 exp(−i 𝑘𝐷)

)︂ (︂
𝑎2

𝑎3

)︂
. (12)

With these matrices we can very easily compute a matrix for the cavity with two lossless mirrors
as

𝑀cav = 𝑀mirror1 ×𝑀space ×𝑀mirror2 (13)

=
−1
𝑡1𝑡2

(︂
𝑒+ − 𝑟1𝑟2𝑒

− −𝑟2𝑒
+ + 𝑟1𝑒

−

−𝑟2𝑒
− + 𝑟1𝑒

+ 𝑒− − 𝑟1𝑟2𝑒
+

)︂
, (14)

with 𝑒+ = exp(i 𝑘𝐷) and 𝑒− = exp(−i 𝑘𝐷). The system of equation describing a cavity shown in
Equation (4) can now be written more compactly as

(︂
𝑎0

𝑎4

)︂
=
−1
𝑡1𝑡2

(︂
𝑒+ − 𝑟1𝑟2𝑒

− −𝑟2𝑒
+ + 𝑟1𝑒

−

−𝑟2𝑒
− + 𝑟1𝑒

+ 𝑒− − 𝑟1𝑟2𝑒
+

)︂ (︂
𝑎2

0

)︂
. (15)

This allows direct computation of the amplitude of the transmitted field resulting in

𝑎2 = 𝑎0
−𝑡1𝑡2 exp(−i 𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)
, (16)

which is the same as Equation (8).
The advantage of this matrix method is that it allows compact storage of any series of mirrors

and propagations, and potentially other optical elements, in a single 2 × 2 matrix. The disadvan-
tage inherent in this scheme is the lack of information about the field amplitudes inside the group
of optical elements.

2.4 Phase relation at a mirror or beam splitter

The magnitude and phase of reflection at a single optical surface can be derived from Maxwell’s
equations and the electromagnetic boundary conditions at the surface, and in particular the con-
dition that the field amplitudes tangential to the optical surface must be continuous. The results
are called Fresnel’s equations [33]. Thus, for a field impinging on an optical surface under normal
incidence we can give the reflection coefficient as

𝑟 =
𝑛1 − 𝑛2

𝑛1 + 𝑛2
, (17)
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with 𝑛1 and 𝑛2 the indices of refraction of the first and second medium, respectively. The transmis-
sion coefficient for a lossless surface can be computed as 𝑡2 = 1−𝑟2. We note that the phase change
upon reflection is either 0 or 180°, depending on whether the second medium is optically thinner
or thicker than the first. It is not shown here but Fresnel’s equations can also be used to show
that the phase change for the transmitted light at a lossless surface is zero. This contrasts with
the definitions given in Section 2.1 (see Figure (3)ff.), where the phase shift upon any reflection is
defined as zero and the transmitted light experiences a phase shift of 𝜋/2. The following section
explains the motivation for the latter definition having been adopted as the common notation for
the analysis of modern optical systems.

2.4.1 Composite optical surfaces

Modern mirrors and beam splitters that make use of dielectric coatings are complex optical sys-
tems, see Figure 8 whose reflectivity and transmission depend on the multiple interference inside
the coating layers and thus on microscopic parameters. The phase change upon transmission or
reflection depends on the details of the applied coating and is typically not known. In any case, the
knowledge of an absolute value of a phase change is typically not of interest in laser interferometers
because the absolute positions of the optical components are not known to sub-wavelength preci-
sion. Instead the relative phase between the incoming and outgoing beams is of importance. In the
following we demonstrate how constraints on these relative phases, i.e., the phase relation between
the beams, can be derived from the fundamental principle of power conservation. To do this we
consider a Michelson interferometer, as shown in Figure 9, with perfectly-reflecting mirrors. The
beam splitter of the Michelson interferometer is the object under test. We assume that the magni-
tude of the reflection 𝑟 and transmission 𝑡 are known. The phase changes upon transmission and
reflection are unknown. Due to symmetry we can say that the phase change upon transmission 𝜙𝑡

should be the same in both directions. However, the phase change on reflection might be different
for either direction, thus, we write 𝜙𝑟1 for the reflection at the front and 𝜙𝑟2 for the reflection at
the back of the beam splitter.

Figure 8: This sketch shows a mirror or beam splitter component with dielectric coatings and the
photograph shows some typical commercially available examples [45]. Most mirrors and beam splitters
used in optical experiments are of this type: a substrate made from glass, quartz or fused silica is coated
on both sides. The reflective coating defines the overall reflectivity of the component (anything between
𝑅 ≈ 1 and 𝑅 ≈ 0, while the anti-reflective coating is used to reduce the reflection at the second optical
surface as much as possible so that this surface does not influence the light. Please note that the drawing
is not to scale, the coatings are typically only a few microns thick on a several millimetre to centimetre
thick substrate.
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Figure 9: The relation between the phase of the light field amplitudes at a beam splitter can be computed
assuming a Michelson interferometer, with arbitrary arm length but perfectly-reflecting mirrors. The
incoming field 𝐸0 is split into two fields 𝐸1 and 𝐸2 which are reflected atthe end mirrors and return to
the beam splitter, as 𝐸3 and 𝐸4, to be recombined into two outgoing fields. These outgoing fields 𝐸5

and 𝐸6 are depicted by two arrows to highlight that these are the sum of the transmitted and reflected
components of the returning fields. We can derive constraints for the phase of 𝐸1 and 𝐸2 with respect to
the input field 𝐸0 from the conservation of energy: |𝐸0|2 = |𝐸5|2 + |𝐸6|2.

Then the electric fields can be computed as

𝐸1 = 𝑟 𝐸0 𝑒i 𝜙𝑟1 ; 𝐸2 = 𝑡 𝐸0 𝑒i 𝜙𝑡 . (18)

We do not know the length of the interferometer arms. Thus, we introduce two further unknown
phases: Φ1 for the total phase accumulated by the field in the vertical arm and Φ2 for the total
phase accumulated in the horizontal arm. The fields impinging on the beam splitter compute as

𝐸3 = 𝑟 𝐸0 𝑒i (𝜙𝑟1+Φ1) ; 𝐸4 = 𝑡 𝐸0 𝑒i (𝜙𝑡+Φ2). (19)

The outgoing fields are computed as the sums of the reflected and transmitted components:

𝐸5 = 𝐸0

(︀
𝑅 𝑒i (2𝜙𝑟1+Φ1) + 𝑇 𝑒i (2𝜙𝑡+Φ2)

)︀

𝐸6 = 𝐸0 𝑟𝑡
(︀
𝑒i (𝜙𝑡+𝜙𝑟1+Φ1) + 𝑒i (𝜙𝑡+𝜙𝑟2+Φ2)

)︀
,

(20)

with 𝑅 = 𝑟2 and 𝑇 = 𝑡2.
It will be convenient to separate the phase factors into common and differential ones. We can

write
𝐸5 = 𝐸0 𝑒i 𝛼+

(︀
𝑅 𝑒i 𝛼− + 𝑇 𝑒−i 𝛼−

)︀
, (21)

with
𝛼+ = 𝜙𝑟1 + 𝜙𝑡 +

1
2

(Φ1 + Φ2) ; 𝛼− = 𝜙𝑟1 − 𝜙𝑡 +
1
2

(Φ1 − Φ2) , (22)

and similarly
𝐸6 = 𝐸0 𝑟𝑡 𝑒i 𝛽+ 2 cos(𝛽−), (23)
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with
𝛽+ = 𝜙𝑡 +

1
2

(𝜙𝑟1 + 𝜙𝑟2 + Φ1 + Φ2) ; 𝛽− =
1
2

(𝜙𝑟1 − 𝜙𝑟2 + Φ1 − Φ2) . (24)

For simplicity we now limit the discussion to a 50:50 beam splitter with 𝑟 = 𝑡 = 1/
√

2, for which
we can simplify the field expressions even further:

𝐸5 = 𝐸0 𝑒i 𝛼+ cos(𝛼−) ; 𝐸6 = 𝐸0 𝑒i 𝛽+ cos(𝛽−). (25)

Conservation of energy requires that |𝐸0|2 = |𝐸5|2 + |𝐸6|2, which in turn requires

cos2(𝛼−) + cos2(𝛽−) = 1, (26)

which is only true if
𝛼− − 𝛽− = (2𝑁 + 1)

𝜋

2
, (27)

with 𝑁 as in integer (positive, negative or zero). This gives the following constraint on the phase
factors

1
2

(𝜙𝑟1 + 𝜙𝑟2)− 𝜙𝑡 = (2𝑁 + 1)
𝜋

2
. (28)

One can show that exactly the same condition results in the case of arbitrary (lossless) reflectivity
of the beam splitter [48].

We can test whether two known examples fulfill this condition. If the beam-splitting surface
is the front of a glass plate we know that 𝜙𝑡 = 0, 𝜙𝑟1 = 𝜋, 𝜙𝑟2 = 0, which conforms with
Equation (28). A second example is the two-mirror resonator, see Section 2.2. If we consider the
cavity as an optical ‘black box’, it also splits any incoming beam into a reflected and transmitted
component, like a mirror or beam splitter. Further we know that a symmetric resonator must give
the same results for fields injected from the left or from the right. Thus, the phase factors upon
reflection must be equal 𝜙𝑟 = 𝜙𝑟1 = 𝜙𝑟2. The reflection and transmission coefficients are given by
Equations (7) and (8) as

𝑟cav =
(︂

𝑟1 −
𝑟2𝑡

2
1 exp(−i 2𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)

)︂
, (29)

and

𝑡cav =
−𝑡1𝑡2 exp(−i 𝑘𝐷)

1− 𝑟1𝑟2 exp(−i 2𝑘𝐷)
. (30)

We demonstrate a simple case by putting the cavity on resonance (𝑘𝐷 = 𝑁𝜋). This yields

𝑟cav =
(︂

𝑟1 −
𝑟2𝑡

2
1

1− 𝑟1𝑟2

)︂
; 𝑡cav =

i 𝑡1𝑡2
1− 𝑟1𝑟2

, (31)

with 𝑟cav being purely real and 𝑡cav imaginary and thus 𝜙𝑡 = 𝜋/2 and 𝜙𝑟 = 0 which also agrees
with Equation (28).

In most cases we neither know nor care about the exact phase factors. Instead we can pick any
set which fulfills Equation (28). For this document we have chosen to use phase factors equal to
those of the cavity, i.e., 𝜙𝑡 = 𝜋/2 and 𝜙𝑟 = 0, which is why we write the reflection and transmission
at a mirror or beam splitter as

𝐸refl = 𝑟 𝐸0 and 𝐸trans = i 𝑡 𝐸0. (32)

In this definition 𝑟 and 𝑡 are positive real numbers satisfying 𝑟2 + 𝑡2 = 1 for the lossless case.
Please note that we only have the freedom to chose convenient phase factors when we do not

know or do not care about the details of the optical system, which performs the beam splitting.
If instead the details are important, for example when computing the properties of a thin coating
layer, such as anti-reflex coatings, the proper phase factors for the respective interfaces must be
computed and used.
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2.5 Lengths and tunings: numerical accuracy of distances

The resonance condition inside an optical cavity and the operating point of an interferometer
depends on the optical path lengths modulo the laser wavelength, i.e., for light from an Nd:YAG
laser length differences of less than 1 µm are of interest, not the full magnitude of the distances
between optics. On the other hand, several parameters describing the general properties of an
optical system, like the finesse or free spectral range of a cavity (see Section 5.1) depend on the
macroscopic distance and do not change significantly when the distance is changed on the order of
a wavelength. This illustrates that the distance between optical components might not be the best
parameter to use for the analysis of optical systems. Furthermore, it turns out that in numerical
algorithms the distance may suffer from rounding errors. Let us use the Virgo [56] arm cavities
as an example to illustrate this. The cavity length is approximately 3 km, the wavelength is on
the order of 1 µm, the mirror positions are actively controlled with a precision of 1 pm and the
detector sensitivity can be as good as 10–18 m, measured on ∼ 10 ms timescales (i.e., many samples
of the data acquisition rate). The floating point accuracy of common, fast numerical algorithms
is typically not better than 10–15. If we were to store the distance between the cavity mirrors as
such a floating point number, the accuracy would be limited to 3 pm, which does not even cover
the accuracy of the control systems, let alone the sensitivity.

Figure 10: Illustration of an arm cavity of the Virgo gravitational-wave detector [56]: the macroscopic
length 𝐿 of the cavity is approximately 3 km, while the wavelength of the Nd:YAG laser is 𝜆 ≈ 1 𝜇m.
The resonance condition is only affected by the microscopic position of the wave nodes with respect to the
mirror surfaces and not by the macroscopic length, i.e., displacement of one mirror by Δ𝑥 = 𝜆/2 re-creates
exactly the same condition. However, other parameters of the cavity, such as the finesse, only depend on
the macroscopic length 𝐿 and not on the microscopic tuning.

A simple and elegant solution to this problem is to split a distance 𝐷 between two optical
components into two parameters [29]: one is the macroscopic ‘length’ 𝐿, defined as the multiple
of a constant wavelength 𝜆0 yielding the smallest difference to 𝐷. The second parameter is the
microscopic tuning 𝑇 that is defined as the remaining difference between 𝐿 and 𝐷, i.e., 𝐷 = 𝐿+𝑇 .
Typically, 𝜆0 can be understood as the wavelength of the laser in vacuum, however, if the laser
frequency changes during the experiment or multiple light fields with different frequencies are used
simultaneously, a default constant wavelength must be chosen arbitrarily. Please note that usually
the term 𝜆 in any equation refers to the actual wavelength at the respective location as 𝜆 = 𝜆0/𝑛
with 𝑛 the index of refraction at the local medium.

We have seen in Section 2.1 that distances appear in the expressions for electromagnetic waves
in connection with the wave number, for example,

𝐸2 = 𝐸1 exp(−i 𝑘𝑧). (33)

Thus, the difference in phase between the field at 𝑧 = 𝑧1 and 𝑧 = 𝑧1 + 𝐷 is given as

𝜙 = −𝑘𝐷. (34)

We recall that 𝑘 = 2𝜋/𝜆 = 𝜔/𝑐. We can define 𝜔0 = 2𝜋 𝑐/𝜆0 and 𝑘0 = 𝜔0/𝑐. For any given
wavelength 𝜆 we can write the corresponding frequency as a sum of the default frequency and a
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difference frequency 𝜔 = 𝜔0 + Δ𝜔. Using these definitions, we can rewrite Equation (34) with
length and tuning as

− 𝜙 = 𝑘𝐷 =
𝜔0𝐿

𝑐
+

Δ𝜔𝐿

𝑐
+

𝜔0𝑇

𝑐
+

Δ𝜔𝑇

𝑐
. (35)

The first term of the sum is always a multiple of 2𝜋, which is equivalent to zero. The last term
of the sum is the smallest, approximately of the order Δ𝜔 · 10−14. For typical values of 𝐿 ≈ 1 m,
𝑇 < 1 𝜇m and Δ𝜔 < 2𝜋 · 100 MHz we find that

𝜔0𝐿

𝑐
= 0,

Δ𝜔𝐿

𝑐
/ 2,

𝜔0𝑇

𝑐
/ 6,

Δ𝜔𝑇

𝑐
/ 2 10−6, (36)

which shows that the last term can often be ignored.
We can also write the tuning directly as a phase. We define as the dimensionless tuning

𝜑 = 𝜔0𝑇/𝑐. (37)

This yields

exp
(︁
i
𝜔

𝑐
𝑇

)︁
= exp

(︂
i
𝜔0

𝑐
𝑇

𝜔

𝜔0

)︂
= exp

(︂
i

𝜔

𝜔0
𝜑

)︂
. (38)

The tuning 𝜑 is given in radian with 2𝜋 referring to a microscopic distance of one wavelength2 𝜆0.
Finally, we can write the following expression for the phase difference between the light field

taken at the end points of a distance 𝐷:

𝜙 = −𝑘𝐷 = −
(︂

Δ𝜔𝐿

𝑐
+ 𝜑

𝜔

𝜔0

)︂
, (39)

or if we neglect the last term from Equation (36) we can approximate (𝜔/𝜔0 ≈ 1) to obtain

𝜙 ≈ −
(︂

Δ𝜔𝐿

𝑐
+ 𝜑

)︂
. (40)

This convention provides two parameters 𝐿 and 𝜑, that can describe distances with a markedly
improved numerical accuracy. In addition, this definition often allows simplification of the algebraic
notation of interferometer signals. By convention we associate a length 𝐿 with the propagation
through free space, whereas the tuning will be treated as a parameter of the optical components.
Effectively the tuning then represents a microscopic displacement of the respective component. If,
for example, a cavity is to be resonant to the laser light, the tunings of the mirrors have to be the
same whereas the length of the space in between can be arbitrary.

2Note that in other publications the tuning or equivalent microscopic displacements are sometimes defined via
an optical path-length difference. In that case, a tuning of 2𝜋 is used to refer to the change of the optical path
length of one wavelength, which, for example, if the reflection at a mirror is described, corresponds to a change of
the mirror’s position of 𝜆0/2.
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2.6 Revised coupling matrices for space and mirrors

Using the definitions for length and tunings we can rewrite the coupling equations for mirrors and
spaces introduced in Section 2.1 as follows. The mirror coupling becomes

(
a2

a4

)
=

(
i t r exp(i 2φ ω

ω0
)

r exp(−i 2φ ω
ω0

) i t

) (
a1

a3

)

mirror (r, t, φ)
reference plane

φ = ∆xω0
c

a1

a4

a2

a3

Figure 11

(compare this to Figure 6), and the amplitude coupling for a ‘space’, formally written as in Figure 7,
is now written as

(
a2

a4

)
=

(
exp(−i∆knL) 0

0 exp(−i∆knL)

) (
a1

a3

)

space (L, n)

a1

a4

a2

a3

Figure 12
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2.7 Finesse examples

2.7.1 Mirror reflectivity and transmittance
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Figure 13: Finesse example: Mirror reflectivity and transmittance.

We use Finesse to plot the amplitudes of the light fields transmitted and reflected by a mirror
(given by a single surface). Initially, the mirror has a power reflectance and transmittance of
𝑅 = 𝑇 = 0.5 and is, thus, lossless. For the plot in Figure 13 we tune the transmittance from 0.5 to
0. Since we do not explicitly change the reflectivity, 𝑅 remains at 0.5 and the mirror loss increases
instead, which is shown by the trace labelled ‘total’ corresponding to the sum of the reflected and
transmitted light power. The plot also shows the phase convention of a 90° phase shift for the
transmitted light.

Finesse input file for ‘Mirror reflectivity and transmittance’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 n1 n2 % space of 1m length
mirror m1 0.5 0.5 0 n2 n3 % mirror with T=R=0.5 at zero tuning
ad ad t 0 n3 % an ‘amplitude’ detector for transmitted light
ad ad r 0 n2 % an ‘amplitude’ detector for reflected light
set t ad t abs
set r ad r abs
func total = $r^2 + $t^2 % computing the sum of the reflected and transmitted power

xaxis m1 t lin 0.5 0 100 % changing the transmittance of the mirror ‘m1’
yaxis abs:deg % plotting amplitude and phase of the results

2.7.2 Length and tunings

This Finesse file demonstrates the conventions for lengths and microscopic positions introduced
in Section 2.5. The top trace in Figure 14 depicts the phase change of a beam reflected by a
beam splitter as the function of the beam splitter tuning. By changing the tuning from 0 to 180°
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Figure 14: Finesse example: Length and tunings.

the beam splitter is moved forward and shortens the path length by one wavelength, which by
convention increases the light phase by 360°. On the other hand, if a length of a space is changed,
the phase of the transmitted light is unchanged (for the default wavelength Δ𝑘 = 0), as shown the
in the lower trace.

Finesse input file for ‘Length and tunings’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 1 n1 n2 % space of 1m length
bs b1 1 0 0 0 n2 n3 dump dump % beam splitter as ‘turning mirror’, normal incidence
space s2 1 1 n3 n4 % another space of 1m length
ad ad1 0 n4 % amplitude detector

% for the plot we perform two sequential runs of Finesse using ‘mkat’
% 1) first trace: change microscopic position of beam splitter
run1: xaxis b1 phi lin 0 180 100
% 2) second trace: change length of space s1
run2: xaxis s1 L lin 1 2 100

yaxis deg % plotting the phase of the results
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3 Light with Multiple Frequency Components

So far we have considered the electromagnetic field to be monochromatic. This has allowed us to
compute light-field amplitudes in a quasi-static optical setup. In this section, we introduce the
frequency of the light as a new degree of freedom. In fact, we consider a field consisting of a finite
and discrete number of frequency components. We write this as

𝐸(𝑡, 𝑧) =
∑︁

𝑗

𝑎𝑗 exp (i (𝜔𝑗 𝑡− 𝑘𝑗𝑧)), (41)

with complex amplitude factors 𝑎𝑗 , 𝜔𝑗 as the angular frequency of the light field and 𝑘𝑗 = 𝜔𝑗/𝑐.
In many cases the analysis compares different fields at one specific location only, in which case we
can set 𝑧 = 0 and write

𝐸(𝑡) =
∑︁

𝑗

𝑎𝑗 exp (i𝜔𝑗 𝑡). (42)

In the following sections the concept of light modulation is introduced. As this inherently involves
light fields with multiple frequency components, it makes use of this type of field description. Again
we start with the two-mirror cavity to illustrate how the concept of modulation can be used to
model the effect of mirror motion.

f(t)

t

f(t) = sin(ωt + m sin(Ωt))

a)

f(t)

t

f(t) = [1 + m sin(Ωt)] sin(ωt)

b)

Figure 15: Example traces for phase and amplitude modulation: the upper plot a) shows a phase-
modulated sine wave and the lower plot b) depicts an amplitude-modulated sine wave. Phase modulation
is characterised by the fact that it mostly affects the zero crossings of the sine wave. Amplitude modulation
affects mostly the maximum amplitude of the wave. The equations show the modulation terms in red with
𝑚 the modulation index and Ω the modulation frequency.

3.1 Modulation of light fields

Laser interferometers typically use three different types of light fields: the laser with a frequency of,
for example, 𝑓 ≈ 2.8 ·1014 Hz, radio frequency (RF) sidebands used for interferometer control with
frequencies (offset to the laser frequency) of 𝑓 ≈ 1 · 106 to 150 · 106 Hz, and the signal sidebands
at frequencies of 1 to 10,000 Hz3. As these modulations usually have as their origin a change in

3The signal sidebands are sometimes also called audio sidebands because of their frequency range.
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optical path length, they are often phase modulations of the laser frequency, the RF sidebands are
utilised for optical readout purposes, while the signal sidebands carry the signal to be measured
(the gravitational-wave signal plus noise created in the interferometer).

Figure 15 shows a time domain representation of an electromagnetic wave of frequency 𝜔0,
whose amplitude or phase is modulated at a frequency Ω. One can easily see some characteristics
of these two types of modulation, for example, that amplitude modulation leaves the zero crossing
of the wave unchanged whereas with phase modulation the maximum and minimum amplitude of
the wave remains the same. In the frequency domain in which a modulated field is expanded into
several unmodulated field components, the interpretation of modulation becomes even easier: any
sinusoidal modulation of amplitude or phase generates new field components, which are shifted
in frequency with respect to the initial field. Basically, light power is shifted from one frequency
component, the carrier, to several others, the sidebands. The relative amplitudes and phases of
these sidebands differ for different types of modulation and different modulation strengths. This
section demonstrates how to compute the sideband components for amplitude, phase and frequency
modulation.

3.2 Phase modulation

Phase modulation can create a large number of sidebands. The number of sidebands with noticeable
power depends on the modulation strength (or depth) given by the modulation index 𝑚. Assuming
an input field

𝐸in = 𝐸0 exp (i𝜔0 𝑡), (43)

a sinusoidal phase modulation of the field can be described as

𝐸 = 𝐸0 exp
(︁
i (𝜔0 𝑡 + 𝑚 cos (Ω 𝑡))

)︁
. (44)

This equation can be expanded using the identity [27]

exp(i 𝑧 cos 𝜙) =
∞∑︁

𝑘=−∞
i 𝑘𝐽𝑘(𝑧) exp(i 𝑘𝜙), (45)

with Bessel functions of the first kind 𝐽𝑘(𝑚). We can write

𝐸 = 𝐸0 exp (i𝜔0 𝑡)
∞∑︁

𝑘=−∞
i 𝑘 𝐽𝑘(𝑚) exp (i 𝑘Ω 𝑡). (46)

The field for 𝑘 = 0, oscillating with the frequency of the input field 𝜔0, represents the carrier. The
sidebands can be divided into upper (𝑘 > 0) and lower (𝑘 < 0) sidebands. These sidebands are
light fields that have been shifted in frequency by 𝑘 Ω. The upper and lower sidebands with the
same absolute value of 𝑘 are called a pair of sidebands of order 𝑘. Equation (46) shows that the
carrier is surrounded by an infinite number of sidebands. However, for small modulation indices
(𝑚 < 1) the Bessel functions rapidly decrease with increasing 𝑘 (the lowest orders of the Bessel
functions are shown in Figure 16). For small modulation indices we can use the approximation [2]

𝐽𝑘(𝑚) =
(︁𝑚

2

)︁𝑘 ∞∑︁

𝑛=0

(︁
−𝑚2

4

)︁𝑛

𝑛!(𝑘 + 𝑛)!
=

1
𝑘!

(︁𝑚

2

)︁𝑘

+ 𝑂
(︀
𝑚𝑘+2

)︀
. (47)

In which case, only a few sidebands have to be taken into account. For 𝑚 ≪ 1 we can write

𝐸 = 𝐸0 exp (i𝜔0 𝑡)

×
(︁
𝐽0(𝑚)− i 𝐽−1(𝑚) exp (−i Ω 𝑡) + i 𝐽1(𝑚) exp (i Ω 𝑡)

)︁
,

(48)
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and with
𝐽−𝑘(𝑚) = (−1)𝑘𝐽𝑘(𝑚), (49)

we obtain
𝐸 = 𝐸0 exp (i𝜔0 𝑡)

(︁
1 + i

𝑚

2

(︁
exp (−i Ω 𝑡) + exp (i Ω 𝑡)

)︁)︁
, (50)

as the first-order approximation in 𝑚. In the above equation the carrier field remains unchanged
by the modulation, therefore this approximation is not the most intuitive. It is clearer if the
approximation up to the second order in 𝑚 is given:

𝐸 = 𝐸0 exp (i𝜔0 𝑡)
(︂

1− 𝑚2

4
+ i

𝑚

2

(︁
exp (−i Ω 𝑡) + exp (i Ω 𝑡)

)︁)︂
, (51)

which shows that power is transferred from the carrier to the sideband fields.
Higher-order expansions in 𝑚 can be performed simply by specifying the highest order of Bessel

function, which is to be used in the sum in Equation (46), i.e.,

𝐸 = 𝐸0 exp (i𝜔0 𝑡)
𝑜𝑟𝑑𝑒𝑟∑︁

𝑘=−𝑜𝑟𝑑𝑒𝑟

𝑖 𝑘 𝐽𝑘(𝑚) exp (i 𝑘Ω 𝑡). (52)
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Figure 16: Some of the lowest-order Bessel functions 𝐽𝑘(𝑥) of the first kind. For small 𝑥 the expansion
shows a simple 𝑥𝑘 dependency and higher-order functions can often be neglected.

3.3 Frequency modulation

For small modulation, indices, phase modulation and frequency modulation can be understood as
different descriptions of the same effect [29]. Following the same spirit as above we would assume
a modulated frequency to be given by

𝜔 = 𝜔0 + 𝑚′ cos (Ω 𝑡), (53)

and then we might be tempted to write

𝐸 = 𝐸0 exp
(︁
i (𝜔0 + 𝑚′ cos (Ω 𝑡)) 𝑡

)︁
, (54)
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which would be wrong. The frequency of a wave is actually defined as 𝜔/(2𝜋) = 𝑓 = 𝑑𝜙/𝑑𝑡. Thus,
to obtain the frequency given in Equation (53), we need to have a phase of

𝜔0 𝑡 +
𝑚′

Ω
sin (Ω 𝑡). (55)

For consistency with the notation for phase modulation, we define the modulation index to be

𝑚 =
𝑚′

Ω
=

Δ𝜔

Ω
, (56)

with Δ𝜔 as the frequency swing – how far the frequency is shifted by the modulation – and Ω the
modulation frequency – how fast the frequency is shifted. Thus, a sinusoidal frequency modulation
can be written as

𝐸 = 𝐸0 exp (i𝜙) = 𝐸0 exp
(︂

i
(︂

𝜔0 𝑡 +
Δ𝜔

Ω
cos (Ω 𝑡)

)︂)︂
, (57)

which is exactly the same expression as Equation (44) for phase modulation. The practical dif-
ference is the typical size of the modulation index, with phase modulation having a modulation
index of 𝑚 < 10, while for frequency modulation, typical numbers might be 𝑚 > 104. Thus, in the
case of frequency modulation, the approximations for small 𝑚 are not valid. The series expansion
using Bessel functions, as in Equation (46), can still be performed, however, very many terms of
the resulting sum need to be taken into account.

3.4 Amplitude modulation

In contrast to phase modulation, (sinusoidal) amplitude modulation always generates exactly two
sidebands. Furthermore, a natural maximum modulation index exists: the modulation index is
defined to be one (𝑚 = 1) when the amplitude is modulated between zero and the amplitude of
the unmodulated field.

If the amplitude modulation is performed by an active element, for example by modulating the
current of a laser diode, the following equation can be used to describe the output field:

𝐸 = 𝐸0 exp (i𝜔0 𝑡)
(︁
1 + 𝑚 cos (Ω 𝑡)

)︁

= 𝐸0 exp (i𝜔0 𝑡)
(︁
1 + 𝑚

2 exp (i Ω 𝑡) + 𝑚
2 exp (−i Ω 𝑡)

)︁
.

(58)

However, passive amplitude modulators (like acousto-optic modulators or electro-optic modulators
with polarisers) can only reduce the amplitude. In these cases, the following equation is more
useful:

𝐸 = 𝐸0 exp (i𝜔0 𝑡)
(︁
1− 𝑚

2

(︁
1− cos (Ω 𝑡)

)︁)︁

= 𝐸0 exp (i𝜔0 𝑡)
(︁
1− 𝑚

2 + 𝑚
4 exp (i Ω 𝑡) + 𝑚

4 exp (−i Ω 𝑡)
)︁
.

(59)

3.5 Sidebands as phasors in a rotating frame

A common method of visualising the behaviour of sideband fields in interferometers is to use phase
diagrams in which each field amplitude is represented by an arrow in the complex plane.

We can think of the electric field amplitude 𝐸0 exp(i 𝜔0𝑡) as a vector in the complex plane,
rotating around the origin with angular velocity 𝜔0. To illustrate or to help visualise the addition
of several light fields it can be useful to look at this problem using a rotating reference frame,
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Figure 17: Electric field vector 𝐸0 exp(i 𝜔0𝑡) depicted in the complex plane and in a rotating frame (𝑥′,
𝑦′) rotating at 𝜔0 so that the field vector appears stationary.
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Figure 18: Amplitude and phase modulation in the ‘phasor’ picture. The upper plots a) illustrate how
a phasor diagram can be used to describe phase modulation, while the lower plots b) do the same for
amplitude modulation. In both cases the left hand plot shows the carrier in blue and the modulation
sidebands in green as snapshots at certain time intervals. One can see clearly that the upper sideband
(𝜔0 + Ω) rotates faster than the carrier, while the lower sideband rotates slower. The right plot in both
cases shows how the total field vector at any given time can be constructed by adding the three field vectors
of the carrier and sidebands. [Drawing courtesy of Simon Chelkowski]
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defined as follows. A complex number shall be defined as 𝑧 = 𝑥+i 𝑦 so that the real part is plotted
along the x -axis, while the y-axis is used for the imaginary part. We want to construct a new
coordinate system (𝑥′, 𝑦′) in which the field vector is at a constant position. This can be achieved
by defining

𝑥 = 𝑥′ cos 𝜔0𝑡− 𝑦′ sin 𝜔0𝑡
𝑦 = 𝑥′ sin 𝜔0𝑡 + 𝑦′ cos 𝜔0𝑡,

(60)

or
𝑥′ = 𝑥 cos (−𝜔0𝑡)− 𝑦 sin (−𝜔0𝑡)
𝑦′ = 𝑥 sin (−𝜔0𝑡) + 𝑦 cos (−𝜔0𝑡) .

(61)

Figure 17 illustrates how the transition into the rotating frame makes the field vector to appear
stationary. The angle of the field vector in a rotating frame depicts the phase offset of the field.
Therefore these vectors are also called phasors and the illustrations using phasors are called phasor
diagrams. Two more complex examples of how phasor diagrams can be employed is shown in
Figure 18 [11].

Phasor diagrams can be especially useful to see how frequency coupling of light field ampli-
tudes can change the type of modulation, for example, to turn phase modulation into amplitude
modulation. An extensive introduction to this type of phasor diagram can be found in [39].

3.6 Phase modulation through a moving mirror

Several optical components can modulate transmitted or reflected light fields. In this section we
discuss in detail the example of phase modulation by a moving mirror. Mirror motion does not
change the transmitted light; however, the phase of the reflected light will be changed as shown in
Equation (11).

mirror
reference plane

φ = φ0 + φs = ω0
c (∆x + as cos(ωst + ϕs))

a1

a4

a2

a3

Figure 19: A sinusoidal signal with amplitude 𝑎𝑠 frequency 𝜔𝑠 and phase offset 𝜙𝑠 is applied to a
mirror position, or to be precise, to the mirror tuning. The equation given for the tuning 𝜑 assumes that
𝜔𝑠/𝜔0 ≪ 1, see Section 2.5.

We assume sinusoidal change of the mirror’s tuning as shown in Figure 19. The position
modulation is given as 𝑥m = 𝑎s cos(𝜔s𝑡 + 𝜙s), and thus the reflected field at the mirror becomes
(assuming 𝑎4 = 0)

𝑎3 = 𝑟 𝑎1 exp(−i 2𝜑0) exp (i 2𝑘𝑥m) ≈ 𝑟𝑎1 exp(−i 2𝜑0) exp
(︁
i 2𝑘0𝑎s cos(𝜔s𝑡 + 𝜙s)

)︁
, (62)

setting 𝑚 = 2𝑘0𝑎s. This can be expressed as

𝑎3 = 𝑟𝑎1 exp(−i 2𝜑0)
(︁
1 + i 𝑚

2 exp
(︁
−i (𝜔s𝑡 + 𝜙s)

)︁
+ i 𝑚

2 exp
(︁
i (𝜔s𝑡 + 𝜙s)

)︁)︁

= 𝑟𝑎1 exp(−i 2𝜑0)
(︁
1 + 𝑚

2 exp
(︁
−i (𝜔s𝑡 + 𝜙s − 𝜋/2)

)︁

+𝑚
2 exp

(︁
i (𝜔s𝑡 + 𝜙s + 𝜋/2)

)︁)︁
.

(63)
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3.7 Coupling matrices for beams with multiple frequency components

The coupling between electromagnetic fields at optical components introduced in Section 2 referred
only to the amplitude and phase of a simplified monochromatic field, ignoring all the other param-
eters of the electric field of the beam given in Equation (1). However, this mathematical concept
can be extended to include other parameters provided that we can find a way to describe the total
electric field as a sum of components, each of which is characterised by a discrete value of the
related parameters. In the case of the frequency of the light field, this means we have to describe
the field as a sum of monochromatic components. In the previous sections we have shown how this
could be done in the special case of an initial monochromatic field that is subject to modulation:
if the modulation index is small enough we can limit the amount of frequency components that
we need to consider. In many cases it is actually sufficient to describe a modulation only by the
interaction of the carrier at 𝜔0 (the unmodulated field) and two sidebands with a frequency offset
of ±𝜔𝑚 to the carrier. A beam given by the sum of three such components can be described by a
complex vector:

�⃗� =

⎛
⎝

𝑎(𝜔0)
𝑎(𝜔0 − 𝜔𝑚)
𝑎(𝜔0 + 𝜔𝑚)

⎞
⎠ =

⎛
⎝

𝑎𝜔0

𝑎𝜔1

𝑎𝜔2

⎞
⎠ (64)

with 𝜔0 = 𝜔0, 𝜔0 − 𝜔𝑚 = 𝜔1 and 𝜔0 + 𝜔𝑚 = 𝜔2. In the case of a phase modulator that applies a
modulation of small modulation index 𝑚 to an incoming light field �⃗�1, we can describe the coupling
of the frequency component as follows:

𝑎2,𝜔0 = 𝐽0(𝑚)𝑎1,𝜔0 + 𝐽1(𝑚)𝑎1,𝜔1 + 𝐽−1(𝑚)𝑎1,𝜔2

𝑎2,𝜔1 = 𝐽0(𝑚)𝑎1,𝜔1 + 𝐽−1(𝑚)𝑎1,𝜔0

𝑎2,𝜔2 = 𝐽0(𝑚)𝑎1,𝜔2 + 𝐽1(𝑚)𝑎1,𝜔0,
(65)

which can be written in matrix form:

�⃗�2 =

⎛
⎝

𝐽0(𝑚) 𝐽1(𝑚) 𝐽−1(𝑚)
𝐽−1(𝑚) 𝐽0(𝑚) 0
𝐽1(𝑚) 0 𝐽0(𝑚)

⎞
⎠ �⃗�1. (66)

And similarly, we can write the complete coupling matrix for the modulator component, for ex-
ample, as

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑎2,𝑤0

𝑎2,𝑤1

𝑎2,𝑤2

𝑎4,𝑤0

𝑎4,𝑤1

𝑎4,𝑤2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

𝐽0(𝑚) 𝐽1(𝑚) 𝐽−1(𝑚) 0 0 0
𝐽−1(𝑚) 𝐽0(𝑚) 0 0 0 0
𝐽1(𝑚) 0 𝐽0(𝑚) 0 0 0

0 0 0 𝐽0(𝑚) 𝐽1(𝑚) 𝐽−1(𝑚)
0 0 0 𝐽−1(𝑚) 𝐽0(𝑚) 0
0 0 0 𝐽1(𝑚) 0 𝐽0(𝑚)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑎1,𝑤0

𝑎1,𝑤1

𝑎1,𝑤2

𝑎3,𝑤0

𝑎3,𝑤1

𝑎3,𝑤2

⎞
⎟⎟⎟⎟⎟⎟⎠

(67)
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3.8 Finesse examples

3.8.1 Modulation index
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fexample_bessel                Sun Aug 16 15:32:07 2009

 

 
bessel1 n1
bessel2 n1
bessel3 n1

Figure 20: Finesse example: Modulation index.

This file demonstrates the use of a modulator. Phase modulation (with up to five higher harmonics
is applied to a laser beam and amplitude detectors are used to measure the field at the first three
harmonics. Compare this to Figure 16 as well.

Finesse input file for ‘Modulation index’

laser i1 1 0 n0 % laser P=1W f offset=0Hz
mod eom1 40k .05 5 pm n0 n1 % phase modulator f mod=40kHz, modulation index=0.05
ad bessel1 40k n1 % amplitude detector f=40kHz
ad bessel2 80k n1 % amplitude detector f=80kHz
ad bessel3 120k n1 % amplitude detector f=120kHz
xaxis eom1 midx lin 0 10 1000 % x-axis: modulation index of eom1

yaxis abs % y-axis: plot ‘absolute’ amplitude

3.8.2 Mirror modulation

Finesse offers two different types of modulators: the ‘modulator’ component shown in the exam-
ple above, and the ‘fsig’ command, which can be used to apply a signal modulation to existing
optical components. The main difference is that ‘fsig’ is meant to be used for transfer function
computations. Consequently Finesse discards all nonlinear terms, which means that the sideband
amplitude is proportional to the signal amplitude and harmonics are not created.

Finesse input file for ‘Mirror modulation’

laser i1 1 0 n1 % laser P=1W f offset=0Hz
space s1 1 1 n1 n2 % space of 1m length
bs b1 1 0 0 0 n2 n3 dump dump % beam splitter as ‘turning mirror’, normal incidence
space s2 1 1 n3 n4 % another space of 1m length
fsig sig1 b1 40k 1 0 % signal modulation applied to beam splitter b1
ad upper 40k n4 % amplitude detector f=40kHz
ad lower -40k n4 % amplitude detector f=-40kHz
ad harmonic 80k n4 % amplitude detector f=80kHz
xaxis sig1 amp lin 1 10 100 % x-axis: amplitude of signal modulation
yaxis abs % y-axis: plot ‘absolute’ amplitude
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Figure 21: Finesse example: Mirror modulation.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-1

http://www.livingreviews.org/lrr-2010-1


Interferometer Techniques for Gravitational-Wave Detection 31

4 Optical Readout

In previous sections we have dealt with the amplitude of light fields directly and also used the
amplitude detector in the Finesse examples. This is the advantage of a mathematical analysis
versus experimental tests, in which only light intensity or light power can be measured directly.
This section gives the mathematical details for modelling photo detectors.

The intensity of a field impinging on a photo detector is given as the magnitude of the Poynting
vector, with the Poynting vector given as [58]

�⃗� = �⃗� × �⃗� =
1
𝜇0

�⃗� × �⃗�. (68)

Inserting the electric and magnetic components of a plane wave, we obtain

|�⃗�| = 1
𝜇0𝑐

𝐸2 = 𝑐𝜖0𝐸
2
0 cos2(𝜔𝑡) =

𝑐𝜖0
2

𝐸2
0 (1 + cos(2𝜔𝑡)) , (69)

with 𝜖0 the electric permeability of vacuum and 𝑐 the speed of light.
The response of a photo detector is given by the total flux of effective radiation4 during the

response time of the detector. For example, in a photo diode a photon will release a charge in the
n-p junction. The response time is given by the time it takes for the charge to travel through the
detector (and further time may be taken up in the electronic processing of the signal). The size of
the photodiode and the applied bias voltage determine the travel time of the charges with typical
values of approximately 10 ns. Thus, frequency components faster than perhaps 100 MHz are not
resolved by a standard photodiode. For example, a laser beam with a wavelength of 𝜆 = 1064 nm
has a frequency of 𝑓 = 𝑐/𝜆 ≈ 282 1012 Hz = 282 THz. Thus, the 2𝜔 component is much too fast
for the photo detector; instead, it returns the average power

|�⃗�| = 𝑐𝜖0
2

𝐸2
0 . (70)

In complex notation we can write
|�⃗�| = 𝑐𝜖0

2
𝐸𝐸*. (71)

However, for more intuitive results the light fields can be given in converted units, so that the
light power can be computed as the square of the light field amplitudes. Unless otherwise noted,
throughout this work the unit of light field amplitudes is

√
watt. Thus, the notation used in this

document to describe the computation of the light power of a laser beam is

𝑃 = 𝐸𝐸*. (72)

4.1 Detection of optical beats

What is usually called an optical beat or simply a beat is the sinusoidal behaviour of the intensity
of two overlapping and coherent fields. For example, if we superpose two fields of slightly different
frequency, we obtain

𝐸 = 𝐸0 cos(𝜔1𝑡) + 𝐸0 cos(𝜔2𝑡)

𝑃 = 𝐸2 = 𝐸2
0

(︀
cos2(𝜔1𝑡) + cos2(𝜔2𝑡) + 2 cos(𝜔1𝑡) cos(𝜔2𝑡)

)︀

= 𝐸2
0

(︀
cos2(𝜔1𝑡) + cos2(𝜔2𝑡) + cos(𝜔+𝑡) + cos(𝜔−𝑡)

)︀
,

(73)

4The term effective refers to that amount of incident light, which is converted into photo-electrons that are then
usefully extracted from the junction (i.e., do not recombine within the device). This fraction is usually referred to
as quantum efficiency 𝜂 of the photodiode.
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[a.u.]

t0
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E field: cos(ω1 t) + cos(ω2 t)

intensity photo diode output: 1 + cos(ω− t)

Figure 22: A beam with two frequency components hits the photo diode. Shown in this plot are the field
amplitude, the corresponding intensity and the electrical output of the photodiode.

with 𝜔+ = 𝜔1 + 𝜔2 and 𝜔− = 𝜔1 − 𝜔2. In this equation the frequency 𝜔− can be very small and
can then be detected with the photodiode as illustrated in Figure 22.

𝑃diode = 𝐸2
0 (1 + cos(𝜔−𝑡)) (74)

Using the same example photodiode as before: in order to be able to detect an optical beat 𝜔−
would need to be smaller than 100 MHz. If we take two, sightly detuned Nd:YAG lasers with
𝑓 = 282 THz, this means that the relative detuning of these lasers must be smaller than 10–7.

In general, for a field with several frequency components, the photodiode signal can be written
as

|𝐸|2 = 𝐸 · 𝐸* =
𝑁∑︀

𝑖=0

𝑁∑︀
𝑗=0

𝑎𝑖𝑎
*
𝑗 𝑒i (𝜔𝑖−𝜔𝑗) 𝑡. (75)

For example, if the photodiode signal is filtered with a low-pass filter, such that only the DC part
remains, we can compute the resulting signal by looking for all components without frequency
dependence. The frequency dependence vanishes when the frequency becomes zero, i.e., in all
parts of Equation (75) with 𝜔𝑖 = 𝜔𝑗 . The output is a real number, calculated like this:

𝑥 =
∑︁

𝑖

∑︁

𝑗

𝑎𝑖𝑎
*
𝑗 with {𝑖, 𝑗 | 𝑖, 𝑗 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑖 = 𝜔𝑗}. (76)

4.2 Signal demodulation

A typical application of light modulation, is its use in a modulation-demodulation scheme, which
applies an electronic demodulation to a photodiode signal. A ‘demodulation’ of a photodiode signal
at a user-defined frequency 𝜔𝑥, performed by an electronic mixer and a low-pass filter, produces
a signal, which is proportional to the amplitude of the photo current at DC and at the frequency
𝜔0 ± 𝜔𝑥. Interestingly, by using two mixers with different phase offsets one can also reconstruct
the phase of the signal, or to be precise the phase difference of the light at 𝜔0±𝜔𝑥 with respect to
the carrier light. This feature can be very powerful for generating interferometer control signals.

Mathematically, the demodulation process can be described by a multiplication of the output
with a cosine: cos(𝜔𝑥+𝜙𝑥) (𝜙𝑥 is the demodulation phase), which is also called the ‘local oscillator’.
After the multiplication was performed only the DC part of the result is taken into account. The
signal is

𝑆0 = |𝐸|2 = 𝐸 · 𝐸* =
𝑁∑︁

𝑖=0

𝑁∑︁

𝑗=0

𝑎𝑖𝑎
*
𝑗 𝑒i (𝜔𝑖−𝜔𝑗) 𝑡. (77)
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Multiplied with the local oscillator it becomes

𝑆1 = 𝑆0 · cos(𝜔𝑥𝑡 + 𝜙𝑥) = 𝑆0
1
2

(︀
𝑒i (𝜔𝑥𝑡+𝜙𝑥) + 𝑒−i (𝜔𝑥𝑡+𝜙𝑥)

)︀

= 1
2

𝑁∑︀
𝑖=0

𝑁∑︀
𝑗=0

𝑎𝑖𝑎
*
𝑗 𝑒i (𝜔𝑖−𝜔𝑗) 𝑡 ·

(︀
𝑒i (𝜔𝑥𝑡+𝜙𝑥) + 𝑒−i (𝜔𝑥𝑡+𝜙𝑥)

)︀
.

(78)

With 𝐴𝑖𝑗 = 𝑎𝑖𝑎
*
𝑗 and 𝑒i 𝜔𝑖𝑗 𝑡 = 𝑒i (𝜔𝑖−𝜔𝑗) 𝑡 we can write

𝑆1 =
1
2

⎛
⎝

𝑁∑︁

𝑖=0

𝐴𝑖𝑖 +
𝑁∑︁

𝑖=0

𝑁∑︁

𝑗=𝑖+1

(𝐴𝑖𝑗 𝑒i 𝜔𝑖𝑗 𝑡 + 𝐴*𝑖𝑗 𝑒−i 𝜔𝑖𝑗 𝑡)

⎞
⎠ ·

(︁
𝑒i (𝜔𝑥𝑡+𝜙𝑥) + 𝑒−i (𝜔𝑥𝑡+𝜙𝑥)

)︁
. (79)

When looking for the DC components of 𝑆1 we get the following [20]:

𝑆1,DC =
∑︀
𝑖𝑗

1
2 (𝐴𝑖𝑗 𝑒−i 𝜙𝑥 + 𝐴*𝑖𝑗 𝑒i 𝜙𝑥) with {𝑖, 𝑗 | 𝑖, 𝑗 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑖𝑗 = 𝜔𝑥}

=
∑︀
𝑖𝑗

ℜ
{︀
𝐴𝑖𝑗 𝑒−i 𝜙𝑥

}︀
.

(80)

This would be the output of a mixer and a subsequent low-pass filter. The results for 𝜙𝑥 = 0 and
𝜙𝑥 = 𝜋/2 are called in-phase and in-quadrature, respectively (or also first and second quadrature).
They are given by

𝑆1,DC,phase =
∑︀
𝑖𝑗

ℜ{𝐴𝑖𝑗} ,

𝑆1,DC,quad =
∑︀
𝑖𝑗

ℑ{𝐴𝑖𝑗} .
(81)

If only one mixer is used, the output is always real and is determined by the demodulation phase.
However, with two mixers generating the in-phase and in-quadrature signals, it is possible to
construct a complex number representing the signal amplitude and phase:

𝑧 =
∑︁

𝑖𝑗

𝑎𝑖𝑎
*
𝑗 with {𝑖, 𝑗 | 𝑖, 𝑗 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑖𝑗 = 𝜔𝑥}. (82)

Often several sequential demodulations are applied in order to measure very specific phase in-
formation. For example, a double demodulation can be described as two sequential multiplications
of the signal with two local oscillators and taking the DC component of the result. First looking
at the whole signal, we can write:

𝑆2 = 𝑆0 · cos(𝜔𝑥𝑡 + 𝜙𝑥) cos(𝜔𝑦𝑡 + 𝜙𝑦). (83)

This can be written as

𝑆2 = 𝑆0
1
2 (cos(𝜔𝑦𝑡 + 𝜔𝑥𝑡 + 𝜙𝑦 + 𝜙𝑥) + cos(𝜔𝑦𝑡− 𝜔𝑥𝑡 + 𝜙𝑦 − 𝜙𝑥))

= 𝑆0
1
2 (cos(𝜔+𝑡 + 𝜙+) + cos(𝜔−𝑡 + 𝜙−)), (84)

and thus reduced to two single demodulations. Since we now only care for the DC component we
can use the expression from above (Equation (82)). These two demodulations give two complex
numbers:

𝑧1 =
∑︀
𝑖𝑗

𝐴𝑖𝑗 with {𝑖, 𝑗 | 𝑖, 𝑗 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑖 − 𝜔𝑗 = 𝜔+},

𝑧2 =
∑︀
𝑖𝑗

𝐴𝑘𝑙 with {𝑘, 𝑙 | 𝑘, 𝑙 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑘 − 𝜔𝑙 = 𝜔−}. (85)

The demodulation phases are applied as follows to get a real output (two sequential mixers)

𝑥 = ℜ
{︀
(𝑧1 𝑒−i 𝜙𝑥 + 𝑧2 𝑒i 𝜙𝑥) 𝑒−i 𝜙𝑦

}︀
. (86)
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In a typical setup, a user-defined demodulation phase for the first frequency (here 𝜙𝑥) is given. If
two mixers are used for the second demodulation, we can reconstruct the complex number

𝑧 = 𝑧1 𝑒−i 𝜙𝑥 + 𝑧2 𝑒i 𝜙𝑥 . (87)

More demodulations can also be reduced to single demodulations as above.
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4.3 Finesse examples

4.3.1 Optical beat
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Figure 23: Finesse example: Optical beat.

In this example two laser beams are superimposed at a 50:50 beam splitter. The beams have a
slightly different frequency: the second beam has a 10 kHz offset with respect to the first (and to
the default laser frequency). The plot illustrates the output of four different detectors in one of
the beam splitter output ports, while the phase of the second beam is tuned from 0° to 180°. The
photodiode ‘pd1’ shows the total power remaining constant at 1. The amplitude detectors ‘ad1’
and ‘ad10k’ detect the laser light at 0 Hz (default frequency) and 10 kHz respectively. Both show
a constant absolute of

√︀
1/2 and the detector ‘ad10k’ tracks the tuning of the phase of the second

laser beam. Finally, the detector ‘pd10k’ resembles a photodiode with demodulation at 10 kHz. In
fact, this represents a photodiode and two mixers used to reconstruct a complex number as shown
in Equation (82). One can see that the phase of the resulting electronic signal also directly follows
the phase difference between the two laser beams.

Finesse input file for ‘Optical beat’

const freq 10k % creating a constant for the frequency offset
laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1n 1 n1 n2 % space of 1nm length
laser l2 1 $freq n3 % a second laser with f=10kHz frequency offset
space s2 1n 1 n3 n4 % another space of 1nm length
bs b1 0.5 0.5 0 0 n2 n5 dump n4 % 50:50 beam splitter
space s3 1n 1 n5 n6 % another space of 1nm length
ad ad0 0 n6 % amplitude detector at f=0Hz
ad ad10k $freq n6 % amplitude detector at f=10kHz
pd pd1 n6 % simple photo detector
pd1 pd10k $freq n6 % photo detector with demodulation at 10kHz

xaxis l2 phi lin 0 180 100 % changing the phase of the l2-beam

yaxis abs:deg % plotting amplitude and phase
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5 Basic Interferometers

The large interferometric gravitational-wave detectors currently in operation are based on two fun-
damental interferometer topologies: the Fabry–Pérot and the Michelson interferometer. The main
instrument is very similar to the original interferometer concept used in the famous experiment
by Michelson and Morley, published in 1887 [42]. The main difference is that modern instru-
ments use laser light to illuminate the interferometer to achieve much higher accuracy. Already
the first prototype by Forward and Weiss has thus achieved a sensitivity a million times better
than Michelson’s original instrument [18]. In addition, in current gravitational-wave detectors, the
Michelson interferometer has been enhanced by resonant cavities, which in turn have been derived
from the original idea for a spectroscopy standard published by Fabry and Pérot in 1899 [16]. The
following section will describe the fundamental properties of the Fabry–Pérot interferometer and
the Michelson interferometer. A thorough understanding of these basic instruments is essential for
the study of the high-precision interferometers used for gravitational-wave detection.

5.1 The two-mirror cavity: a Fabry–Pérot interferometer

We have computed the field amplitudes in a linear two-mirror cavity, also called Fabry–Pérot
interferometer, in Section 2.2. In order to understand the features of this optical instrument it is
of interest to have a closer look at the power circulation in the cavity. A typical optical layout is
shown in Figure 24: two parallel mirrors form the Fabry–Pérot cavity. A laser beam is injected
through the first mirror (at normal incidence).

laser

BS

cavity

PD refl

PD trans

end mirrorinput mirror

L

Figure 24: Typical optical layout of a two-mirror cavity, also called a Fabry–Pérot interferometer. Two
mirrors form the Fabry–Pérot interferometer, a laser beam is injected through one of the mirrors and the
reflected and transmitted light can be detected by photo detectors.

The behaviour of the (ideal) cavity is determined by the length of the cavity 𝐿, the wavelength
of the laser 𝜆 and the reflectivity and transmittance of the mirrors. Assuming an input power of
|𝑎0|2 = 1, we obtain

𝑃1 = |𝑎1|2 =
𝑇1

1 + 𝑅1𝑅2 − 2𝑟1𝑟2 cos (2𝑘𝐿)
, (88)

with 𝑘 = 2𝜋/𝜆, 𝑃 , 𝑇 = 𝑡2 and 𝑅 = 𝑟2, as defined in Section 1.4. Similarly we could compute the
transmission of the optical system as the input-output ratio of the field amplitudes. For example,

𝑎2

𝑎0
=

−𝑡1𝑡2 exp(−i 𝑘𝐿)
1− 𝑟1𝑟2 exp(−i 2𝑘𝐿)

(89)

is the frequency-dependent transfer function of the cavity in transmission (the frequency depen-
dency is hidden inside the 𝑘 = 2𝜋𝑓/𝑐).

Figure 25 shows a plot of the circulating light power 𝑃1 over the laser frequency. The maximum
power is reached when the cosine function in the denominator becomes equal to one, i.e., at
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Figure 25: Power enhancement in a two-mirror cavity as a function of the laser-light frequency. The
peaks marks the resonances of the cavity, i.e., modes of operation in which the injected light is resonantly
enhanced. The frequency distance between two peaks is called free-spectral range (FSR).

𝑘𝐿 = 𝑁𝜋 with 𝑁 an integer. This is called the cavity resonance. The lowest power values are
reached at anti-resonance when 𝑘𝐿 = (𝑁 + 1/2)𝜋. We can also rewrite

2𝑘𝐿 = 𝜔
2𝐿

𝑐
= 2𝜋𝑓

2𝐿

𝑐
=

2𝜋𝑓

FSR
, (90)

with FSR being the free-spectral range of the cavity as shown in Figure 25. Thus, it becomes clear
that resonance is reached for laser frequencies

𝑓𝑟 = 𝑁 · FSR, (91)

where 𝑁 is an integer.
Another characteristic parameter of a cavity is its linewidth, usually given as full width at half

maximum (FWHM) or its pole frequency, 𝑓𝑝. In order to compute the linewidth we have to ask at
which frequency the circulating power becomes half the maximum:

|𝑎1(𝑓𝑝)|2 != 1
2 |𝑎1,max|2. (92)

This results in the following expression for the full linewidth:

FWHM = 2𝑓𝑝 =
2FSR

𝜋
arcsin

(︂
1− 𝑟1𝑟2

2
√

𝑟1𝑟2

)︂
. (93)

The ratio of the linewidth and the free spectral range is called the finesse of a cavity:

𝐹 =
FSR

FWHM
=

𝜋

2 arcsin
(︁

1−𝑟1𝑟2
2
√

𝑟1𝑟2

)︁ . (94)

In the case of high finesse, i.e., 𝑟1 and 𝑟2 are close to 1 we can use the fact that the argument of
the arcsin function is small and make the approximation

𝐹 ≈ 𝜋
√

𝑟1𝑟2

1− 𝑟1𝑟2
≈ 𝜋

1− 𝑟1𝑟2
. (95)
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Figure 26: This figure compares the fields reflected by, transmitted by and circulating in a Fabry–Pérot
cavity for the three different cases: over-coupled, under-coupled and impedance matched cavity (in all
cases 𝑇1 +𝑇2 = 0.2 and the round-trip loss is 1%). The traces show the phase and amplitude of the electric
field as a function of laser frequency detuning.
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Figure 27: Power transmitted and circulating in a two mirror cavity with input power 1 W. The mirror
transmissions are set such that 𝑇1+𝑇2 = 0.8 and the reflectivities of both mirrors are set as 𝑅 = 1−𝑇 . The
cavity is undercoupled for 𝑇1 < 0.4, impedance matched at 𝑇1 = 𝑇2 = 0.4 and overcoupled for 𝑇1 > 0.4.
The transmission is maximised in the impedance-matched case and falls similarly for over or undercoupled
settings. However, the circulating power (and any resonance performance of the cavity) is much larger in
the overcoupled case.

The behaviour of a two mirror cavity depends on the length of the cavity (with respect to the
frequency of the laser) and on the reflectivities of the mirrors. Regarding the mirror parameters
one distinguishes three cases5:

• when 𝑇1 < 𝑇2 the cavity is called undercoupled

• when 𝑇1 = 𝑇2 the cavity is called impedance matched

• when 𝑇1 > 𝑇2 the cavity is called overcoupled

The differences between these three cases can seem subtle mathematically but have a strong
impact on the application of cavities in laser systems. One of the main differences is the phase
evolution of the light fields, which is shown in Figure 26. The circulating power shows that the
resonance effect is better used in over-coupled cavities; this is illustrated in Figure 27, which
shows the transmitted and circulating power for the three different cases. Only in the impedance-
matched case can the cavity transmit (on resonance) all the incident power. Given the same total
transmission 𝑇1 + 𝑇2, the overcoupled case allows for the largest circulating power and thus a
stronger ‘resonance effect’ of the cavity, for example, when the cavity is used as a mode filter.
Hence, most commonly used cavities are impedance matched or overcoupled.

5Please note that in the presence of losses the coupling is defined with respect to the transmission and losses. In
particular, the impedance-matched case is defined as 𝑇1 = 𝑇2 · Loss, so that the input power transmission exactly
matches the light power lost in one round-trip.
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5.2 Michelson interferometer

We came across the Michelson interferometer in Section 2.4 when we discussed the phase relation
at a beam splitter. The typical optical layout of the Michelson interferometer is shown again in
Figure 28: a laser beam is split by a beam splitter and send along two perpendicular interferometer
arms. The four directions seen from the beam splitter are called North, East, West and South. The
ends of these arms (North and East) are marked by highly reflective end mirrors, which reflect the
beams back into themselves so that they can be recombined by the beam splitter. Generally, the
Michelson interferometer has two outputs, namely the so far unused beam splitter port (South) and
the input port (West). Both output ports can be used to obtain interferometer signals, however,
most setups are designed such that the signals with high signal-to-noise ratios are detected in the
South port.

laser

PD

BS
east end mirror

north end mirror

LN

LE

Figure 28: Typical optical layout of a Michelson interferometer: a laser beam is split into two and sent
along two perpendicular interferometer arms. We will label the directions in a Michelson interferometer
as North, East, West and South in the following. The end mirrors reflect the beams such that they are
recombined at the beam splitter. The South and West ports of the beam splitter are possible output port,
however, in many cases, only the South port is used.

The Michelson interferometer output is determined by the laser wavelength 𝜆, the reflectivity
and transmittance of the beam splitter and the end mirrors, and the length of the interferometer
arms. In many cases the end mirrors are highly reflective and the beam splitter ideally a 50:50
beam splitter. In that case, we can compute the output for a monochromatic field as shown in
Section 2.4. Using Equation (20) we can write the field in the South port as

𝐸𝑆 = 𝐸0
i
2

(︀
𝑒i 2𝑘𝐿𝑁 + 𝑒i 2𝑘𝐿𝐸

)︀
. (96)

We define the common arm length and the arm-length difference as

�̄� = 𝐿𝑁+𝐿𝐸

2
Δ𝐿 = 𝐿𝑁 − 𝐿𝐸 ,

(97)

which yield 2𝐿𝑁 = 2�̄� + Δ𝐿 and 2𝐿𝐸 = 2�̄�−Δ𝐿. Thus, we can further simplify to get

𝐸𝑆 = 𝐸0
i
2
𝑒i 2𝑘�̄�

(︀
𝑒i 𝑘Δ𝐿 + 𝑒−i 𝑘Δ𝐿

)︀
= 𝐸0 i 𝑒i 2𝑘�̄� cos(𝑘Δ𝐿). (98)

The photo detector then produces a signal proportional to

𝑆 = 𝐸𝑆𝐸*
𝑆 = 𝑃0 cos2(𝑘Δ𝐿) = 𝑃0 cos2(2𝜋Δ𝐿/𝜆). (99)

This signal is depicted in Figure 29; it shows that the power in the South port changes between
zero and the input power with a period of Δ𝐿/𝜆 = 0.5. The tuning at which the output power
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Figure 29: Power in the South port of a symmetric Michelson interferometer as a function of the arm
length difference Δ𝐿.

drops to zero is called the dark fringe. Current interferometric gravitational-wave detectors operate
their Michelson interferometer at or near the dark fringe.

The above seems to indicate that the macroscopic arm-length difference plays no role in the
Michelson output signal. However, this is only correct for a monochromatic laser beam with infinite
coherence length. In real interferometers care must be taken that the arm-length difference is well
below the coherence length of the light source. In gravitational-wave detectors the macroscopic
arm-length difference is an important design feature; it is kept very small in order to reduce
coupling of laser noise into the output but needs to retain a finite size to allow the transfer of
phase modulation sidebands from the input to the output port; this is illustrated in the Finesse
example below and will be covered in detail in Section 6.4.
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5.3 Finesse examples

5.3.1 Michelson power
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Figure 30: Finesse example: Michelson power.

The power in the South port of a Michelson detector varies as the cosine squared of the microscopic
arm length difference. The maximum output can be equal to the input power, but only if the
Michelson interferometer is symmetric and lossless. The tuning for which the South port power is
zero is referred to as the dark fringe.

Finesse input file for ‘Michelson power’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 1 n1 n2 % space of 1m length
run1: bs b1 0.5 0.5 0 0 n2 nN1 nE1 nS1 % 50:50 beam splitter
run2: bs b1 0.4 0.6 0 0 n2 nN1 nE1 nS1 % 40:60 beam splitter
run3: bs b1 0.45 0.45 0 0 n2 nN1 nE1 nS1 % 45:45 beam splitter
space LN 1 1 nN1 nN2 % north arm
space LE 1 1 nE1 nE2 % east arm
mirror mN 1 0 0 nN2 dump % north end mirror, lossless
mirror mE 1 0 0 nE2 dump % east end mirror, lossless
space s2 1 1 nS1 nout
pd South nout % photo detector in South port
xaxis mN phi lin 0 300 100 % changing the microscopic position of mN

5.3.2 Michelson modulation

This example demonstrates how a macroscopic arm length difference can cause different ‘dark
fringe’ tuning for injected fields with different frequencies. In this case, some of the 10 MHz
modulation sidebands are transmitted when the interferometer is tuned to a dark fringe for the
carrier light. This effect can be used to separate light fields of different frequencies. It is also the
cause for transmission of laser noise (especially frequency noise) into the Michelson output port
when the interferometer is not perfectly symmetric.

Finesse input file for ‘Michelson modulation’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 1 n1 n2 % space of 1m length
mod eom1 10M 0.3 1 pm n2 n3 % phase modulation at 10 MHz
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Figure 31: Finesse example: Michelson modulation.

space s2 1 1 n3 n4 % another space of 1m length
bs b1 0.5 0.5 0 0 n4 nN1 nE1 nS1 % 50:50 beam splitter
space LN 100 1 nN1 nN2 % north arm
space LE 110 1 nE1 nE2 % east arm
mirror mN 1 0 0 nN2 dump % north end mirror, lossless
mirror mE 1 0 0 nE2 dump % east end mirror, lossless
space s3 1 1 nS1 nout
ad carrier 0 nout % amplitude detector for carrier field
ad sideband 10M nout % amplitude detector for +10 MHz sideband
xaxis mN phi lin 0 300 100 % changing the microscopic position of mN
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6 Interferometric Length Sensing and Control

In this section we introduce interferometers as length sensing devices. In particular, we explain how
the Fabry–Pérot interferometer and the Michelson interferometer can be used for high-precision
measurements and that both require a careful control of the base length (which is to be measured)
in order to yield their large sensitivity. In addition, we briefly introduce the general concepts of
error signals and transfer functions, which are used to describe most essential features of length
sensing and control.

6.1 Error signals and transfer functions

In general, we will call an error signal any measured signal suitable for stabilising a certain ex-
perimental parameter 𝑝 with a servo loop. The aim is to maintain the variable 𝑝 at a user-defined
value, the operating point, 𝑝0. Therefore, the error signal must be a function of the parameter 𝑝.
In most cases it is preferable to have a bipolar signal with a zero crossing at the operating point.
The slope of the error signal at the operating point is a measure of the ‘gain’ of the sensor (which
in the case of interferometers is a combination of optics and electronics).

Transfer functions describe the propagation of a periodic signal through a plant and are usually
given as plots of amplitude and phase over frequency. By definition a transfer function describes
only the linear coupling of signals inside a system. This means a transfer function is independent
of the actual signal size. For small signals or small deviations, most systems can be linearised and
correctly described by transfer functions.

Experimentally, network analysers are commonly used to measure a transfer function: one
connects a periodic signal (the source) to an actuator of the plant (which is to be analysed) and to
an input of the analyser. A signal from a sensor that monitors a certain parameter of the plant is
connected to the second analyser input. By mixing the source with the sensor signal the analyser
can determine the amplitude and phase of the input signal with respect to the source (amplitude
equals one and the phase equals zero when both signals are identical).

Mathematically, transfer functions can be modeled similarly: applying a sinusoidal signal
sin(𝜔𝑠𝑡) to the interferometer, e.g., as a position modulation of a cavity mirror, will create phase
modulation sidebands with a frequency offset of ±𝜔𝑠 to the carrier light. If such light is detected
in the right way by a photodiode, it will include a signal at the frequency component 𝜔𝑠, which
can be extracted, for example, by means of demodulation (see Section 4.2).

Transfer functions are of particular interest in relation to error signals. Typically a transfer
function of the error signal is required for the design of the respective electronic servo. A ‘transfer
function of the error signal’ usually refers to a very specific setup: the system is held at its operating
point, such that, on average, 𝑝 = 𝑝0. A signal is applied to the system in the form of a very small
sinusoidal disturbance of 𝑝. The transfer function is then constructed by computing for each signal
frequency the ratio of the error signal and the injected signal. Figure 32 shows an example of an
error signal and its corresponding transfer function. The operating point shall be at

𝑥d = 0 and 𝑥EP(𝑥d = 0) = 0 (100)

The optical transfer function 𝑇opt,xd with respect to this error signal is defined by

̃︀𝑥EP(𝑓) = 𝑇opt,xd𝑇det̃︀𝑥𝑑(𝑓), (101)

with 𝑇det as the transfer function of the sensor. In the following, 𝑇det is assumed to be unity. At
the zero crossing the slope of the error signal represents the magnitude of the transfer function for
low frequencies: ⃒⃒

⃒⃒𝑑𝑥EP

𝑑𝑥d

⃒⃒
⃒⃒ ⃒⃒

𝑥d=0

= |𝑇opt,xd | ⃒⃒
𝑓→0

(102)
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Figure 32: Example of an error signal: the top graph shows the electronic interferometer output signal as
a function of mirror displacement. The operating point is given as the zero crossing, and the error-signal
slope is defined as the slope at the operating point. The right graph shows the magnitude of the transfer
function mirror displacement → error signal. The slope of the error signal (left graph) is equal to the low
frequency limit of the transfer function magnitude (see Equation (102)).
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The quantity above will be called the error-signal slope in the following text. It is proportional to
the optical gain |𝑇opt,𝑥d |, which describes the amplification of the gravitational-wave signal by the
optical instrument.

6.2 Fabry–Pérot length sensing

In Figure 25 we have plotted the circulating power in a Fabry–Pérot cavity as a function of the
laser frequency. The steep features in this plot indicate that such a cavity can be used to measure
changes in the laser frequency. From the equation for the circulating power (see Equation (88)),

𝑃1/𝑃0 =
𝑇1

1 + 𝑅1𝑅2 − 2𝑟1𝑟2 cos (2𝑘𝐿)
=

𝑇1

𝑑
, (103)

we can see that the actual frequency dependence is given by the cos(2𝑘𝐿) term. Writing this term
as

cos(2𝑘𝐿) = cos
(︂

2𝜋
𝐿𝑓

𝑐

)︂
, (104)

we can highlight the fact that the cavity is in fact a reference for the laser frequency in relation to
the cavity length. If we know the cavity length very well, a cavity should be a good instrument to
measure the frequency of a laser beam. However, if we know the laser frequency very accurately,
we can use an optical cavity to measure a length. In the following we will detail the optical setup
and behaviour of a cavity used for a length measurement. The same reasoning applies for frequency
measurements. If we make use of the resonant power enhancement of the cavity to measure the
cavity length, we can derive the sensitivity of the cavity from the differentiation of Equation (88),
which gives the slope of the trace shown in Figure 25,

𝑑 𝑃1/𝑃0

𝑑 𝐿
=
−4𝑇1𝑟1𝑟2𝑘 sin(2𝑘𝐿)

𝑑2
, (105)

with 𝑑 as defined in Equation (103). This is plotted in Figure 33 together with the cavity power
as a function of the cavity tuning. From Figure 33 we can deduce a few key features of the cavity:

• The cavity must be held as near as possible to the resonance for maximum sensitivity. This
is the reason that active servo control systems play an important role in modern laser inter-
ferometers.

• If we want to use the power directly as an error signal for the length, we cannot use the
cavity directly on resonance because there the optical gain is zero. A suitable error signal
(i.e., a bipolar signal) can be constructed by adding an offset to the light power signal. A
control system utilising this method is often called DC-lock or offset-lock. However, we show
below that more elegant alternative methods for generating error signals exist.

• The differentiation of the cavity power looks like a perfect error signal for holding the cavity on
resonance. A signal proportional to such differentiation can be achieved with a modulation-
demodulation technique.
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Figure 33: The top plot shows the cavity power as a function of the cavity tuning. A tuning of 360°
refers to a change in the cavity length by one laser wavelength. The bottom plot shows the differentiation
of the upper trace. This illustrates that near resonance the cavity power changes very rapidly when the
cavity length changes. However, for most tunings the cavity seems not sensitive at all.

6.3 The Pound–Drever–Hall length sensing scheme

This scheme for stabilising the frequency of a light field to the length of a cavity, or vice versa, is
based on much older techniques for performing very similar actions with microwaves and microwave
resonators. Drever and Hall have adapted such techniques for use in the optical regime [14] and
today what is now called the Pound–Drever–Hall technique can be found in a great number of
different types of optical setups. An example layout of this scheme is shown in Figure 34, in this
case for generating a length (or frequency) signal of a two-mirror cavity. The laser is passed through
an electro-optical modulator, which applies a periodic phase modulation at a fixed frequency. In
many cases the modulation frequency is chosen such that it resides in the radio frequency band for
which low-cost, low-noise electronic components are available. The phase modulated light is then
injected into the cavity. However, from the frequency domain analysis introduced in Section 5,
we know that in most cases not all the light can be injected into the cavity. Let’s consider the
example of an over-coupled cavity with the reflectivity of the end mirror 𝑅2 < 1. Such a cavity
would have a frequency response as shown in the top traces of Figure 26 (recall that the origin
of the frequency axis refers to an arbitrarily chosen default frequency, which for this figure has
been selected to be a resonance frequency of the cavity). If the cavity is held on resonance for the
unmodulated carrier field, this field enters the cavity, gets resonantly enhanced and a substantial
fraction is transmitted. If the frequency offset of the modulation sidebands is chosen such that it
does not coincide with (or is near to) an integer multiple of the cavity’s free spectral range, the
modulation sidebands are mostly reflected by the cavity and will not be influenced as much by
the resonance condition of the cavity as the carrier. The photodiode measuring the reflected light
will see the optical beat between the carrier field and the modulation sidebands. This includes a
component at the modulation frequency which is a measure of the phase difference between the
carrier field and the sidebands (given the setup as described above). Any slight change of the
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cavity length would introduce a proportional change in the phase of the carrier field and no change
in the sideband fields. Thus the photodiode signal can be used to measure the length changes of
the cavity. One of the advantages of this method is the fact that the so-generated signal is bipolar
with a zero crossing and steep slope exactly at the cavity’s resonance, see Figure 35.

laser

BS

PD refl

end mirrorinput mirror

EOM

signal generator

mixer

Figure 34: Typical setup for using the Pound–Drever–Hall scheme for length sensing and with a two-
mirror cavity: the laser beam is phase modulated with an electro-optical modulator (EOM). The modula-
tion frequency is often in the radio frequency range. The photodiode signal in reflection is then electrically
demodulated at the same frequency.

6.4 Michelson length sensing

Similarly to the two-mirror cavity, we can start to understand the length-sensing capabilities of the
Michelson interferometer by looking at the output light power as a function of a mirror movement,
as shown in Figure 29. The power changes as sine squared with the maximum slope at the point
when the output power (in what we call the South port) is half the input power. The slope of the
output power, which is the optical gain of the instrument for detecting a differential arm-length
change Δ𝐿 with a photo detector in the South port can be written as

𝑑 𝑆

𝑑 Δ𝐿
=

2𝜋𝑃0

𝜆
sin

(︂
4𝜋

𝜆
Δ𝐿

)︂
(106)

and is shown in Figure 36. The most notable difference of the optical gain of the Michelson
interferometer with respect to the Fabry–Pérot interferometer (see Figure 33) is the wider, more
smooth distribution of the gain. This is due to the fact that the cavity example is based on a high-
finesse cavity in which the optical resonance effect is dominant. In a basic Michelson interferometer
such resonance enhancement is not present.

However, the main difference is that the measurement is made differentially by comparing
two lengths. This allows one to separate a larger number of possible noise contributions, for
example noise in the laser light source, such as amplitude or frequency noise. This is why the
main instrument for gravitational-wave measurements is a Michelson interferometer. However, the
resonant enhancement of light power can be added to the Michelson, for example, by using Fabry–
Pérot cavities within the Michelson. This construction of new topologies by combining Michelson
and Fabry–Pérot interferometers will be described in detail in a future version of this review.

The Michelson interferometer has two longitudinal degrees of freedom. These can be represented
by the positions (along the optical axes) of the end mirrors. However, it is more efficient to use
proper linear combinations of these and describe the Michelson interferometer length or position
information by the common and differential arm length, as introduced in Equation (97):

�̄� = 𝐿𝑁+𝐿𝐸

2
Δ𝐿 = 𝐿𝑁 − 𝐿𝐸 .

The Michelson interferometer is intrinsically insensitive to the common arm length �̄�.
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Figure 35: This figure shows an example of a Pound–Drever–Hall (PDH) signal of a two-mirror cavity.
The plots refer to a setup in which the cavity mirrors are stationary and the frequency of the input laser is
tuned linearly. The upper trace shows the light power circulating in the cavity. The three peaks correspond
to the frequency tunings for which the carrier (main central peak) or the modulation sidebands (smaller
side peaks) are resonant in the cavity. The lower trace shows the PDH signal for the same frequency
tuning. Coincident with the peaks in the upper trace are bipolar structures in the lower trace. Each of
the bipolar structures would be suitable as a length-sensing signal. In most cases the central structure is
used, as experimentally it can be easily identified because its slope has a different sign compared to the
sideband structures.
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Figure 36: Power and slope of a Michelson interferometer. The upper plot shows the output power of a
Michelson interferometer as detected in the South port (as already shown in Figure 29). The lower plot
shows the optical gain of the instrument as given by the slope of the upper plot.
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6.5 The Schnupp modulation scheme

Similar to the Fabry–Pérot cavity, the Michelson interferometer is also often used to set an oper-
ating point where the optical gain of a direct light power detection is zero. This operating point,
given by Δ𝐿/𝜆 = (2𝑁 + 1) · 0.25 with 𝑁 a non-negative integer, is called dark fringe. This oper-
ating point has several advantages, the most important being the low (ideally zero) light power on
the diode. Highly efficient and low-noise photodiodes usually use a small detector area and thus
are typically not able to detect large power levels. By using the dark fringe operating point, the
Michelson interferometer can be used as a null instrument or null measurement, which generally
is a good method to reduce systematic errors [49].

One approach to make use of the advantages of the dark fringe operating point is to use an
operating point very close to the dark fringe at which the optical gain is not yet zero. In such a
scenario a careful trade-off calculation can be done by computing the signal-to-noise with noises
that must be suppressed, such as the laser amplitude noise. This type of operation is usually
referred to as DC control or offset control and is very similar to the similarly-named mechanism
used with Fabry–Pérot cavities.

laser

PD

BS
east end mirror

north end mirror

EOM

signal generator

mixer

Figure 37: This length sensing scheme is often referred to as frontal or Schnupp modulation: an EOM
is used to phase modulate the laser beam before entering the Michelson interferometer. The signal of the
photodiode in the South port is then demodulated at the same frequency used for the modulation.

Another option is to employ phase modulated light, similar to the Pound–Drever–Hall scheme
described in Section 6.3. The optical layout of such a scheme is depicted in Figure 37: an electro-
optical modulator is used to apply a phase modulation at a fixed (usually RF type) frequency to
the (monochromatic) laser light before it enters the interferometer. The photodiode signal from
the interferometer output is then demodulated at the same frequency. This scheme allows one to
operate the interferometer precisely on the dark fringe. The method originally proposed by Lise
Schnupp is also sometimes referred to as frontal modulation.

The optical gain of a Michelson interferometer with Schnupp modulation is shown in Figure 39
in Section 6.6.
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6.6 Finesse examples

6.6.1 Cavity power and slope
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Figure 38: Finesse example: Cavity power and slope.

Figure 33 shows a plot of the analytical functions describing the power inside a cavity and its
differentiation by the cavity tuning. This example recreates the plot using a numerical model in
Finesse.

Finesse input file for ‘Cavity power and slope’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 1 n1 n2 % space of 1m length
mirror m1 0.9 0.1 0 n2 n3 % cavity input mirror
space L 1200 1 n3 n4 % cavity length of 1200m
mirror m2 1.0 0.0 0 n4 dump % cavity output mirror
pd P n3 % photo diode measuring the intra-cavity power

% for the plot we perform two sequenctial runs of Finesse using ‘mkat’
% 1) first trace: plot the power (switching to log plot)
run1: yaxis log abs
% 2) second trace: plot the differentiation
run2: diff m2 phi

xaxis m2 phi lin -50 250 300 % changing the microscopic tuning of mirror m2

6.6.2 Michelson with Schnupp modulation

Figure 39 shows the demodulated photodiode signal of a Michelson interferometer with Schnupp
modulation, as well as its differentiation, the latter being the optical gain of the system. Comparing
this figure to Figure 36, it can be seen that with Schnupp modulation, the optical gain at the dark
fringe operating points is maximised and a suitable error signal for these points is obtained.
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Figure 39: Finesse example: Michelson with Schnupp modulation.

Finesse input file for ‘Michelson with Schnupp modulation’

laser l1 1 0 n1 % laser with P=1W at the default frequency
space s1 1 1 n1 n2 % space of 1m length
mod eom1 10M 0.3 1 pm n2 n3 % phase modulation at 10 MHz
space s2 1 1 n3 n4 % another space of 1m length
bs b1 0.5 0.5 0 0 n4 nN1 nE1 nS1 % 50:50 beam splitter
space LN 100 1 nN1 nN2 % north arm
space LE 110 1 nE1 nE2 % east arm
mirror mN 1 0 22 nN2 dump % north end mirror, lossless
mirror mE 1 0 -22 nE2 dump % east end mirror, lossless
space s3 1 1 nS1 nout

run1: pd1 South 10M -115 nout % demodulated output signal
run2: pd1 South 10M -115 nout % demodulated output signal
run2: diff mN phi % computing the slope of the signal

xaxis mN phi lin 0 300 100 % changing the microscopic position of mN
put mE phi $mx1 % moving mE as -mN to make a differential motion
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7 Beam Shapes: Beyond the Plane Wave Approximation

In previous sections we have introduced a notation for describing the on-axis properties of electric
fields. Specifically, we have described the electric fields along an optical axis as functions of
frequency (or time) and the location z . Models of optical systems may often use this approach for
a basic analysis even though the respective experiments will always include fields with distinct off-
axis beam shapes. A more detailed description of such optical systems needs to take the geometrical
shape of the light field into account. One method of treating the transverse beam geometry is to
describe the spatial properties as a sum of ‘spatial components’ or ‘spatial modes’ so that the
electric field can be written as a sum of the different frequency components and of the different
spatial modes. Of course, the concept of modes is directly related to the use of a sort of oscillator,
in this case the optical cavity. Most of the work presented here is based on the research on laser
resonators reviewed originally by Kogelnik and Li [35]. Siegman has written a very interesting
historic review of the development of Gaussian optics [52, 51] and we use whenever possible the
same notation as used in his textbook ‘Lasers’ [50].

This section introduces the use of Gaussian modes for describing the spatial properties along
the transverse orthogonal x and y directions of an optical beam. We can write

𝐸(𝑡, 𝑥, 𝑦, 𝑧) =
∑︁

𝑗

∑︁

𝑛,𝑚

𝑎𝑗𝑛𝑚 𝑢𝑛𝑚(𝑥, 𝑦, 𝑧) exp (i (𝜔𝑗 𝑡− 𝑘𝑗𝑧)), (107)

with 𝑢𝑛𝑚 as special functions describing the spatial properties of the beam and 𝑎𝑗𝑛𝑚 as complex
amplitude factors (𝜔𝑗 is again the angular frequency and 𝑘𝑗 = 𝜔𝑗/𝑐). For simplicity we restrict
the following description to a single frequency component at one moment in time (𝑡 = 0), so

𝐸(𝑥, 𝑦, 𝑧) = exp (−i 𝑘𝑧)
∑︁

𝑛,𝑚

𝑎𝑛𝑚 𝑢𝑛𝑚(𝑥, 𝑦, 𝑧). (108)

In general, different types of spatial modes 𝑢𝑛𝑚 can be used in this context. Of particular interest
are the Gaussian modes, which will be used throughout this document. Many lasers emit light that
closely resembles a Gaussian beam: the light mainly propagates along one axis, is well collimated
around that axis and the cross section of the intensity perpendicular to the optical axis shows a
Gaussian distribution. The following sections provide the basic mathematical framework for using
Gaussian modes for analysing optical systems.

7.1 The paraxial wave equation

Mathematically, Gaussian modes are solutions to the paraxial wave equation – a specific wave
equation for electromagnetic fields. All electromagnetic waves are solutions to the general wave
equation, which in vacuum can be given as:

Δ�⃗� − 1
𝑐2

¨⃗
𝐸 = 0. (109)

But laser light fields are special types of electromagnetic waves. For example, they are characterised
by low diffraction. Hence, a laser beam will have a characteristic length 𝑤 describing the ‘width’
(the dimension of the field transverse to the main propagation axis), and a characteristic length 𝑙
defining some local length along the propagation over which the beam characteristics do not vary
much. By definition, for what we call a beam 𝑤 is typically small and 𝑙 large in comparison, so
that 𝑤/𝑙 can be considered small. In fact, the paraxial wave equation (and its solutions) can be
derived as the first-order terms of a series expansion of Equation (109) into orders of 𝑤/𝑙 [37].
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A simpler approach to the paraxial-wave equation goes as follows: A particular beam shape
shall be described by a function 𝑢(𝑥, 𝑦, 𝑧) so that we can write the electric field as

𝐸(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧) exp (−i 𝑘𝑧). (110)

Substituting this into the standard wave equation yields a differential equation for 𝑢:
(︀
𝜕2

𝑥 + 𝜕2
𝑦 + 𝜕2

𝑧

)︀
𝑢(𝑥, 𝑦, 𝑧)− 2i 𝑘𝜕𝑧𝑢(𝑥, 𝑦, 𝑧) = 0. (111)

Now we put the fact that 𝑢(𝑥, 𝑦, 𝑧) should be slowly varying with 𝑧 in mathematical terms. The
variation of 𝑢(𝑥, 𝑦, 𝑧) with 𝑧 should be small compared to its variation with 𝑥 or 𝑦. Also the second
partial derivative in 𝑧 should be small. This can be expressed as

⃒⃒
𝜕2

𝑧𝑢(𝑥, 𝑦, 𝑧)
⃒⃒
≪ |2𝑘𝜕𝑧𝑢(𝑥, 𝑦, 𝑧)| ,

⃒⃒
𝜕2

𝑥𝑢(𝑥, 𝑦, 𝑧)
⃒⃒
,
⃒⃒
𝜕2

𝑦𝑢(𝑥, 𝑦, 𝑧)
⃒⃒
. (112)

With this approximation, Equation (111) can be simplified to the paraxial wave equation,
(︀
𝜕2

𝑥 + 𝜕2
𝑦

)︀
𝑢(𝑥, 𝑦, 𝑧)− 2i 𝑘𝜕𝑧𝑢(𝑥, 𝑦, 𝑧) = 0. (113)

Any field 𝑢 that solves this equation represents a paraxial beam shape when used in the form given
in Equation (110).

7.2 Transverse electromagnetic modes

In general, any solution 𝑢(𝑥, 𝑦, 𝑧) of the paraxial wave equation, Equation (113), can be employed
to represent the transverse properties of a scalar electric field representing a beam-like electro-
magnetic wave. Especially useful in this respect are special families or sets of functions that are
solutions of the paraxial wave equation. When such a set of functions is complete and countable,
it’s called a set of transverse electromagnetic modes (TEM). For instance, the set of Hermite–
Gauss modes are exact solutions of the paraxial wave equation. These modes are represented
by an infinite, countable and complete set of functions. The term complete means they can be
understood as a base system of the function space defined by all solutions of the paraxial wave
equation. In other words, we can describe any solution of the paraxial wave equation 𝑢′ by a linear
superposition of Hermite–Gauss modes:

𝑢′(𝑥, 𝑦, 𝑧) =
∑︁

𝑛,𝑚

𝑎𝑗𝑛𝑚 𝑢𝑛𝑚(𝑥, 𝑦, 𝑧), (114)

which in turn allows us to describe any laser beam using a sum of these modes:

𝐸(𝑡, 𝑥, 𝑦, 𝑧) =
∑︁

𝑗

∑︁

𝑛,𝑚

𝑎𝑗𝑛𝑚 𝑢𝑛𝑚(𝑥, 𝑦, 𝑧) exp (i (𝜔𝑗 𝑡− 𝑘𝑗𝑧)). (115)

The Hermite–Gauss modes as given in this document (see Section 7.5) are orthonormal so that
∫︁∫︁

𝑑𝑥𝑑𝑦 𝑢𝑛𝑚𝑢*𝑛′𝑚′ = 𝛿𝑛𝑛′𝛿𝑚𝑚′ =
{︂

1 if 𝑛 = 𝑛′ and 𝑚 = 𝑚′

0 otherwise

}︂
. (116)

This means that, in the function space defined by the paraxial wave equation, the Hermite–Gauss
functions can be understood as a complete set of unit-length basis vectors. This fact can be
utilised for the computation of coupling factors. Furthermore, the power of a beam, as given by
Equation (108), being detected on a single-element photodetector (provided that the area of the
detector is large with respect to the beam) can be computed as

𝐸𝐸* =
∑︁

𝑛,𝑚

𝑎𝑛𝑚𝑎*𝑛𝑚, (117)
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or for a beam with several frequency components (compare with Equation (76)) as

𝐸𝐸* =
∑︁

𝑛,𝑚

∑︁

𝑖

∑︁

𝑗

𝑎𝑖𝑛𝑚𝑎*𝑗𝑛𝑚 with {𝑖, 𝑗 | 𝑖, 𝑗 ∈ {0, . . . , 𝑁} ∧ 𝜔𝑖 = 𝜔𝑗}. (118)

7.3 Properties of Gaussian beams

The basic or ‘lowest-order’ Hermite–Gauss mode is equivalent to what is usually called a Gaussian
beam and is given by

𝑢(𝑥, 𝑦, 𝑧) =

√︂
2
𝜋

1
𝑤(𝑧)

exp (iΨ(𝑧)) exp
(︂
−i 𝑘

𝑥2 + 𝑦2

2𝑅𝐶(𝑧)
− 𝑥2 + 𝑦2

𝑤2(𝑧)

)︂
. (119)

The parameters of this equation are explained in detail below. The shape of a Gaussian beam is
quite simple: the beam has a circular cross section, and the radial intensity profile of a beam with
total power 𝑃 is given by

𝐼(𝑟) =
2𝑃

𝜋𝑤2(𝑧)
exp

(︀
−2𝑟2/𝑤2

)︀
, (120)

with 𝑤 the spot size, defined as the radius at which the intensity is 1/𝑒2 times the maximum
intensity 𝐼(0). This is a Gaussian distribution, see Figure 40, hence the name Gaussian beam.
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Figure 40: One dimensional cross-section of a Gaussian beam. The width of the beam is given by the
radius 𝑤 at which the intensity is 1/𝑒2 of the maximum intensity.

Figure 41 shows a different cross section through a Gaussian beam: it plots the beam size as a
function of the position on the optical axis.

Such a beam profile (for a beam with a given wavelength 𝜆) can be completely determined by
two parameters: the size of the minimum spot size 𝑤0 (called beam waist) and the position 𝑧0 of
the beam waist along the z -axis.

To characterise a Gaussian beam, some useful parameters can be derived from 𝑤0 and 𝑧0. A
Gaussian beam can be divided into two different sections along the z -axis: a near field – a region
around the beam waist, and a far field – far away from the waist. The length of the near-field
region is approximately given by the Rayleigh range 𝑧R. The Rayleigh range and the spot size are
related by

𝑧R =
𝜋𝑤2

0

𝜆
. (121)
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Figure 41: Gaussian beam profile along z: this cross section along the x -z -plane illustrates how the beam
size 𝑤(𝑧) of the Gaussian beam changes along the optical axis. The position of minimum beam size 𝑤0 is
called beam waist. See text for a description of the parameters Θ, 𝑧𝑅 and 𝑅𝑐.

With the Rayleigh range and the location of the beam waist, we can usefully write

𝑤(𝑧) = 𝑤0

√︃
1 +

(︂
𝑧 − 𝑧0

𝑧R

)︂2

. (122)

This equation gives the size of the beam along the z -axis. In the far-field regime (𝑧 ≫ 𝑧R, 𝑧0), it
can be approximated by a linear equation, when

𝑤(𝑧) ≈ 𝑤0
𝑧

𝑧R
=

𝑧𝜆

𝜋𝑤0
. (123)

The angle Θ between the z -axis and 𝑤(𝑧) in the far field is called the diffraction angle6 and is
defined by

Θ = arctan
(︂

𝑤0

𝑧R

)︂
= arctan

(︂
𝜆

𝜋𝑤0

)︂
≈ 𝑤0

𝑧R
. (124)

Another useful parameter is the radius of curvature of the wavefront at a given point z . The
radius of curvature describes the curvature of the ‘phase front’ of the electromagnetic wave – a
surface across the beam with equal phase – intersecting the optical axis at the position z . We
obtain the radius of curvature as a function of z :

𝑅𝐶(𝑧) = 𝑧 − 𝑧0 +
𝑧2
R

𝑧 − 𝑧0
. (125)

6Also known as the far-field angle or the divergence of the beam.
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We also find:
𝑅𝐶 ≈ ∞, 𝑧 − 𝑧0 ≪ 𝑧R (beam waist)

𝑅𝐶 ≈ 𝑧, 𝑧 ≫ 𝑧R, 𝑧0 (far field)

𝑅𝐶 = 2𝑧R, 𝑧 − 𝑧0 = 𝑧R (maximum curvature).

(126)

7.4 Astigmatic beams: the tangential and sagittal plane

If the interferometer is confined to a plane (here the x -z plane), it is convenient to use projections
of the three-dimensional description into two planes [46]: the tangential plane, defined as the x -z
plane and the sagittal plane as given by y and z .

The beam parameters can then be split into two respective parameters: 𝑧0,𝑠, 𝑤0,𝑠 for the sagittal
plane and 𝑧0,𝑡 and 𝑤0,𝑡 for the tangential plane so that the Hermite–Gauss modes can be written
as

𝑢𝑛𝑚(𝑥, 𝑦) = 𝑢𝑛(𝑥, 𝑧0,𝑡, 𝑤0,𝑡) 𝑢𝑚(𝑦, 𝑧0,𝑠, 𝑤0,𝑠). (127)

Beams with different beam waist parameters for the sagittal and tangential plane are astigmatic.
Remember that these Hermite–Gauss modes form a base system. This means one can use

the separation into sagittal and tangential planes even if the actual optical system does not show
this special type of symmetry. This separation is very useful in simplifying the mathematics. In
the following, the term beam parameter generally refers to a simple case where 𝑤0,𝑥 = 𝑤0,𝑦 and
𝑧0,𝑥 = 𝑧0,𝑦 but all the results can also be applied directly to a pair of parameters.

7.5 Higher-order Hermite–Gauss modes

The complete set of Hermite–Gauss modes is given by an infinite discrete set of modes 𝑢nm(𝑥, 𝑦, 𝑧)
with the indices n and m as mode numbers. The sum n+m is called the order of the mode. The
term higher-order modes usually refers to modes with an order 𝑛 + 𝑚 > 0. The general expression
for Hermite–Gauss modes can be given as [35]

𝑢nm(𝑥, 𝑦, 𝑧) = 𝑢n(𝑥, 𝑧)𝑢m(𝑦, 𝑧), (128)

with

𝑢n(𝑥, 𝑧) =
(︀

2
𝜋

)︀1/4
(︁

exp (i (2𝑛+1)Ψ(𝑧))
2𝑛𝑛!𝑤(𝑧)

)︁1/2

×
𝐻𝑛

(︁√
2𝑥

𝑤(𝑧)

)︁
exp

(︁
−i 𝑘𝑥2

2𝑅𝐶(𝑧) − 𝑥2

𝑤2(𝑧)

)︁
,

(129)

and 𝐻𝑛(𝑥) the Hermite polynomials of order n. The first Hermite polynomials, without normali-
sation, can be written

𝐻0(𝑥) = 1 𝐻1(𝑥) = 2𝑥
𝐻2(𝑥) = 4𝑥2 − 2 𝐻3(𝑥) = 8𝑥3 − 12𝑥.

(130)

Further orders can be computed recursively since

𝐻𝑛+1(𝑥) = 2𝑥𝐻𝑛(𝑥)− 2𝑛𝐻𝑛−1(𝑥). (131)

For both transverse directions we can also rewrite the above to

𝑢nm(𝑥, 𝑦, 𝑧) =
(︀
2𝑛+𝑚−1𝑛!𝑚!𝜋

)︀−1/2 1
𝑤(𝑧) exp (i (𝑛 + 𝑚 + 1)Ψ(𝑧)) ×

𝐻𝑛

(︁√
2𝑥

𝑤(𝑧)

)︁
𝐻𝑚

(︁√
2𝑦

𝑤(𝑧)

)︁
exp

(︁
−i 𝑘(𝑥2+𝑦2)

2𝑅𝐶(𝑧) − 𝑥2+𝑦2

𝑤2(𝑧)

)︁
.

(132)

The latter form has the advantage of clearly showing the extra phase shift along the z -axis of
(𝑛 + 𝑚 + 1)Ψ(𝑧), called the Gouy phase; see Section 7.8.
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7.6 The Gaussian beam parameter

For a more compact description of the interaction of Gaussian modes with optical components we
will make use of the Gaussian beam parameter 𝑞 [34]. The beam parameter is a complex quantity
defined as

1
𝑞(𝑧)

=
1

𝑅𝐶(𝑧)
− i

𝜆

𝜋𝑤2(𝑧)
. (133)

It can also be written as

𝑞(𝑧) = i 𝑧R + 𝑧 − 𝑧0 = 𝑞0 + 𝑧 − 𝑧0 and 𝑞0 = i 𝑧R. (134)

Using this parameter, Equation (119) can be rewritten as

𝑢(𝑥, 𝑦, 𝑧) =
1

𝑞(𝑧)
exp

(︂
−i 𝑘

𝑥2 + 𝑦2

2𝑞(𝑧)

)︂
. (135)

Other parameters, like the beam size and radius of curvature, can also be written in terms of the
beam parameter 𝑞:

𝑤2(𝑧) =
𝜆

𝜋

|𝑞|2
ℑ{𝑞} , (136)

𝑤2
0 =

ℑ{𝑞}𝜆

𝜋
, (137)

𝑧R = ℑ{𝑞} (138)

and

𝑅𝐶(𝑧) =
|𝑞|2
ℜ{𝑞} . (139)

The Hermite–Gauss modes can also be written using the Gaussian beam parameter as7

𝑢nm(𝑥, 𝑦, 𝑧) = 𝑢n(𝑥, 𝑧)𝑢m(𝑦, 𝑧) with

𝑢n(𝑥, 𝑧) =
(︀

2
𝜋

)︀1/4
(︁

1
2𝑛𝑛!𝑤0

)︁1/2 (︁
𝑞0

𝑞(𝑧)

)︁1/2 (︁
𝑞0 𝑞*(𝑧)
𝑞*0 𝑞(𝑧)

)︁𝑛/2

𝐻𝑛

(︁√
2𝑥

𝑤(𝑧)

)︁
exp

(︁
−i 𝑘𝑥2

2𝑞(𝑧)

)︁
.

(140)

7Please note that this formula from [50] is very compact. Since the parameter 𝑞 is a complex number, the
expression contains at least two complex square roots. The complex square root requires a different algebra than
the standard square root for real numbers. Especially the third and fourth factors can not be simplified in any

obvious way:
(︁

𝑞0
𝑞(𝑧)

)︁1/2 (︁
𝑞0𝑞*(𝑧)
𝑞*0𝑞(𝑧)

)︁𝑛/2
̸=

(︂
𝑞𝑛+1
0 𝑞*𝑛(𝑧)

𝑞𝑛+1(𝑧)𝑞*0
𝑛

)︂1/2

!
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7.7 Properties of higher-order Hermite–Gauss modes

Some of the properties of Hermite–Gauss modes can easily be described using cross sections of the
field intensity or field amplitude. Figure 42 shows such cross sections, i.e., the intensity in the x -y
plane, for a number of higher-order modes. This shows a x -y symmetry for mode indices 𝑛 and
𝑚. We can also see how the size of the intensity distribution increases with the mode index, while
the peak intensity decreases.

�

�

� � �

�

�

�

Figure 42: This plot shows the intensity distribution of Hermite–Gauss modes 𝑢𝑛𝑚. One can see that
the intensity distribution becomes wider for larger mode indices and the peak intensity decreases. The
mode index defines the number of dark stripes in the respective direction.

Similarly, Figure 44 shows the amplitude and phase distribution of several higher-order Hermite–
Gauss modes. Some further features of Hermite–Gauss modes:

• The size of the intensity profile of any sum of Hermite–Gauss modes depends on z while its
shape remains constant over propagation along the optical axis.

• The phase distribution of Hermite–Gauss modes shows the curvature (or radius of curvature)
of the beam. The curvature depends on z but is equal for all higher-order modes.

Note that these are special features of Gaussian beams and not generally true for arbitrary
beam shapes. Figure 43, for example, shows the amplitude and phase distribution of a triangular
beam at the point where it is (mathematically) created and after a 10 m propagation. Neither the
shape is preserved nor does it show a spherical phase distribution.
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Figure 43: These top plots show a triangular beam shape and phase distribution and the bottom plots
the diffraction pattern of this beam after a propagation of z = 5 m. It can be seen that the shape of the
triangular beam is not conserved and that the phase front is not spherical.
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Figure 44: These plots show the amplitude distribution and wave front (phase distribution) of Hermite–
Gaussian modes 𝑢𝑛𝑚 (labeled as HGnm in the plot). All plots refer to a beam with 𝜆 = 1 µm, w = 1 mm
and distance to waist z = 1 m. The mode index (in one direction) defines the number of zero crossings
(along that axis) in the amplitude distribution. One can also see that the phase distribution is the same
spherical distribution, regardless of the mode indices.
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7.8 Gouy phase

The equation for Hermite–Gauss modes shows an extra longitudinal phase lag. This Gouy phase [8,
26, 25] describes the fact that, compared to a plane wave, the Hermite–Gauss modes have a slightly
slower phase velocity, especially close to the waist. The Gouy phase can be written as

Ψ(𝑧) = arctan
(︂

𝑧 − 𝑧0

𝑧R

)︂
, (141)

or, using the Gaussian beam parameter,

Ψ(𝑧) = arctan
(︂ℜ{𝑞}
ℑ {𝑞}

)︂
. (142)

Compared to a plane wave, the phase lag 𝜙 of a Hermite–Gauss mode is

𝜙 = (𝑛 + 𝑚 + 1)Ψ(𝑧). (143)

With an astigmatic beam, i.e., different beam parameters in the tangential and sagittal planes,
this becomes

𝜙 =
(︂

𝑛 +
1
2

)︂
Ψ𝑡(𝑧) +

(︂
𝑚 +

1
2

)︂
Ψ𝑠(𝑧), (144)

with

Ψ𝑡(𝑧) = arctan
(︂ℜ{𝑞𝑡}
ℑ {𝑞𝑡}

)︂
, (145)

as the Gouy phase in the tangential plane (and Ψ𝑠 is similarly defined in the sagittal plane).

7.9 Laguerre–Gauss modes

Laguerre–Gauss modes are another complete set of functions, which solve the paraxial wave equa-
tion. They are defined in cylindrical coordinates and can have advantages over Hermite–Gauss
modes in the presence of cylindrical symmetry. More recently, Laguerre–Gauss modes are being
investigated in a different context: using a pure higher-order Laguerre–Gauss mode instead of the
fundamental Gaussian beam can significantly reduce the impact of mirror thermal noise on the
sensitivity of gravitational wave detectors [54, 12]. Laguerre–Gauss modes are commonly given
as [50]

𝑢𝑝,𝑙(𝑟, 𝜑, 𝑧) = 1
𝑤(𝑧)

√︁
2𝑝!

𝜋(|𝑙|+𝑝)! exp(i (2𝑝 + |𝑙|+ 1)Ψ(𝑧))

×
(︁ √

2𝑟
𝑤(𝑧)

)︁|𝑙|
𝐿

(𝑙)
𝑝

(︁
2𝑟2

𝑤(𝑧)2

)︁
exp

(︁
−i 𝑘 𝑟2

2𝑞(𝑧) + i 𝑙𝜑
)︁

,
(146)

with 𝑟, 𝜑 and 𝑧 as the cylindrical coordinates around the optical axis. The letter 𝑝 is the radial
mode index, 𝑙 the azimuthal mode index8 and 𝐿

(𝑙)
𝑝 (𝑥) are the associated Laguerre polynomials:

𝐿(𝑙)
𝑝 (𝑥) =

1
𝑝!

𝑝∑︁

𝑗=0

𝑝!
𝑗!

(︂
𝑙 + 𝑝
𝑝− 𝑗

)︂
(−𝑥)𝑗 . (147)

All other parameters (𝑤(𝑧), 𝑞(𝑧), . . .) are defined as above for the Hermite–Gauss modes.
The dependence of the Laguerre modes on 𝜑 as given in Equation (146) results in a spiraling

phase front, while the intensity pattern will always show unbroken concentric rings; see Figure 45.
These modes are also called helical Laguerre–Gauss modes because of the their special phase
structure.

8[50] states that the indices must obey the following relations: 0 ≤ |𝑙| ≤ 𝑝. However, that is not the case.
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Figure 45: These plots show the amplitude distribution and wave front (phase distribution) of helical
Laguerre–Gauss modes 𝑢𝑝𝑙. All plots refer to a beam with 𝜆 = 1 µm, w = 1 mm and distance to waist
z = 1 m.
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The reader might be more familiar with a slightly different type of Laguerre modes (compare
Figure 46 and Figure 47) that features dark radial lines as well as dark concentric rings. Mathe-
matically, these can be described simply by replacing the phase factor exp(i 𝑙𝜑) in Equation (146)
by a sine or cosine function. For example, an alternative set of Laguerre–Gauss modes is given
by [55]

𝑢alt
𝑝,𝑙(𝑟, 𝜑, 𝑧) = 2

𝑤(𝑧)

√︁
𝑝!

(1+𝛿0𝑙𝜋(|𝑙|+𝑝)! exp(i (2𝑝 + |𝑙|+ 1)Ψ(𝑧))

×
(︁ √

2𝑟
𝑤(𝑧)

)︁|𝑙|
𝐿

(𝑙)
𝑝

(︁
2𝑟2

𝑤(𝑧)2

)︁
exp

(︁
−i 𝑘 𝑟2

2𝑞(𝑧)

)︁
cos(𝑙𝜑).

(148)

This type of mode has a spherical phase front, just as the Hermite–Gauss modes. We will refer to
this set as sinusoidal Laguerre–Gauss modes throughout this document.

For the purposes of simulation it can be sometimes useful to decompose Laguerre–Gauss modes
into Hermite–Gauss modes. The mathematical conversion for helical modes is given as [7, 1]

𝑢𝐿𝐺
𝑛,𝑚(𝑥, 𝑦, 𝑧) =

𝑁∑︁

𝑘=0

i 𝑘𝑏(𝑛, 𝑚, 𝑘)𝑢𝐻𝐺
𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧), (149)

with real coefficients

𝑏(𝑛, 𝑚, 𝑘) =

√︂
(𝑁 − 𝑘)!𝑘!
2𝑁𝑛!𝑚!

1
𝑘!

(𝜕𝑡)𝑘[(1− 𝑡)𝑛(1 + 𝑡)𝑚]𝑡=0, (150)

if 𝑁 = 𝑛 + 𝑚. This relates to the common definition of Laguerre modes as 𝑢𝑝𝑙 as follows: 𝑝 =
min(𝑛, 𝑚) and 𝑙 = 𝑛−𝑚. The coefficients 𝑏(𝑛, 𝑚, 𝑘) can be computed numerically by using Jacobi
polynomials. Jacobi polynomials can be written in various forms:

𝑃𝛼,𝛽
𝑛 (𝑥) =

(−1)𝑛

2𝑛𝑛!
(1− 𝑥)−𝛼(1 + 𝑥)−𝛽(𝜕𝑥)𝑛(1− 𝑥)𝛼+𝑛(1 + 𝑥)𝛽+𝑛, (151)

or

𝑃𝛼,𝛽
𝑛 (𝑥) =

1
2𝑛

𝑛∑︁

𝑗=0

(︂
𝑛 + 𝛼

𝑗

)︂ (︂
𝑛 + 𝛽
𝑛− 𝑗

)︂
(𝑥− 1)𝑛−𝑗(𝑥 + 1)𝑗 , (152)

which leads to

𝑏(𝑛, 𝑚, 𝑘) =

√︂
(𝑁 − 𝑘)!𝑘!
2𝑁𝑛!𝑚!

(−2)𝑘𝑃𝑛−𝑘,𝑚−𝑘
𝑘 (0). (153)

7.10 Tracing a Gaussian beam through an optical system

Whenever Gauss modes are used to analyse an optical system, the Gaussian beam parameters (or
equivalent waist sizes and locations) must be defined for each location at which field amplitudes are
to be computed (or at which coupling equations are to be defined). In our experience the quality
of a computation or simulation and the correctness of the results depend critically on the choice
of these beam parameters. One might argue that the choice of a basis should not alter the result.
This is correct, but there is a practical limitation: the number of modes having non-negligible
power might become very large if the beam parameters are not optimised, so that in practice a
good set of beam parameters is usually required.

In general, the Gaussian beam parameter of a mode is changed at every optical surface in a well-
defined way (see Section 7.11). Thus, a possible method of finding reasonable beam parameters for
every location in the interferometer is to first set only some specific beam parameters at selected
locations and then to derive the remaining beam parameters from these initial ones: usually it is
sensible to assume that the beam at the laser source can be properly described by the (hopefully
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Figure 46: Intensity profiles for helical Laguerre–Gauss modes 𝑢𝑝𝑙. The 𝑢00 mode is identical to the
Hermite–Gauss mode of order 0. Higher-order modes show a widening of the intensity and decreasing
peak intensity. The number of concentric dark rings is given by the radial mode index 𝑝.
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Figure 47: Intensity profiles for sinusoidal Laguerre–Gauss modes 𝑢alt
𝑝𝑙 . The 𝑢𝑝0 modes are identical to

the helical modes. However, for azimuthal mode indices 𝑙 > 0 the pattern shows 𝑙 dark radial lines in
addition to the 𝑝 dark concentric rings.
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known) beam parameter of the laser’s output mode. In addition, in most stable cavities the
light fields should be described by using the respective cavity eigenmodes. Then, the remaining
beam parameters can be computed by tracing the beam through the optical system. ‘Trace’ in
this context means that a beam starting at a location with an already-known beam parameter is
propagated mathematically through the optical system. At every optical element along the path
the beam parameter is transformed according to the ABCD matrix of the element (see below).

7.11 ABCD matrices

The transformation of the beam parameter can be performed by the ABCD matrix-formalism [34,
50]. When a beam passes an optical element or freely propagates though space, the initial beam
parameter 𝑞1 is transformed into 𝑞2. This transformation can be described by four real coefficients
as follows:

𝑞2

𝑛2
=

𝐴 𝑞1
𝑛1

+ 𝐵

𝐶 𝑞1
𝑛1

+ 𝐷
, (154)

with the coefficient matrix

𝑀 =
(︂

𝐴 𝐵
𝐶 𝐷

)︂
, (155)

𝑛1 being the index of refraction at the beam segment defined by 𝑞1, and 𝑛2 the index of refraction
at the beam segment described by 𝑞2. ABCD matrices for some common optical components are
given below, for the sagittal and tangential plane.

Transmission through a mirror:

A mirror in this context is a single, partly-reflecting surface with an angle of incidence of 90°. The
transmission is described by

M =
(

1 0
n2−n1

RC
1

)
n1 n2

q1 q2

Figure 48

with 𝑅C being the radius of curvature of the spherical surface. The sign of the radius is defined
such that 𝑅C is negative if the centre of the sphere is located in the direction of propagation. The
curvature shown above (in Figure 48), for example, is described by a positive radius. The matrix
for the transmission in the opposite direction of propagation is identical.
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Reflection at a mirror:

The matrix for reflection is given by

M =
(

1 0
− 2n1

RC
1

)
n1 n2q1

q2

Figure 49

The reflection at the back surface can be described by the same type of matrix by setting 𝐶 =
2𝑛2/𝑅C.

Transmission through a beam splitter:

A beam splitter is understood as a single surface with an arbitrary angle of incidence 𝛼1. The
matrices for transmission and reflection are different for the sagittal and tangential planes (𝑀s and
𝑀t):

Mt =
( cos α2

cos α1
0

∆n
RC

cos α1
cos α2

)

Ms =
(

1 0
∆n
RC

1

)

n1 n2

q1

q2

α2

α1

Figure 50

with 𝛼2 given by Snell’s law:
𝑛1 sin (𝛼1) = 𝑛2 sin (𝛼2), (156)

and Δ𝑛 by

Δ𝑛 =
𝑛2 cos (𝛼2)− 𝑛1 cos (𝛼1)

cos (𝛼1) cos (𝛼2)
. (157)

If the direction of propagation is reversed, the matrix for the sagittal plane is identical and the
matrix for the tangential plane can be obtained by changing the coefficients A and D as follows:

𝐴 −→ 1/𝐴,
𝐷 −→ 1/𝐷.

(158)
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Reflection at a beam splitter:

The reflection at the front surface of a beam splitter is given by:

Mt =
(

1 0
− 2n1

RC cos α1
1

)

Ms =
(

1 0
− 2n1 cos α1

RC
1

)

n1 n2

q1

q2

α1

Figure 51

To describe a reflection at the back surface the matrices have to be changed as follows:

𝑅C −→ −𝑅C,
𝑛1 −→ 𝑛2,
𝛼1 −→ −𝛼2.

(159)

Transmission through a thin lens:

A thin lens transforms the beam parameter as follows:

M =
(

1 0
− 1

f 1

)
q1 q2

Figure 52

where 𝑓 is the focal length. The matrix for the opposite direction of propagation is identical. Here
it is assumed that the thin lens is surrounded by ‘spaces’ with index of refraction 𝑛 = 1.

Transmission through a free space:

As mentioned above, the beam in free space can be described by one base parameter 𝑞0. In some
cases it is convenient to use a matrix similar to that used for the other components to describe the
𝑧-dependency of 𝑞(𝑧) = 𝑞0 + 𝑧. On propagation through a free space of the length 𝐿 and index of
refraction 𝑛, the beam parameter is transformed as follows.

M =
(

1 L
n

0 1

)
nq1 q2

Figure 53

The matrix for the opposite direction of propagation is identical.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-1

http://www.livingreviews.org/lrr-2010-1


Interferometer Techniques for Gravitational-Wave Detection 69

8 Interferometer Matrix with Hermite–Gauss Modes

In the plane-wave analysis Section 1.4, a laser beam is described in general by the sum of various
frequency components of its electric field

𝐸(𝑡, 𝑧) =
∑︁

𝑗

𝑎𝑗 exp
(︁
i (𝜔𝑗 𝑡− 𝑘𝑗𝑧)

)︁
. (160)

Here we include the geometric shape of the beam by describing each frequency component as a
sum of Hermite–Gauss modes:

𝐸(𝑡, 𝑥, 𝑦, 𝑧) =
∑︁

𝑗

∑︁

𝑛,𝑚

𝑎𝑗𝑛𝑚 𝑢𝑛𝑚(𝑥, 𝑦) exp (i (𝜔𝑗 𝑡− 𝑘𝑗𝑧)). (161)

The shape of such a beam does not change along the z -axis (in the paraxial approximation). More
precisely, the spot size and the position of the maximum intensity with respect to the z -axis may
change, but the relative intensity distribution across the beam does not change its shape. Each
part of the sum may be treated as an independent field that can be described using the equation
for plane-waves with only two exceptions:

• the propagation through free space has to include the Gouy phase shift, and

• upon reflection or transmission at a mirror or beam splitter the different Hermite–Gauss
modes may be coupled (see below).

The Gouy phase shift can be included in the simulation in several ways. For example, for reasons
of flexibility the Gouy phase has been included in Finesse as a phase shift of the component space.

8.1 Coupling of Hermite–Gauss modes

Let us consider two different cavities with different sets of eigenmodes. The first set is charac-
terised by the beam parameter 𝑞1 and the second by the parameter 𝑞2. A beam with all power
in the fundamental mode 𝑢00(𝑞1) leaves the first cavity and is injected into the second. Here, two
‘misconfigurations’ are possible:

• if the optical axes of the beam and the second cavity do not overlap perfectly, the setup is
called misaligned,

• if the beam size or shape at the second cavity does not match the beam shape and size of the
(resonant) fundamental eigenmode (𝑞1(𝑧cav) ̸= 𝑞2(𝑧cav)), the beam is then not mode-matched
to the second cavity, i.e., there is a mode mismatch.

The above misconfigurations can be used in the context of simple beam segments. We consider
the case in which the beam parameter for the input light is specified. Ideally, the ABCD matrices
then allow one to trace a beam through the optical system by computing the proper beam parameter
for each beam segment. In this case, the basis system of Hermite–Gauss modes is transformed in
the same way as the beam, so that the modes are not coupled.

For example, an input beam described by the beam parameter 𝑞1 is passed through several
optical components, and at each component the beam parameter is transformed according to the
respective ABCD matrix. Thus, the electric field in each beam segment is described by Hermite–
Gauss modes based on different beam parameters, but the relative power between the Hermite–
Gauss modes with different mode numbers remains constant, i.e., a beam in a 𝑢00 mode is described
as a pure 𝑢00 mode throughout the entire system.
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In practice, it is usually impossible to compute proper beam parameter for each beam segment
as suggested above, especially when the beam passes a certain segment more than once. A simple
case that illustrates this point is reflection at a spherical mirror. Let the input beam be described
by 𝑞1. From Figure 49 we know that the proper beam parameter of the reflected beam is

𝑞2 =
𝑞1

−2𝑞1/𝑅C + 1
, (162)

with 𝑅C being the radius of curvature of the mirror. In general, we get 𝑞1 ̸= 𝑞2 and thus two
different ‘proper’ beam parameters for the same beam segment. Only one special radius of curvature
would result in matched beam parameters (𝑞1 = 𝑞2).

8.2 Coupling coefficients for Hermite–Gauss modes

Hermite–Gauss modes are coupled whenever a beam is not matched to a cavity or to a beam
segment or if the beam and the segment are misaligned. This coupling is sometimes referred to as
‘scattering into higher-order modes’ because in most cases the laser beam is a considered as a pure
TEM00 mode and any mode coupling would transfer power from the fundamental into higher-order
modes. However, in general, every mode with non-zero power will transfer energy into other modes
whenever mismatch or misalignment occur, and this effect also includes the transfer from higher
orders into a low order.

To compute the amount of coupling the beam must be projected into the base system of the
cavity or beam segment it is being injected into. This is always possible, provided that the paraxial
approximation holds, because each set of Hermite–Gauss modes, defined by the beam parameter
at a position z , forms a complete set. Such a change of the basis system results in a different
distribution of light power in the new Hermite–Gauss modes and can be expressed by coupling
coefficients that yield the change in the light amplitude and phase with respect to mode number.

Let us assume that a beam described by the beam parameter 𝑞1 is injected into a segment
described by the parameter 𝑞2. Let the optical axis of the beam be misaligned: the coordinate
system of the beam is given by (𝑥, 𝑦, 𝑧) and the beam travels along the z -axis. The beam segment is
parallel to the z ’-axis and the coordinate system (𝑥′, 𝑦′, 𝑧′) is given by rotating the (𝑥, 𝑦, 𝑧) system
around the y-axis by the misalignment angle 𝛾. The coupling coefficients are defined as

𝑢𝑛𝑚(𝑞1) exp
(︁
i (𝜔𝑡− 𝑘𝑧)

)︁
=

∑︁

𝑛′,𝑚′

𝑘𝑛,𝑚,𝑛′,𝑚′𝑢𝑛′𝑚′(𝑞2) exp
(︁
i (𝜔𝑡− 𝑘𝑧′)

)︁
, (163)

where 𝑢𝑛𝑚(𝑞1) are the Hermite–Gauss modes used to describe the injected beam and 𝑢𝑛′𝑚′(𝑞2)
are the ‘new’ modes that are used to describe the light in the beam segment. Note that including
the plane wave phase propagation within the definition of coupling coefficients is very important
because it results in coupling coefficients that are independent of the position on the optical axis
for which the coupling coefficients are computed.

Using the fact that the Hermite–Gauss modes 𝑢𝑛𝑚 are orthonormal, we can compute the
coupling coefficients by the convolution [6]

𝑘𝑛,𝑚,𝑛′,𝑚′ = exp
(︁
i 2𝑘𝑧′ sin2

(︁𝛾

2

)︁)︁ ∫︁∫︁
𝑑𝑥′𝑑𝑦′ 𝑢𝑛′𝑚′ exp (i 𝑘𝑥′ sin 𝛾) 𝑢*𝑛𝑚. (164)

Since the Hermite–Gauss modes can be separated with respect to x and y , the coupling coefficients
can also be split into 𝑘𝑛𝑚𝑛′𝑚′ = 𝑘𝑛𝑛′𝑘𝑚𝑚′ . These equations are very useful in the paraxial
approximation as the coupling coefficients decrease with large mode numbers. In order to be
described as paraxial, the angle 𝛾 must not be larger than the diffraction angle. In addition, to
obtain correct results with a finite number of modes the beam parameters 𝑞1 and 𝑞2 must not differ
too much.
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The convolution given in Equation (164) can be computed directly using numerical integration.
However, this is computationally very expensive. The following is based on the work of Bayer-
Helms [6]. Another very good description of coupling coefficients and their derivation can be found
in the work of Vinet [55]. In [6] the above projection integral is partly solved and the coupling
coefficients are given by simple sums as functions of 𝛾 and the mode mismatch parameter 𝐾, which
are defined by

𝐾 =
1
2
(𝐾0 + i 𝐾2), (165)

where 𝐾0 = (𝑧𝑅 − 𝑧′𝑅)/𝑧′𝑅 and 𝐾2 = ((𝑧 − 𝑧0) − (𝑧′ − 𝑧′0))/𝑧′𝑅. This can also be written using
𝑞 = i 𝑧R + 𝑧 − 𝑧0, as

𝐾 =
i (𝑞 − 𝑞′)*

2ℑ{𝑞′} . (166)

The coupling coefficients for misalignment and mismatch (but no lateral displacement) can then
be written as

𝑘𝑛𝑛′ = (−1)𝑛′𝐸(𝑥)(𝑛!𝑛′!)1/2(1 + 𝐾0)𝑛/2+1/4(1 + 𝐾*)−(𝑛+𝑛′+1)/2 {𝑆𝑔 − 𝑆𝑢} , (167)

where

𝑆𝑔 =
[𝑛/2]∑︀
𝜇=0

[𝑛′/2]∑︀
𝜇′=0

(−1)𝜇�̄�𝑛−2𝜇𝑋𝑛′−2𝜇′

(𝑛−2𝜇)!(𝑛′−2𝜇′)!

min(𝜇,𝜇′)∑︀
𝜎=0

(−1)𝜎𝐹 𝜇−𝜎𝐹 𝜇′−𝜎

𝑎 (2𝜎)!(𝜇− 𝜎)!(𝜇′ − 𝜎)!,

𝑆𝑢 =
[(𝑛−1)/2]∑︀

𝜇=0

[(𝑛′−1)/2]∑︀
𝜇′=0

(−1)𝜇�̄�𝑛−2𝜇−1𝑋𝑛′−2𝜇′−1

(𝑛−2𝜇−1)!(𝑛′−2𝜇′−1)!

min(𝜇,𝜇′)∑︀
𝜎=0

(−1)𝜎𝐹 𝜇−𝜎𝐹 𝜇′−𝜎

(2𝜎+1)!(𝜇−𝜎)!(𝜇′−𝜎)! .

(168)

The corresponding formula for 𝑘𝑚𝑚′ can be obtained by replacing the following parameters: 𝑛 →
𝑚, 𝑛′ → 𝑚′, 𝑋, �̄� → 0 and 𝐸(𝑥) → 1 (see below). The notation [𝑛/2] means

[︁𝑚

2

]︁
=

{︂
𝑚/2 if 𝑚 is even,
(𝑚− 1)/2 if 𝑚 is odd. (169)

The other abbreviations used in the above definition are

�̄� = (i 𝑧′R − 𝑧′) sin (𝛾)/(
√

1 + 𝐾*𝑤0),

𝑋 = (i 𝑧R + 𝑧′) sin (𝛾)/(
√

1 + 𝐾*𝑤0),

𝐹 = 𝐾/(2(1 + 𝐾0)),

𝐹 = 𝐾*/2,

𝐸(𝑥) = exp
(︁
−𝑋�̄�

2

)︁
.

(170)

In general, the Gaussian beam parameter might be different for the sagittal and tangential
planes and a misalignment can be given for both possible axes (around the y-axis and around the
x -axis), in this case the coupling coefficients are given by

𝑘𝑛𝑚𝑚′𝑛′ = 𝑘𝑛𝑛′𝑘𝑚𝑚′ , (171)

where 𝑘𝑛𝑛′ is given above with
𝑞 → 𝑞𝑡

and
𝑤0 → 𝑤𝑡,0, etc.

(172)
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and 𝛾 → 𝛾𝑦 is a rotation about the y-axis. The 𝑘𝑚𝑚′ can be obtained with the same formula, with
the following substitutions:

𝑛 → 𝑚,
𝑛′ → 𝑚′,
𝑞 → 𝑞𝑠,
thus
𝑤0 → 𝑤𝑠,0, etc.

(173)

and 𝛾 → 𝛾𝑥 is a rotation about the x -axis.
At each component a matrix of coupling coefficients has to be computed for transmission and

reflection; see Figure 54.
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Figure 54: Coupling coefficients for Hermite–Gauss modes: for each optical element and each direction
of propagation complex coefficients 𝑘 for transmission and reflection have to be computed. In this figure
𝑘1, 𝑘2, 𝑘3, 𝑘4 each represent a matrix of coefficients 𝑘𝑛𝑚𝑛′𝑚′ describing the coupling of 𝑢𝑛,𝑚 into 𝑢𝑛′,𝑚′ .
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8.3 Finesse examples

8.3.1 Beam parameter
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Figure 55: Finesse example: Beam parameter

This example illustrates a possible use of the beam parameter detector ‘bp’: the beam radius of the
laser beam is plotted as a function of distance to the laser. For this simulation, the interferometer
matrix does not need to be solved. ‘bp’ merely returns the results from the beam tracing algorithm
of Finesse.

Finesse input file for ‘Beam parameter’

laser i1 1 0 n1 % laser with P=1W
gauss g1 i1 n1 1m -2 % a dummy beam parameter
maxtem 0 % we need only the u 00 mode
s s1 1 n1 n2 % a space of 1m length
bp width x w n2 % detecting the beam width (horizontal)
xaxis s1 L lin 0.1 8 200 % tuning the length of s1

8.3.2 Mode cleaner

This example uses the ‘tem’ command to create a laser beam which is a sum of equal parts in 𝑢00

and 𝑢10 modes. This beam is passed through a triangular cavity, which acts as a mode cleaner.
Being resonant for the 𝑢00, the cavity transmits this mode and reflects the 𝑢10 mode as can be
seen in the resulting plots.

Finesse input file for ‘Mode cleaner’

laser i1 1 0 n1 % laser with P=1W
maxtem 1 % need Hermite-Gauss modes up to n+m=1
tem i1 0 0 1 0 % laser beam is a mix of u 00 and u 10
tem i1 1 0 1 0
s s1 1 n1 n2 % a space of 1m length
% triangular mode cleaner cavity
bs bs1 .9 .1 0 0 n2 nrefl n3 n4 % input mirror
s sc1 2 n3 n5 % distance between b1 and bs2
bs bs2 .9 .1 0 0 ntrans dump n5 n6 % output mirror
s sc2 49 n4 n7 % distance between b1 and bs3
s sc3 49 n6 n8 % distance between b2 and bs3
bs bs3 1 0 0 0 n7 n8 dump dump % end mirror
attr bs3 Rc 150 % Rc=150m for bs3
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Figure 56: Finesse example: Mode cleaner

cav cav1 bs1 n3 bs1 n4 % computing cavity parameters
run1: beam ccd ntrans % beam shape in transmission
run2: beam ccd nrefl % beam shape in reflection
xaxis ccd x lin -3 3 200 % tuning x,y axes of beam detector
x2axis ccd y lin -3 3 200
yaxis abs % plotting the absolute intensity

8.3.3 LG33 mode

Figure 57: Finesse example: LG33 mode. The ring structure in the phase plot is due to phase jumps,
which could be removed by applying a phase ‘unwrap’.

Finesse uses the Hermite–Gauss modes as a base system for describing the spatial properties
of laser beams. However, Laguerre–Gauss modes can be created using the coefficients given in
Equation (149). This example demonstrates this and the use of a ‘beam’ detector to plot amplitude
and phase of a beam cross section.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2010-1

http://www.livingreviews.org/lrr-2010-1


Interferometer Techniques for Gravitational-Wave Detection 75

Finesse input file for ‘LG33 mode’

laser i1 1 0 n1 % laser with P=1W
gauss g1 i1 n1 1m 0 % a dummy beam parameter
maxtem 9 % we need modes up to n+m=9
tem i1 0 0 0 0 % HG coefficients to create LG33 mode
tem i1 9 0 0.164063 0
tem i1 8 1 0.164063 -90
tem i1 7 2 0 0
tem i1 6 3 0.125 -90
tem i1 5 4 0.046875 180
tem i1 4 5 0.046875 -90
tem i1 3 6 0.125 180
tem i1 2 7 0 0
tem i1 1 8 0.164063 180
tem i1 0 9 0.164063 90
s s1 1 n1 n2 % space of 1m lentgh

beam ccd 0 n2 % beam detector for carrier light
xaxis ccd x lin -5 5 200 % tune x position of beam detector
x2axis ccd y lin -5 5 200 % tune y position of beam detector
yaxis abs:deg % plot amplitude and phase
multi
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A The Interferometer Simulation Finesse

Throughout this document we have provided a number of text files that can be used as input files
for the interferometer simulation Finesse [19, 22]. Finesse is a numerical simulation written in
the C language; it is available free of charge for Linux, Windows and Macintosh computers and
can be obtained online: http://www.gwoptics.org/finesse/.

Finesse provides a fast and versatile tool that has proven to be very useful during the design
and commissioning of interferometric gravitational-wave detectors. However, the program has been
designed to allow the analysis of arbitrary, user-defined optical setups. In addition, it is easy to
install and use. Therefore Finesse is well suited to study basic optical properties, such as, the
power enhancement in a resonating cavity and modulation-demodulation methods.

We encourage the reader to obtain Finesse and to learn its basic usage by running the included
example files (and by making use of its extensive manual). The Finesse input files provided in this
article are in most cases very simple and illustrate single concepts in interferometry. We believe
that even a Finesse novice should be able to use them as starting points to play and explore
freely, for example by changing parameters, or by adding further optical components. This type
of ‘numerical experimentation’ can provide insights similar to real experiments, supplementing the
understanding through a mathematical analysis with experience and intuitions.
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