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Abstract

The article reviews the statistical theory of signal detection in application to analysis of
deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for
the theory of signal detection and parameter estimation are presented. Several tools needed
for both theoretical evaluation of the optimal data analysis methods and for their practical
implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix,
false alarm and detection probabilities, F-statistic, template placement, and fitting factor.
These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms
to efficiently implement the optimal data analysis techniques are discussed. Formulas are given
for a general gravitational-wave signal that includes as special cases most of the deterministic
signals of interest.
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1 Introduction

In this review we consider the problem of detection of deterministic gravitational-wave signals
in the noise of a detector and the question of estimation of their parameters. The examples
of deterministic signals are gravitational waves from rotating neutron stars, coalescing compact
binaries, and supernova explosions. The case of detection of stochastic gravitational-wave signals
in the noise of a detector is reviewed in [5]. A very powerful method to detect a signal in noise that
is optimal by several criteria consists of correlating the data with the template that is matched to
the expected signal. This matched-filtering technique is a special case of the mazimum likelihood
detection method. In this review we describe the theoretical foundation of the method and we
show how it can be applied to the case of a very general deterministic gravitational-wave signal
buried in a stationary and Gaussian noise.

Early gravitational-wave data analysis was concerned with the detection of bursts originating
from supernova explosions [99]. It involved analysis of the coincidences among the detectors [52].
With the growing interest in laser interferometric gravitational-wave detectors that are broadband
it was realized that sources other than supernovae can also be detectable [92] and that they
can provide a wealth of astrophysical information [85, 59]. For example the analytic form of
the gravitational-wave signal from a binary system is known in terms of a few parameters to a
good approximation. Consequently one can detect such a signal by correlating the data with
the waveform of the signal and maximizing the correlation with respect to the parameters of the
waveform. Using this method one can pick up a weak signal from the noise by building a large
signal-to-noise ratio over a wide bandwidth of the detector [92]. This observation has led to a
rapid development of the theory of gravitational-wave data analysis. It became clear that the
detectability of sources is determined by optimal signal-to-noise ratio, Equation (24), which is
the power spectrum of the signal divided by the power spectrum of the noise integrated over the
bandwidth of the detector.

An important landmark was a workshop entitled Gravitational Wave Data Analysis held in
Dyffryn House and Gardens, St. Nicholas near Cardiff, in July 1987 [86]. The meeting acquainted
physicists interested in analyzing gravitational-wave data with the basics of the statistical theory
of signal detection and its application to detection of gravitational-wave sources. As a result of
subsequent studies the Fisher information matrix was introduced to the theory of the analysis of
gravitational-wave data [40, 58]. The diagonal elements of the Fisher matrix give lower bounds
on the variances of the estimators of the parameters of the signal and can be used to assess the
quality of astrophysical information that can be obtained from detections of gravitational-wave
signals [32, 57, 18]. It was also realized that application of matched-filtering to some sources,
notably to continuous sources originating from neutron stars, will require extraordinary large
computing resources. This gave a further stimulus to the development of optimal and efficient
algorithms and data analysis methods [87].

A very important development was the work by Cutler et al. [31] where it was realized that for
the case of coalescing binaries matched filtering was sensitive to very small post-Newtonian effects
of the waveform. Thus these effects can be detected. This leads to a much better verification of
Einstein’s theory of relativity and provides a wealth of astrophysical information that would make a
laser interferometric gravitational-wave detector a true astronomical observatory complementary to
those utilizing the electromagnetic spectrum. As further developments of the theory methods were
introduced to calculate the quality of suboptimal filters [9], to calculate the number of templates to
do a search using matched-filtering [74], to determine the accuracy of templates required [24], and
to calculate the false alarm probability and thresholds [50]. An important point is the reduction
of the number of parameters that one needs to search for in order to detect a signal. Namely
estimators of a certain type of parameters, called extrinsic parameters, can be found in a closed
analytic form and consequently eliminated from the search. Thus a computationally intensive
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search needs only be performed over a reduced set of intrinsic parameters [58, 50, 60].

Techniques reviewed in this paper have been used in the data analysis of prototypes of gravitational-
wave detectors [73, 71, 6] and in the data analysis of presently working gravitational-wave detec-
tors [90, 15, 3, 2, 1].

We use units such that the velocity of light ¢ = 1.

Living Reviews in Relativity
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2 Response of a Detector to a Gravitational Wave

There are two main methods to detect gravitational waves which have been implemented in the
currently working instruments. One method is to measure changes induced by gravitational waves
on the distances between freely moving test masses using coherent trains of electromagnetic waves.
The other method is to measure the deformation of large masses at their resonance frequencies
induced by gravitational waves. The first idea is realized in laser interferometric detectors and
Doppler tracking experiments [82, 65] whereas the second idea is implemented in resonant mass
detectors [13].

Let us consider the response to a plane gravitational wave of a freely falling configuration of
masses. It is enough to consider a configuration of three masses shown in Figure 1 to obtain the
response for all currently working and planned detectors. Two masses model a Doppler tracking
experiment where one mass is the Earth and the other one is a distant spacecraft. Three masses
model a ground-based laser interferometer where the masses are suspended from seismically isolated
supports or a space-borne interferometer where the three masses are shielded in satellites driven
by drag-free control systems.

o

Figure 1: Schematic configuration of three freely falling masses as a detector of gravitational waves.
The masses are labelled 1, 2, and 3, their positions with respect to the origin O of the coordinate
system are given by vectors X, (a = 1,2,3). The Fuclidean separations between the masses are
denoted by L., where the index a corresponds to the opposite mass. The unit vectors n, point
between pairs of masses, with the orientation indicated.

In Figure 1 we have introduced the following notation: O denotes the origin of the TT coordinate
system related to the passing gravitational wave, x, (@ = 1,2,3) are 3-vectors joining O and the
masses, n, and L, (a = 1,2, 3) are, respectively, 3-vectors of unit Euclidean length along the lines
joining the masses and the coordinate Euclidean distances between the masses, where a is the label
of the opposite mass. Let us also denote by k the unit 3-vector directed from the origin O to the
source of the gravitational wave. We first assume that the spatial coordinates of the masses do not
change in time.

Let vy be the frequency of the coherent beam used in the detector (laser light in the case of
an interferometer and radio waves in the case of Doppler tracking). Let y21 be the relative change
Av/yy of frequency induced by a transverse, traceless, plane gravitational wave on the coherent
beam travelling from the mass 2 to the mass 1, and let y3; be the relative change of frequency
induced on the beam travelling from the mass 3 to the mass 1. The frequency shifts y»; and ys3;
are given by [37, 10, 83]

y21(t) = (1 —-k- n3) (‘Ilg(t +k- X2 — Lg) — \I’g(t + k- Xl)), (1)

Living Reviews in Relativity
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y31(t) = (1 + k- 1’12) (‘I/Q(t + k- X3 — LQ) — \I/z(t + k- Xl)), (2)
where (here T denotes matrix transposition)

T

n, -H(t) - n

U, (t) := M, a=1,2,3. (3)
2(1 - (k- n,)?)

In Equation (3) H is the three-dimensional matrix of the spatial metric perturbation produced by

the wave in the TT coordinate system. If one chooses spatial TT coordinates such that the wave

is travelling in the +z direction, then the matrix H is given by

hi(t) hx(t) 0
Ht) = | hult) —hi(t) 0 |, (4)
0 0 0

where hy and hy are the two polarizations of the wave.

Real gravitational-wave detectors do not stay at rest with respect to the TT coordinate system
related to the passing gravitational wave, because they also move in the gravitational field of the
solar system bodies, as in the case of the LISA spacecraft, or are fixed to the surface of Earth, as
in the case of Earth-based laser interferometers or resonant bar detectors. Let us choose the origin
O of the TT coordinate system to coincide with the solar system barycenter (SSB). The motion of
the detector with respect to the SSB will modulate the gravitational-wave signal registered by the
detector. One can show that as far as the velocities of the masses (modelling the detector’s parts)
with respect to the SSB are nonrelativistic, which is the case for all existing or planned detectors,
the Equations (1) and (2) can still be used, provided the 3-vectors x, and n, (a = 1,2,3) will be
interpreted as made of the time-dependent components describing the motion of the masses with
respect to the SSB.

It is often convenient to introduce the proper reference frame of the detector with coordinates
(r%). Because the motion of this frame with respect to the SSB is nonrelativistic, we can assume
that the transformation between the SSB-related coordinates (z®) and the detector’s coordinates
(x%) has the form

Y

=t, @ =ah)+0 1), (5)
where the functions x%(t) describe the motion of the origin O of the proper reference frame with

respect to the SSB, and the functions Oij(t) account for the different orientations of the spatial
axes of the two reference frames. One can compute some of the quantities entering Equations (1)
and (2) in the detector’s coordinates rather than in the TT coordinates. For instance, the matrix
H of the wave-induced spatial metric perturbation in the detector’s coordinates is related to the
matrix H of the spatial metric perturbation produced by the wave in the TT coordinate system
through equation

H(t) = (O(t)™")T - H(t) - O(t) ", (6)

where the matrix O has elements O' ;. If the transformation matrix O is orthogonal, then O~ = oT,
and Equation (6) simplifies to
H(t) = O(t) - H(t) - O(t)". (7)

See [23, 42, 50, 60] for more details.

For a standard Michelson, equal-arm interferometric configuration Av is given in terms of one-
way frequency changes y21 and ys3; (see Equations (1) and (2) with Ly = L3 = L, where we assume
that the mass 1 corresponds to the corner station of the interferometer) by the expression [93]

Av

o (y31(t) +y13(t — L)) — (y21(t) + y1a(t — L)) (8)
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In the long-wavelength approximation Equation (8) reduces to
Av dH(t) dH(t)

The difference of the phase fluctuations A¢(t) measured, say, by a photo detector, is related to the
corresponding relative frequency fluctuations Av by

Av 1 dAG()

vo 2wy dt (10)
By virtue of Equation (9) the phase change can be written as
A¢(t) = 4L h(t), (11)
where the function h,
h(t) :== % (n3 -H(t) n3 —nj -H(t)  ny), (12)

is the response of the interferometer to a gravitational wave in the long-wavelength approximation.
In this approximation the response of a laser interferometer is usually derived from the equation
of geodesic deviation (then the response is defined as the difference between the relative wave-
induced changes of the proper lengths of the two arms, i.e., h(t) := AL(t)/L). There are important
cases where the long-wavelength approximation is not valid. These include the space-borne LISA
detector for gravitational-wave frequencies larger than a few mHz and satellite Doppler tracking
measurements.

In the case of a bar detector the long-wavelength approximation is very accurate and the
detector’s response is defined as hp(t) := AL(t)/L, where AL is the wave-induced change of the
proper length L of the bar. The response hg is given by

hg(t) =nT - H(t) - n, (13)

where n is the unit vector along the symmetry axis of the bar.
In most cases of interest the response of the detector to a gravitational wave can be written as

a linear combination of four constant amplitudes a(*),
4
ht;a®™,e4) =3 " aMrP(t¢4) = a” - h(t e, (14)
k=1

where the four functions A*) depend on a set of parameters £* but are independent of the pa-
rameters a(*). The parameters a(¥) are called eztrinsic parameters whereas the parameters £# are
called intrinsic. In the long-wavelength approximation the functions h(*) are given by

R (t; €1) = u(t; €) cos (t; €M),
WP (€)= v(t; ) cos o(t: €1, 15)
WO (€)= u(t; €) sin §(t: €"),
WO (€)= v(t; € sin g (t: €4),
where ¢(t; £#) is the phase modulation of the signal and u(t; E#), v(¢t; &) are slowly varying ampli-

tude modulations.

Equation (14) is a model of the response of the space-based detector LISA to gravitational
waves from a binary system [60], whereas Equation (15) is a model of the response of a ground-
based detector to a continuous source of gravitational waves like a rotating neutron star [50]. The
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gravitational-wave signal from spinning neutron stars may consist of several components of the
form (14). For short observation times over which the amplitude modulation functions are nearly
constant, the response can be approximated by

h(t; Ao, ¢o, &) = Ao g(t; €) cos (o(t;€") — ¢o) (16)

where Ag and ¢g are constant amplitude and initial phase, respectively, and g(t;£*) is a slowly
varying function of time. Equation (16) is a good model for a response of a detector to the
gravitational wave from a coalescing binary system [92, 22]. We would like to stress that not all
deterministic gravitational-wave signals may be cast into the general form (14).

Living Reviews in Relativity
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3 Statistical Theory of Signal Detection

The gravitational-wave signal will be buried in the noise of the detector and the data from the
detector will be a random process. Consequently the problem of extracting the signal from the
noise is a statistical one. The basic idea behind the signal detection is that the presence of the
signal changes the statistical characteristics of the data x, in particular its probability distribution.
When the signal is absent the data have probability density function (pdf) po(x), and when the
signal is present the pdf is p1(z).

A full exposition of the statistical theory of signal detection that is outlined here can be found
in the monographs [102, 56, 98, 96, 66, 44, 77]. A general introduction to stochastic processes is
given in [100]. Advanced treatment of the subject can be found in [64, 101].

The problem of detecting the signal in noise can be posed as a statistical hypothesis testing
problem. The null hypothesis Hy is that the signal is absent from the data and the alternative
hypothesis H; is that the signal is present. A hypothesis test (or decision rule) ¢ is a partition of
the observation set into two sets, R and its complement R’. If data are in R we accept the null
hypothesis, otherwise we reject it. There are two kinds of errors that we can make. A type I error is
choosing hypothesis H; when Hj is true and a type II error is choosing Hy when H; is true. In signal
detection theory the probability of a type I error is called the false alarm probability, whereas the
probability of a type II error is called the false dismissal probability. 1— (false dismissal probability)
is the probability of detection of the signal. In hypothesis testing the probability of a type I error
is called the significance of the test, whereas 1 — (probability of type II error) is called the power
of the test.

The problem is to find a test that is in some way optimal. There are several approaches to
find such a test. The subject is covered in detail in many books on statistics, for example see
references [54, 41, 62].

3.1 Bayesian approach

In the Bayesian approach we assign costs to our decisions; in particular we introduce positive
numbers C;, i,7 = 0,1, where Cj; is the cost incurred by choosing hypothesis H; when hypothesis
Hj is true. We define the conditional risk R of a decision rule ¢ for each hypothesis as

Rj(é) = C()ij(R) + Clej(R/), 7=0,1, (17)

where P; is the probability distribution of the data when hypothesis H; is true. Next we assign
probabilities g and m; = 1 — 7y to the occurrences of hypothesis Hy and Hy, respectively. These
probabilities are called a priori probabilities or priors. We define the Bayes risk as the overall
average cost incurred by the decision rule §:

7“(5) = WoRo((S) + m Ry (6) (18)

Finally we define the Bayes rule as the rule that minimizes the Bayes risk r(4).

3.2 Minimax approach

Very often in practice we do not have the control over or access to the mechanism generating the
state of nature and we are not able to assign priors to various hypotheses. In such a case one
criterion is to seek a decision rule that minimizes, over all §, the maximum of the conditional risks,
Ry(9) and R;1(d). A decision rule that fulfills that criterion is called minimaz rule.

Living Reviews in Relativity
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3.3 Neyman—Pearson approach

In many problems of practical interest the imposition of a specific cost structure on the decisions
made is not possible or desirable. The Neyman—Pearson approach involves a trade-off between the
two types of errors that one can make in choosing a particular hypothesis. The Neyman—Pearson
design criterion is to maximize the power of the test (probability of detection) subject to a chosen
significance of the test (false alarm probability).

3.4 Likelihood ratio test

It is remarkable that all three very different approaches — Bayesian, minimax, and Neyman—Pearson
— lead to the same test called the likelihood ratio test [34]. The likelihood ratio A is the ratio of
the pdf when the signal is present to the pdf when it is absent:

_ m@)
M) = 22 (19)

We accept the hypothesis H; if A > k, where k is the threshold that is calculated from the costs
Cjj, priors m;, or the significance of the test depending on what approach is being used.

3.4.1 Gaussian case — The matched filter

Let h be the gravitational-wave signal and let n be the detector noise. For convenience we assume
that the signal h is a continuous function of time ¢ and that the noise n is a continuous random
process. Results for the discrete time data that we have in practice can then be obtained by a
suitable sampling of the continuous-in-time expressions. Assuming that the noise is additive the
data x can be written as

x(t) = n(t) + h(t). (20)

In addition, if the noise is a zero-mean, stationary, and Gaussian random process, the log likelihood
function is given by

log A = (al#) — 5 (An) (21)

where the scalar product (-|-) is defined by
= 4R 7~(f)gj*(f) df. 22
(zly) /0 S(f) f (22)

In Equation (22) R denotes the real part of a complex expression, the tilde denotes the Fourier
transform, the asterisk is complex conjugation, and .S is the one-sided spectral density of the noise
in the detector, which is defined through equation

B[(1)A* (7)) = 5007 — )39 (23

where E denotes the expectation value.

From the expression (21) we see immediately that the likelihood ratio test consists of correlating
the data = with the signal h that is present in the noise and comparing the correlation to a threshold.
Such a correlation is called the matched filter. The matched filter is a linear operation on the data.

An important quantity is the optimal signal-to-noise ratio p defined by

p® = (h|h) = 4§R/OOO “;((f;)' df. (24)
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We see in the following that p determines the probability of detection of the signal. The higher
the signal-to-noise ratio the higher the probability of detection.

An interesting property of the matched filter is that it maximizes the signal-to-noise ratio over
all linear filters [34]. This property is independent of the probability distribution of the noise.

Living Reviews in Relativity
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4 Parameter Estimation

Very often we know the waveform of the signal that we are searching for in the data in terms of
a finite number of unknown parameters. We would like to find optimal procedures of estimating
these parameters. An estimator of a parameter 6 is a function é(x) that assigns to each data the
“best” guess of the true value of §. Note that because é(x) depends on the random data it is a
random variable. Ideally we would like our estimator to be (i) unbiased, i.e., its expectation value
to be equal to the true value of the parameter, and (ii) of minimum variance. Such estimators are
rare and in general difficult to find. As in the signal detection there are several approaches to the
parameter estimation problem. The subject is exposed in detail in reference [63]. See also [103]
for a concise account.

4.1 Bayesian estimation

We assign a cost function C(6',0) of estimating the true value of § as §’. We then associate with
an estimator 6 a conditional risk or cost averaged over all realizations of data x for each value of
the parameter 6:

Ro(0) = Bo[C/(0,0)] = /X € (8(2).0) pla. ) de, (25)

where X is the set of observations and p(x,8) is the joint probability distribution of data x and
parameter 6. We further assume that there is a certain a priori probability distribution 7(6) of
the parameter §. We then define the Bayes estimator as the estimator that minimizes the average
risk defined as

(0) = E[Ry(0)] = /X /@ C(é(m),@) p(z, 0)7(0) db dx, (26)

where E is the expectation value with respect to an a priori distribution 7, and © is the set of
observations of the parameter 6. It is not difficult to show that for a commonly used cost function

c,0) = (6 —0)% (27)

the Bayesian estimator is the conditional mean of the parameter 6 given data x, i.e.,
b(a) = Elola] = [ op(o]) do. (28)
e

where p(0|z) is the conditional probability density of parameter 6 given the data x.

4.2 Maximum a posteriori probability estimation

Suppose that in a given estimation problem we are not able to assign a particular cost function
C(¢',0). Then a natural choice is a uniform cost function equal to 0 over a certain interval Iy of
the parameter 6. From Bayes theorem [20] we have

p(z,0)m(6)
p(x)
where p(z) is the probability distribution of data . Then from Equation (26) one can deduce that
for each data x the Bayes estimate is any value of # that maximizes the conditional probability
p(0)z). The density p(f|z) is also called the a posteriori probability density of parameter § and
the estimator that maximizes p(6|z) is called the mazimum a posteriori (MAP) estimator. It is
denoted by éM Ap- We find that the MAP estimators are solutions of the following equation

dlogp(x,0)  Ologm(0)

00 a0

p(0]z) = , (29)

(30)
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which is called the MAP equation.

4.3 Maximum likelihood estimation

Often we do not know the a priori probability density of a given parameter and we simply assign
to it a uniform probability. In such a case maximization of the a posteriori probability is equiv-
alent to maximization of the probability density p(x,6) treated as a function of §. We call the
function 1(0, z) := p(x, 0) the likelihood function and the value of the parameter 6 that maximizes
1(0, z) the mazimum likelihood (ML) estimator. Instead of the function ! we can use the function
A(0,x) = 1(0,z)/p(x) (assuming that p(xz) > 0). A is then equivalent to the likelihood ratio [see
Equation (19)] when the parameters of the signal are known. Then the ML estimators are obtained
by solving the equation
0log A(6,x)
50 =0, (31)

which is called the ML equation.

4.3.1 Gaussian case

For the general gravitational-wave signal defined in Equation (14) the log likelihood function is
given by

1
3 a’ M-a, (32)

where the components of the column vector N and the matrix M are given by

logAh =aT N -

NG — (|p®), MEBO .= (R ®) R D), (33)

with (t) = n(t)+h(t), and where n(t) is a zero-mean Gaussian random process. The ML equations
for the extrinsic parameters a can be solved explicitly and their ML estimators & are given by

a=M"1.N. (34)

Substituting & into log A we obtain a function
LT p-1
F= 5 N*-M7"-N, (35)

that we call the F-statistic. The F-statistic depends (nonlinearly) only on the intrinsic parameters
e,

Thus the procedure to detect the signal and estimate its parameters consists of two parts. The
first part is to find the (local) maxima of the F-statistic in the intrinsic parameter space. The ML
estimators of the intrinsic parameters are those for which the F-statistic attains a maximum. The
second part is to calculate the estimators of the extrinsic parameters from the analytic formula (34),
where the matrix M and the correlations N are calculated for the intrinsic parameters equal to their
ML estimators obtained from the first part of the analysis. We call this procedure the mazimum
likelihood detection. See Section 4.8 for a discussion of the algorithms to find the (local) maxima
of the F-statistic.

4.4 Fisher information

It is important to know how good our estimators are. We would like our estimator to have as small
variance as possible. There is a useful lower bound on variances of the parameter estimators called
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Crameér—Rao bound. Let us first introduce the Fisher information matriz I' with the components
defined by

(36)

2
Iy =B [8logA 810gA] __E [8 logA] '

00;  06; 00; 00
The Cramer—Rao bound states that for unbiased estimators the covariance matrix of the estimators
C >T~!. (The inequality A > B for matrices means that the matrix A— B is nonnegative definite.)
A very important property of the ML estimators is that asymptotically (i.e., for a signal-to-
noise ratio tending to infinity) they are (i) unbiased, and (ii) they have a Gaussian distribution
with covariance matrix equal to the inverse of the Fisher information matrix.

4.4.1 Gaussian case

In the case of Gaussian noise the components of the Fisher matrix are given by
Oh | Oh
Iyj=—= . 37

0;
For the case of the general gravitational-wave signal defined in Equation (14) the set of the signal
parameters @ splits naturally into extrinsic and intrinsic parameters: 68 = (a(k),gﬂ). Then the
Fisher matrix can be written in terms of block matrices for these two sets of parameters as

M F-a
F:<aT-FTaT-S-a>’ (38)

where the top left block corresponds to the extrinsic parameters, the bottom right block corre-
sponds to the intrinsic parameters, the superscript T denotes here transposition over the extrinsic
parameter indices, and the dot stands for the matrix multiplication with respect to these parame-
ters. Matrix M is given by Equation (33), and the matrices F and S are defined as follows:

oh® OhE) | op M
>, S®O) .= ( ag)‘ (39)

oEm T
The covariance matrix C, which approximates the expected covariances of the ML parameter
estimators, is defined as I'~!. Using the standard formula for the inverse of a block matrix [67] we
have

PO = (h(k)

M~ 14+M 1. (F.a)-T"'.(F-a)T-M!  —M~!'.(F-a).-T!
C= _ _ : (40)
It (F-a)f -M! r-t
where
=a’ (S—-F'"-M'.F)-a (41)

We call T#¥ (the Schur complement of M) the projected Fisher matriz (onto the space of intrin-
sic parameters). Because the projected Fisher matrix is the inverse of the intrinsic-parameter
submatrix of the covariance matrix C, it expresses the information available about the intrinsic
parameters that takes into account the correlations with the extrinsic parameters. Note that T*
is still a function of the putative extrinsic parameters.
We next define the normalized projected Fisher matriz
- T aT (S—FT-M"'.F)-a

Fn:—p = Y , (42)

where p = va® - M- a is the signal-to-noise ratio. From the Rayleigh principle [67] follows that
the minimum value of the component T'#” is given by the smallest eigenvalue (taken with respect
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to the extrinsic parameters) of the matrix ((S—F"-M~".F). M’l)w. Similarly, the maximum
value of the component I'¥ is given by the largest eigenvalue of that matrix. Because the trace of
a matrix is equal to the sum of its eigenvalues, the matrix

f::%trKS—FT~M*1¢ﬂ~M*ﬂ, (43)
where the trace is taken over the extrinsic-parameter indices, expresses the information available
about the intrinsic parameters, averaged over the possible values of the extrinsic parameters. Note
that the factor 1/4 is specific to the case of four extrinsic parameters. We call T#" the reduced
Fisher matriz. This matrix is a function of the intrinsic parameters alone. We see that the reduced
Fisher matrix plays a key role in the signal processing theory that we review here. It is used in the
calculation of the threshold for statistically significant detection and in the formula for the number
of templates needed to do a given search.
For the case of the signal

h(t; Ao, ¢o,&") = Ao g(t; £") cos (p(t;€") — ¢o) (44)

the normalized projected Fisher matrix I',, is independent of the extrinsic parameters Ag and ¢y,
and it is equal to the reduced matrix I [74]. The components of T" are given by

- ]_"g’ol—lrgol’

o = Th — , (45)

Fgﬁo(ﬁo

where T/ is the Fisher matrix for the signal g(t; £#) cos (¢(t; £*) — ¢o).

Fisher matrix has been extensively used to assess the accuracy of estimation of astrophysically
interesting parameters of gravitational-wave signals. First calculations of Fisher matrix concerned
gravitational-wave signals from inspiralling binaries in quadrupole approximation [40, 58] and from
quasi-normal modes of Kerr black hole [38]. Cutler and Flanagan [32] initiated the study of
the implications of higher PN order phasing formula as applied to the parameter estimation of
inspiralling binaries. They used the 1.5PN phasing formula to investigate the problem of parameter
estimation, both for spinning and non-spinning binaries, and examined the effect of the spin-orbit
coupling on the estimation of parameters. The effect of the 2PN phasing formula was analyzed
independently by Poisson and Will [76] and Krélak, Kokkotas and Schéfer [57]. In both of these
works the focus was to understand the new spin-spin coupling term appearing at the 2PN order
when the spins were aligned perpendicular to the orbital plane. Compared to [57], [76] also included
a priori information about the magnitude of the spin parameters, which then leads to a reduction
in the rms errors in the estimation of mass parameters. The case of 3.5PN phasing formula was
studied in detail by Arun et al. [12]. Inclusion of 3.5PN effects leads to an improved estimate of
the binary parameters. Improvements are relatively smaller for lighter binaries.

Various authors have investigated the accuracy with which LISA detector can determine binary
parameters including spin effects. Cutler [30] determined LISA’s angular resolution and evaluated
the errors of the binary masses and distance considering spins aligned or anti-aligned with the
orbital angular momentum. Hughes [46] investigated the accuracy with which the redshift can be
estimated (if the cosmological parameters are derived independently), and considered the black-
hole ring-down phase in addition to the inspiralling signal. Seto [89] included the effect of finite
armlength (going beyond the long wavelength approximation) and found that the accuracy of the
distance determination and angular resolution improve. This happens because the response of the
instrument when the armlength is finite depends strongly on the location of the source, which
is tightly correlated with the distance and the direction of the orbital angular momentum. Vec-
chio [97] provided the first estimate of parameters for precessing binaries when only one of the two
supermassive black holes carries spin. He showed that modulational effects decorrelate the binary
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parameters to some extent, resulting in a better estimation of the parameters compared to the case
when spins are aligned or antialigned with orbital angular momentum. Hughes and Menou [47]
studied a class of binaries, which they called “golden binaries,” for which the inspiral and ring-down
phases could be observed with good enough precision to carry out valuable tests of strong-field
gravity. Berti, Buonanno and Will [21] have shown that inclusion of non-precessing spin-orbit and
spin-spin terms in the gravitational-wave phasing generally reduces the accuracy with which the
parameters of the binary can be estimated. This is not surprising, since the parameters are highly
correlated, and adding parameters effectively dilutes the available information.

4.5 False alarm and detection probabilities — Gaussian case
4.5.1 Statistical properties of the F-statistic

We first present the false alarm and detection pdfs when the intrinsic parameters of the signal are
known. In this case the statistic F is a quadratic form of the random variables that are correlations
of the data. As we assume that the noise in the data is Gaussian and the correlations are linear
functions of the data, F is a quadratic form of the Gaussian random variables. Consequently F-
statistic has a distribution related to the x? distribution. One can show (see Section III B in [49])
that for the signal given by Equation (14), 2F has a x? distribution with 4 degrees of freedom when
the signal is absent and noncentral x? distribution with 4 degrees of freedom and non-centrality
parameter equal to signal-to-noise ratio (h|h) when the signal is present.

As a result the pdfs py and p; of F when the intrinsic parameters are known and when respec-
tively the signal is absent and present are given by

n/2—1
P(F) = s (=), (16)

2 F)(n/2=1)/2 1
pi(p, F) = (p)n/21[n/21 (PV 27:) exp (‘f— 2P2) ) (47)

where n is the number of degrees of freedom of x? distributions and I, /2—1 1s the modified Bessel
function of the first kind and order n/2 — 1. The false alarm probability Pr is the probability that
F exceeds a certain threshold Fy when there is no signal. In our case we have

00 n/2-1

Pe(Fo) == /fopo(]:) dF = exp(—Fo) kZ:O R (48)

The probability of detection Pp is the probability that F exceeds the threshold Fy when the
signal-to-noise ratio is equal to p:

oo

Polp, 7o) = /f p1(p, F) dF. (49)

The integral in the above formula can be expressed in terms of the generalized Marcum Q-
function [94, 44], Q(«, ) = Pp(a, 3%/2). We see that when the noise in the detector is Gaussian
and the intrinsic parameters are known, the probability of detection of the signal depends on a
single quantity: the optimal signal-to-noise ratio p.

4.5.2 False alarm probability

Next we return to the case when the intrinsic parameters & are not known. Then the statistic
F (&) given by Equation (35) is a certain generalized multiparameter random process called the
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random field (see Adler’s monograph [4] for a comprehensive discussion of random fields). If the
vector £ has one component the random field is simply a random process. For random fields we
can define the autocovariance function C just in the same way as we define such a function for a
random process:

C(&,€') = Eo[F(€)F(&)] — EolF(&)Eo[F (&), (50)

where & and &' are two values of the intrinsic parameter set, and Eq is the expectation value when
the signal is absent. One can show that for the signal (14) the autocovariance function C is given
by

C&€)=-tr(Q"-M1-Q- M), (51)

where

QU = () (t: ) " (té)) MO0~ (A ® (1) O (1:€)) - (52)

We have C(&,€) = 1.

One can estimate the false alarm probability in the following way [50]. The autocovariance
function C tends to zero as the displacement A¢ = &' —¢& increases (it is maximal for A = 0). Thus
we can divide the parameter space into elementary cells such that in each cell the autocovariance
function C is appreciably different from zero. The realizations of the random field within a cell will
be correlated (dependent), whereas realizations of the random field within each cell and outside the
cell are almost uncorrelated (independent). Thus the number of cells covering the parameter space
gives an estimate of the number of independent realizations of the random field. The correlation
hypersurface is a closed surface defined by the requirement that at the boundary of the hypersurface
the correlation C equals half of its maximum value. The elementary cell is defined by the equation

ce.e) = (53)

for £ at cell center and &’ on cell boundary. To estimate the number of cells we perform the Taylor
expansion of the autocorrelation function up to the second-order terms:

aCc(&.€) 19°C(&.¢)
C N4 222252 s A& AES. 54
(€’€ ) + ag: g/ g 2 ag/ a&-/ g/zg § f] ( )
As C attains its maximum value when £ — £ = 0, we have
!
Let us introduce the symmetric matrix
19°C(¢,¢)
2 96} 0¢; ¢
Then the approximate equation for the elementary cell is given by
1
Gij AGAG = 5. (57)

It is interesting to find a relation between the matrix G and the Fisher matrix. One can show
(see [60], Appendix B) that the matrix G is precisely equal to the reduced Fisher matrix I given
by Equation (43).

Let K be the number of the intrinsic parameters. If the components of the matrix G are
constant (independent of the values of the parameters of the signal) the above equation is an
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equation for a hyperellipse. The K-dimensional Euclidean volume Vg of the elementary cell
defined by Equation (57) equals

(m/2)%/
(K/2+1)VdetG’
where I' denotes the Gamma function. We estimate the number N, of elementary cells by dividing

the total Euclidean volume V' of the K-dimensional parameter space by the volume Ve of the
elementary cell, i.e. we have

Veell =

(58)

V
Ne = —. 59
¢ Veen (59)
The components of the matrix G are constant for the signal h(¢; Ao, ¢o, E*) = Ag cos (¢ (t; E#) — ¢o)
when the phase ¢(t;£*) is a linear function of the intrinsic parameters £-.
To estimate the number of cells in the case when the components of the matrix G are not
constant, i.e. when they depend on the values of the parameters, we write Equation (59) as

L(K/2+1) /\/d TG av. (60)

¢~ (1/2) K/2

This procedure can be thought of as interpreting the matrix G as the metric on the parameter
space. This interpretation appeared for the first time in the context of gravitational-wave data
analysis in the work by Owen [74], where an analogous integral formula was proposed for the
number of templates needed to perform a search for gravitational-wave signals from coalescing
binaries.

The concept of number of cells was introduced in [50] and it is a generalization of the idea of
an effective number of samples introduced in [36] for the case of a coalescing binary signal.

We approximate the probability distribution of F(£) in each cell by the probability po(F)
when the parameters are known [in our case by probability given by Equation (46)]. The values
of the statistic F in each cell can be considered as independent random variables. The probability
that F does not exceed the threshold Fy in a given cell is 1 — Pp(Fy), where Pr(Fp) is given by
Equation (48). Consequently the probability that F does not exceed the threshold Fy in all the
N, cells is [1 — Pp(Fo)]Ne. The probability PZ that F exceeds Fy in one or more cell is thus given
by

Pi(Fo) =1 —[1 = Pa(Fo)] . (61)

This by definition is the false alarm probability when the phase parameters are unknown. The
number of false alarms N is given by

Ne = NPy (Fo). (62)

A different approach to the calculation of the number of false alarms using the Euler characteristic
of level crossings of a random field is described in [49].

It was shown (see [29]) that for any finite Fy and N., Equation (61) provides an upper bound
for the false alarm probability. Also in [29] a tighter upper bound for the false alarm probability
was derived by modifying a formula obtained by Mohanty [68]. The formula amounts essentially
to introducing a suitable coefficient multiplying the number of cells V..

4.5.3 Detection probability

When the signal is present a precise calculation of the pdf of F is very difficult because the presence
of the signal makes the data random process x(t) non-stationary. As a first approximation we
can estimate the probability of detection of the signal when the parameters are unknown by the
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probability of detection when the parameters of the signal are known [given by Equation (49)].
This approximation assumes that when the signal is present the true values of the phase parameters
fall within the cell where F has a maximum. This approximation will be the better the higher the
signal-to-noise ratio p is.

4.6 Number of templates

To search for gravitational-wave signals we evaluate the F-statistic on a grid in parameter space.
The grid has to be sufficiently fine such that the loss of signals is minimized. In order to estimate
the number of points of the grid, or in other words the number of templates that we need to search
for a signal, the natural quantity to study is the expectation value of the F-statistic when the
signal is present. We have

1(4+aT-QT~M'_1-Q~a). (63)

BlF] = 5

The components of the matrix Q are given in Equation (52). Let us rewrite the expectation
value (63) in the following form,

1 aT. QT - M-1.Q-a
E[F] = (4+p° 64
=5 (14 P ) (69
where p is the signal-to-noise ratio. Let us also define the normalized correlation function
QT M/~ 1 Q a
Cn = 65
aT-M-a (65)

From the Rayleigh principle [67] it follows that the minimum of the normalized correlation function
is equal to the smallest eigenvalue of the normalized matrix QT-M’~1.Q-M~!, whereas the maximum
is given by its largest eigenvalue. We define the reduced correlation function as

C(, ) = itr (QT M1.Q- M/—l) ] (66)

As the trace of a matrix equals the sum of its eigenvalues, the reduced correlation function C is
equal to the average of the eigenvalues of the normalized correlation function C,. In this sense
we can think of the reduced correlation function as an “average” of the normalized correlation
function. The advantage of the reduced correlation function is that it depends only on the intrinsic
parameters &, and thus it is suitable for studying the number of grid points on which the F-statistic
needs to be evaluated. We also note that the normalized correlation function C precisely coincides
with the autocovariance function C of the F-statistic given by Equation (51).

Like in the calculation of the number of cells in order to estimate the number of templates we
perform a Taylor expansion of C up to second order terms around the true values of the parameters,
and we obtain an equation analogous to Equation (57),

Gij A& AL =1 - C, (67)

where G is given by Equation (56). By arguments identical to those in deriving the formula for
the number of cells we arrive at the following formula for the number of templates:

1 T(K/2+1)
No= G /\/d tGv. (65)

When Cy = 1/2 the above formula coincides with the formula for the number N, of cells, Equa-
tion (60). Here we would like to place the templates sufficiently closely so that the loss of signals
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is minimized. Thus 1 — Cj needs to be chosen sufficiently small. The formula (68) for the number
of templates assumes that the templates are placed in the centers of hyperspheres and that the
hyperspheres fill the parameter space without holes. In order to have a tiling of the parameter
space without holes we can place the templates in the centers of hypercubes which are inscribed
in the hyperspheres. Then the formula for the number of templates reads

1 KK/2 NrrYe
N.= g 2K/ det G V. (69)

For the case of the signal given by Equation (16) our formula for number of templates is
equivalent to the original formula derived by Owen [74]. Owen [74] has also introduced a geometric
approach to the problem of template placement involving the identification of the Fisher matrix
with a metric on the parameter space. An early study of the template placement for the case of
coalescing binaries can be found in [84, 35, 19]. Applications of the geometric approach of Owen
to the case of spinning neutron stars and supernova bursts are given in [24, 11].

The problem of how to cover the parameter space with the smallest possible number of tem-
plates, such that no point in the parameter space lies further away from a grid point than a certain
distance, is known in mathematical literature as the covering problem [28]. The maximum distance
of any point to the next grid point is called the covering radius R. An important class of coverings
are lattice coverings. We define a lattice in K-dimensional Euclidean space RX to be the set of
points including 0 such that if v and v are lattice points, then also u + v and u — v are lattice
points. The basic building block of a lattice is called the fundamental region. A lattice covering is
a covering of RX by spheres of covering radius R, where the centers of the spheres form a lattice.
The most important quantity of a covering is its thickness © defined as

volume of one K-dimensional sphere
O := —. (70)
volume of the fundamental region

In the case of a two-dimensional Euclidean space the best covering is the hexagonal covering and
its thickness ~ 1.21. For dimensions higher than 2 the best covering is not known. We know
however the best lattice covering for dimensions K < 23. These are so-called Aj lattices which
have a thickness © A, equal to
K/2
K(K+2
@A’;(—VK\/K+1< ( ))

12(K +1) (1)

where Vi is the volume of the K-dimensional sphere of unit radius.

For the case of spinning neutron stars a 3-dimensional grid was constructed consisting of prisms
with hexagonal bases [16]. This grid has a thickness around 1.84 which is much better than the
cubic grid which has thickness of approximately 2.72. It is worse than the best lattice covering
which has the thickness around 1.46. The advantage of an A7}, lattice over the hypercubic lattice
grows exponentially with the number of dimensions.

4.7 Suboptimal filtering

To extract signals from the noise one very often uses filters that are not optimal. We may have
to choose an approximate, suboptimal filter because we do not know the exact form of the signal
(this is almost always the case in practice) or in order to reduce the computational cost and to
simplify the analysis. The most natural and simplest way to proceed is to use as our statistic the
F-statistic where the filters h) (¢; ¢) are the approximate ones instead of the optimal ones matched
to the signal. In general the functions A} (¢; ¢) will be different from the functions hy(t; €) used in
optimal filtering, and also the set of parameters ¢ will be different from the set of parameters &
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in optimal filters. We call this procedure the suboptimal filtering and we denote the suboptimal
statistic by Fs.

We need a measure of how well a given suboptimal filter performs. To find such a measure we
calculate the expectation value of the suboptimal statistic. We get

1
E[F] =5 (4+a"-Qf M- Qs-a), (72)
where
MBI = (B0 (1 ¢) O (8 C))
(73)
QY i= (W (1:8) [V (1:0))
Let us rewrite the expectation value E[F;] in the following form,
71 2aT.(QST.l\/l/S*l.Qs.a
E[]:S]2<4+p M a , (74)

where p is the optimal signal-to-noise ratio. The expectation value E[F;] reaches its maximum
equal to 2 + p?/2 when the filter is perfectly matched to the signal. A natural measure of the
performance of a suboptimal filter is the quantity FF defined by

T.QT. M. Q.-
FF := max \/a QST M. Qs 2. (75)
(&C) al -M-a

We call the quantity FF the generalized fitting factor.
In the case of a signal given by

s(t; Ao, &) = Ao h(t; €), (76)
the generalized fitting factor defined above reduces to the fitting factor introduced by Aposto-

latos [9]:
(h(t; )Mt C))
&V OIE )W QI (E Q)
The fitting factor is the ratio of the maximal signal-to-noise ratio that can be achieved with
suboptimal filtering to the signal-to-noise ratio obtained when we use a perfectly matched, optimal
filter. We note that for the signal given by Equation (76), FF is independent of the value of the
amplitude Ag. For the general signal with 4 constant amplitudes it follows from the Rayleigh
principle that the fitting factor is the maximum of the largest eigenvalue of the matrix QT - M/~1
Q- M~! over the intrinsic parameters of the signal.
For the case of a signal of the form

s(t; Ao, @0, &) = Ao cos (¢(t;§) + ¢o), (78)

where ¢ is a constant phase, the maximum over ¢, in Equation (77) can be obtained analytically.
Moreover, assuming that over the bandwidth of the signal the spectral density of the noise is
constant and that over the observation time cos (4(t;€)) oscillates rapidly, the fitting factor is
approximately given by

FF =m

(77)

01 1/2

FF 2 ( | s ot - 0:)) dt) " ( | sintotese) - 66:) dt) ()
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In designing suboptimal filters one faces the issue of how small a fitting factor one can accept.
A popular rule of thumb is accepting FF = 0.97. Assuming that the amplitude of the signal and
consequently the signal-to-noise ratio decreases inversely proportional to the distance from the
source this corresponds to 10% loss of the signals that would be detected by a matched filter.

Proposals for good suboptimal (search) templates for the case of coalescing binaries are given
in [26, 91] and for the case spinning neutron stars in [49, 16].

4.8 Algorithms to calculate the F-statistic
4.8.1 The two-step procedure

In order to detect signals we search for threshold crossings of the F-statistic over the intrinsic
parameter space. Once we have a threshold crossing we need to find the precise location of
the maximum of F in order to estimate accurately the parameters of the signal. A satisfactory
procedure is the two-step procedure. The first step is a coarse search where we evaluate F on a
coarse grid in parameter space and locate threshold crossings. The second step, called fine search,
is a refinement around the region of parameter space where the maximum identified by the coarse
search is located.

There are two methods to perform the fine search. One is to refine the grid around the threshold
crossing found by the coarse search [70, 68, 91, 88], and the other is to use an optimization routine
to find the maximum of F [49, 60]. As initial value to the optimization routine we input the values
of the parameters found by the coarse search. There are many maximization algorithms available.
One useful method is the Nelder-Mead algorithm [61] which does not require computation of the
derivatives of the function being maximized.

4.8.2 Evaluation of the F-statistic

Usually the grid in parameter space is very large and it is important to calculate the optimum
statistic as efficiently as possible. In special cases the F-statistic given by Equation (35) can be
further simplified. For example, in the case of coalescing binaries F can be expressed in terms of
convolutions that depend on the difference between the time-of-arrival (TOA) of the signal and
the TOA parameter of the filter. Such convolutions can be efficiently computed using Fast Fourier
Transforms (FFTs). For continuous sources, like gravitational waves from rotating neutron stars
observed by ground-based detectors [49] or gravitational waves form stellar mass binaries observed
by space-borne detectors [60], the detection statistic F involves integrals of the general form

/T[;v(t) m(t;w, E") exp (iw¢mod(t; g")) exp(iwt) dt, (80)
0

where f" are the intrinsic parameters excluding the frequency parameter w, m is the amplitude
modulation function, and w¢noq the phase modulation function. The amplitude modulation func-
tion is slowly varying comparing to the exponential terms in the integral (80). We see that the
integral (80) can be interpreted as a Fourier transform (and computed efficiently with an FFT),
if pmoq = 0 and if m does not depend on the frequency w. In the long-wavelength approximation
the amplitude function m does not depend on the frequency. In this case Equation (80) can be
converted to a Fourier transform by introducing a new time variable ¢y, [87],

ty = t+¢m0d(t;£ﬂ)' (81)

Thus in order to compute the integral (80), for each set of the intrinsic parameters é" we multiply
the data by the amplitude modulation function m, resample according to Equation (81), and
perform the FFT. In the case of LISA detector data when the amplitude modulation m depends
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on frequency we can divide the data into several band-passed data sets, choosing the bandwidth
for each set sufficiently small so that the change of m exp(iw@mod) is small over the band. In the
integral (80) we can then use as the value of the frequency in the amplitude and phase modulation
function the maximum frequency of the band of the signal (see [60] for details).

4.8.3 Comparison with the Cramér—Rao bound

In order to test the performance of the maximization method of the F statistic it is useful to
perform Monte Carlo simulations of the parameter estimation and compare the variances of the
estimators with the variances calculated from the Fisher matrix. Such simulations were performed
for various gravitational-wave signals [55, 19, 49]. In these simulations we observe that above
a certain signal-to-noise ratio, that we call the threshold signal-to-noise ratio, the results of the
Monte Carlo simulations agree very well with the calculations of the rms errors from the inverse of
the Fisher matrix. However, below the threshold signal-to-noise ratio they differ by a large factor.
This threshold effect is well-known in signal processing [96]. There exist more refined theoretical
bounds on the rms errors that explain this effect, and they were also studied in the context
of the gravitational-wave signal from a coalescing binary [72]. Use of the Fisher matrix in the
assessment of the parameter estimators has been critically examined in [95] where a criterion has
been established for signal-to-noise ratio above which the inverse of the Fisher matrix approximates
well covariance of the estimators of the parameters.

Here we present a simple model that explains the deviations from the covariance matrix and
reproduces well the results of the Monte Carlo simulations. The model makes use of the concept
of the elementary cell of the parameter space that we introduced in Section 4.5.2. The calculation
given below is a generalization of the calculation of the rms error for the case of a monochromatic
signal given by Rife and Boorstyn [81].

When the values of parameters of the template that correspond to the maximum of the func-
tional F fall within the cell in the parameter space where the signal is present, the rms error is
satisfactorily approximated by the inverse of the Fisher matrix. However, sometimes as a result
of noise the global maximum is in the cell where there is no signal. We then say that an outlier
has occurred. In the simplest case we can assume that the probability density of the values of the
outliers is uniform over the search interval of a parameter, and then the rms error is given by

2 AQ

out — ﬁ’ (82)

o
where A is the length of the search interval for a given parameter. The probability that an outlier
occurs will be the higher the lower the signal-to-noise ratio is. Let g be the probability that an
outlier occurs. Then the total variance o2 of the estimator of a parameter is the weighted sum of

the two errors
2

0 = 00uq + oer(1 - q), (83)
where ocp is the rms errors calculated from the covariance matrix for a given parameter. One can
show [49] that the probability ¢ can be approximated by the following formula:

0 F Ne—1
q=1—/0p1(,07f) (/O po(y)dy> dF, (84)

where py and p; are the probability density functions of false alarm and detection given by Equa-
tions (46) and (47), respectively, and where N, is the number of cells in the parameter space.
Equation (84) is in good but not perfect agreement with the rms errors obtained from the Monte
Carlo simulations (see [49]). There are clearly also other reasons for deviations from the Cramer—
Rao bound. One important effect (see [72]) is that the functional F has many local subsidiary
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maxima close to the global one. Thus for a low signal-to-noise the noise may promote the subsidiary
maximum to a global one.

4.9 Upper limits

Detection of a signal is signified by a large value of the F-statistic that is unlikely to arise from the
noise-only distribution. If instead the value of F is consistent with pure noise with high probability
we can place an upper limit on the strength of the signal. One way of doing this is to take the
loudest event obtained in the search and solve the equation

Pp(puL, FL) =08 (85)

for signal-to-noise ratio pyr,, where Pp is the detection probability given by Equation (49), Fy, is
the value of the F-statistic corresponding to the loudest event, and (3 is a chosen confidence [15, 1].
Then pyr, is the desired upper limit with confidence (.

When gravitational-wave data do not conform to a Gaussian probability density assumed in
Equation (49), a more accurate upper limit can be obtained by injecting the signals into the
detector’s data and thereby estimating the probability of detection Pp [3].

4.10 Network of detectors

Several gravitational-wave detectors can observe gravitational waves from the same source. For
example a network of bar detectors can observe a gravitational-wave burst from the same supernova
explosion, or a network of laser interferometers can detect the inspiral of the same compact binary
system. The space-borne LISA detector can be considered as a network of three detectors that
can make three independent measurements of the same gravitational-wave signal. Simultaneous
observations are also possible among different types of detectors, for example a search for supernova
bursts can be performed simultaneously by bar and laser detectors [17].

We consider the general case of a network of detectors. Let h be the signal vector and let n be
the noise vector of the network of detectors, i.e., the vector component Ay is the response of the
gravitational-wave signal in the kth detector with noise ny. Let us also assume that each nj has
zero mean. Assuming that the noise in all detectors is additive the data vector x can be written
as

x(t) =n(t) + h(t). (86)

In addition if the noise is a stationary, Gaussian, and continuous random process the log likelihood
function is given by

log A = (x|h) — %(h|h) (87)

In Equation (87) the scalar product (-|-) is defined by
(xly) =% [ %1815y (38)
0

where S is the one-sided cross spectral density matrix of the noises of the detector network which
is defined by (here E denotes the expectation value)

E [a(H)RT(7)] = 36(7 — )87, (59)

The analysis is greatly simplified if the cross spectrum matrix S is diagonal. This means that the
noises in various detectors are uncorrelated. This is the case when the detectors of the network are
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in widely separated locations like for example the two LIGO detectors. However, this assumption
is not always satisfied. An important case is the LISA detector where the noises of the three
independent responses are correlated. Nevertheless for the case of LISA one can find a set of three
combinations for which the noises are uncorrelated [78, 80]. When the cross spectrum matrix is
diagonal the optimum F-statistic is just the sum of F-statistics in each detector.

A derivation of the likelihood function for an arbitrary network of detectors can be found in [39],
and applications of optimal filtering for the special cases of observations of coalescing binaries by
networks of ground-based detectors are given in [48, 32, 75], for the case of stellar mass binaries
observed by LISA space-borne detector in [60], and for the case of spinning neutron stars observed
by ground-based interferometers in [33]. The reduced Fisher matrix (Equation 43) for the case of a
network of interferometers observing spinning neutron stars has been derived and studied in [79].

A least square fit solution for the estimation of the sky location of a source of gravitational
waves by a network of detectors for the case of a broad band burst was obtained in [43].

There is also another important method for analyzing the data from a network of detectors —
the search for coincidences of events among detectors. This analysis is particularly important when
we search for supernova bursts the waveforms of which are not very well known. Such signals can
be easily mimicked by non-Gaussian behavior of the detector noise. The idea is to filter the data
optimally in each of the detector and obtain candidate events. Then one compares parameters
of candidate events, like for example times of arrivals of the bursts, among the detectors in the
network. This method is widely used in the search for supernovae by networks of bar detectors [14].

4.11 Non-stationary, non-Gaussian, and non-linear data

Equations (34) and (35) provide maximum likelihood estimators only when the noise in which the
signal is buried is Gaussian. There are general theorems in statistics indicating that the Gaussian
noise is ubiquitous. One is the central limit theorem which states that the mean of any set of
variates with any distribution having a finite mean and variance tends to the normal distribution.
The other comes from the information theory and says that the probability distribution of a random
variable with a given mean and variance which has the maximum entropy (minimum information)
is the Gaussian distribution. Nevertheless, analysis of the data from gravitational-wave detectors
shows that the noise in the detector may be non-Gaussian (see, e.g., Figure 6 in [13]). The noise
in the detector may also be a non-linear and a non-stationary random process.

The maximum likelihood method does not require that the noise in the detector is Gaussian
or stationary. However, in order to derive the optimum statistic and calculate the Fisher matrix
we need to know the statistical properties of the data. The probability distribution of the data
may be complicated, and the derivation of the optimum statistic, the calculation of the Fisher
matrix components and the false alarm probabilities may be impractical. There is however one
important result that we have already mentioned. The matched-filter which is optimal for the
Gaussian case is also a linear filter that gives maximum signal-to-noise ratio no matter what is the
distribution of the data. Monte Carlo simulations performed by Finn [39] for the case of a network of
detectors indicate that the performance of matched-filtering (i.e., the maximum likelihood method
for Gaussian noise) is satisfactory for the case of non-Gaussian and stationary noise.

Allen et al. [7, 8] derived an optimal (in the Neyman—Pearson sense, for weak signals) signal
processing strategy when the detector noise is non-Gaussian and exhibits tail terms. This strategy is
robust, meaning that it is close to optimal for Gaussian noise but far less sensitive than conventional
methods to the excess large events that form the tail of the distribution. This strategy is based on
an locally optimal test ([53]) that amounts to comparing a first non-zero derivative A,,,

_d"A(xle)

Ay,
de™

|6:0 (90)
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of the likelihood ratio with respect to the amplitude of the signal with a threshold instead of the
likelihood ratio itself.

In the remaining part of this section we review some statistical tests and methods to detect
non-Gaussianity, non-stationarity, and non-linearity in the data. A classical test for a sequence
of data to be Gaussian is the Kolmogorov—Smirnov test [27]. It calculates the maximum distance
between the cumulative distribution of the data and that of a normal distribution, and assesses
the significance of the distance. A similar test is the Lillifors test [27], but it adjusts for the fact
that the parameters of the normal distribution are estimated from the data rather than specified
in advance. Another test is the Jarque-Bera test [51] which determines whether sample skewness
and kurtosis are unusually different from their Gaussian values.

Let z; and u; be two discrete in time random processes (—oo < k,l < o) and let u; be
independent and identically distributed (i.i.d.). We call the process xy, linear if it can be represented
by

N
T = Zaluk,l, (91)
=0

where a; are constant coefficients. If u; is Gaussian (non-Gaussian), we say that z; is linear
Gaussian (non-Gaussian). In order to test for linearity and Gaussianity we examine the third-
order cumulants of the data. The third-order cumulant Cf; of a zero mean stationary process is
defined by

Cri = E[Tm@mikTmyi] - (92)

The bispectrum Sa(f1, f2) is the two-dimensional Fourier transform of Cy;. The bicoherence is

defined as
Sa(f1, f2)
(fr + f2)S(f1)S(f2)’

where S(f) is the spectral density of the process x. If the process is Gaussian then its bispectrum
and consequently its bicoherence is zero. One can easily show that if the process is linear then
its bicoherence is constant. Thus if the bispectrum is not zero, then the process is non-Gaussian;
if the bicoherence is not constant then the process is also non-linear. Consequently we have the
following hypothesis testing problems:

B(fi f2) = 5 (93)

1. Hy: The bispectrum of x is nonzero.
2. Hg: The bispectrum of xy, is zero.
If Hypothesis 1 holds, we can test for linearity, that is, we have a second hypothesis testing problem:
3. H): The bicoherence of xy, is not constant.
4. HY: The bicoherence of xy, is a constant.

If Hypothesis 4 holds, the process is linear.

Using the above tests we can detect non-Gaussianity and, if the process is non-Gaussian, non-
linearity of the process. The distribution of the test statistic B(f1, f2), Equation (93), can be
calculated in terms of x? distributions. For more details see [45].

It is not difficult to examine non-stationarity of the data. One can divide the data into short
segments and for each segment calculate the mean, standard deviation and estimate the spectrum.
One can then investigate the variation of these quantities from one segment of the data to the other.
This simple analysis can be useful in identifying and eliminating bad data. Another quantity to
examine is the autocorrelation function of the data. For a stationary process the autocorrelation
function should decay to zero. A test to detect certain non-stationarities used for analysis of
econometric time series is the Dickey—Fuller test [25]. It models the data by an autoregressive
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process and it tests whether values of the parameters of the process deviate from those allowed by
a stationary model. A robust test for detection non-stationarity in data from gravitational-wave
detectors has been developed by Mohanty [69]. The test involves applying Student’s t-test to
Fourier coefficients of segments of the data.
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