Skip to main content
Log in

Lipids in blood-brain barrier models in vitro II: Influence of glial cells on lipid classes and lipid fatty acids

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood-brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture, with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic, acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo-like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberghina, M. Fatty acid and lipid intermediate transport. In: Pardridge, W. M., ed. Introduction to the blood-brain barrier. Cambridge: Cambridge University Press; 1998:227–237.

    Google Scholar 

  • Begley, D. J.; Bradbury, M. W.; Kreuter, J., eds. The blood-brain barrier and drug delivery to the CNS. New York: Dekker; 2000.

    Google Scholar 

  • Begley, D. J.; Lechardeur, D.; Chen, Z.-D., et al. Functional expression of P-glycoprotein in an immortalised cell line of rat brain endothelial cells, RBE4. J. Neurochem. 67:988–995; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bénistant, C.; Dehouck, M. P.; Fruchart, J.-C., et al. Fatty acid composition of brain capillary endothelial cells: effect of the conculture with astrocytes. J. Lipid Res. 36:2311–2319; 1995.

    PubMed  Google Scholar 

  • Bernoud, N.; Fenart, L.; Bénistant, C., et al. Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J. Lipid Res. 39:1816–1824; 1998.

    PubMed  CAS  Google Scholar 

  • Bourre, J.-M. Lipid composition of brain microvessels. In: Pardridge W. M., ed. Introduction to the blood-brain barrier. Cambridge: Cambridge University Press; 1998:308–313.

    Google Scholar 

  • Braun, A.; Hämmerle, S.; Suda, K., et al. Cell cultures as tools in biopharmacy. Eur. J. Pharm. Sci. 11:S51-S60; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Buckland, A. G.; Wilton, D. C. Antonic phospholipids, interfacial binding and the regulation of cell functions. Biochim. Biophys. Acta 1483:199–216; 2000.

    PubMed  CAS  Google Scholar 

  • Chishty, M.; Reichel, A.; Begley, D. J.; Abbott, N. J. Glial induction of blood-brain barrier like L-system amino acid transport in the ECV304 cell line. Glia 39:99–104; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Delton-Vandenbroucke, I.; Grammas, P.; Anderson, R. E. Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J. Lipid Res. 38:147–159; 1997.

    PubMed  CAS  Google Scholar 

  • Dirks, W. G.; Macleod, R. A. F.; Drexler, H. G. ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross-contamination at source. In Vitro Cell. Dev. Biol. 35A:558–559; 1999.

    Google Scholar 

  • Dolman, D. E. M.; Anderson, P.; Rollinson, C.; Abbott, N. J. Characterisation of a new in vitro model of the blood-brain barrier (BBB). J. Physiol. 505:56P-57P; 1997.

    Google Scholar 

  • Easton, A. S.; Abbott, N. J. Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood-brain barrier. Brain Res. 953:157–169; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, J. B. C.; Evans, W. H. Biological membranes: a practical approach. Oxford: IRL Press; 1987.

    Google Scholar 

  • Homayoun, P.; Durand, G.; Pascal, G.; Bourre, J. M. Alteration in fatty acid composition of adult rat brain capillaries and choroid plexus induced by a diet deficient in n-3 fatty acids: slow recovery after substitution with a nondeficient diet. J. Neurochem. 51:45–48; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, G. W.; Negash, S.; Squier, T. C. Phosphatidylethanolamine modulates Ca-ATPase function and dynamics. Biochemistry 38:1356–1364; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D.; Fritz, I. B. Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J. Cell. Physiol. 167:81–88; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Issandou, M.; Grand-Perret, T. Multidrug resistance P-glycoprotein is not involved in cholesterol esterification. Biochem. Biophys. Res. Commun. 279:369–377; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Krämer, S. D.; Abbott, N. J.; Begley, D. J. Biological models to predict blood-brain barrier permeation. In: Testa, B.; van de Waterbeemd, H.; Folkers, G.; Guy, R., ed. Pharmacokinetic optimization in drug research: biological physicochemical and computational strategies. Weinheim, Germany: VCH Verlag; 2001.

    Google Scholar 

  • Krämer, S. D.; Hurley, J. A.; Abbott, N. J.; Begley, D. J. Lipids in blood-brain barrier models in vitro I: thin-layer chromatography and high-performance liquid chromatography for the analysis of lipid classes and long-chain polyunsaturated fatty acids. In Vitro Cell. Dev. Biol. 38A:557–565; 2002.

    Article  Google Scholar 

  • Lerique, B.; Lepetit-Thevenim, J.; Verine, A., et al. Triacylglycerol in biomembranes. Life Sci. 54:831–840; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Luker, G. D.; Nilsson, K. R.; Covey, D. F.; Piwnica-Worms, D. Multidrug resistance (MDR1) P-glycoprotein enhances esterification of plasma membrane cholesterol. J. Biol. Chem. 274:6979–6991; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. Handbook of lipid bilayers. Boston, MA: CRC Press; 1990.

    Google Scholar 

  • Moore, S. A.; Yoder, E.; Murphy, S., et al. Astrocytes, not neurons, produce docosahexaenoic acid (22∶6 omega-3) and arachidonic acid (20∶4 omega-6). J. Neurochem. 56:518–524; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Moore, S. A.; Yoder, E.; Spector, A. A. Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors. J. Neurochem. 55:391–402; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, S.; Ghosh, R. N.; Maxfield, F. R. Endocytosis. Physiol. Rev. 77:759–803; 1997.

    PubMed  CAS  Google Scholar 

  • O'Brien, J. S.; Sampson, E. L. Fatty acid and aldehyde composition of the major brain lipids in normal gray matter, white matter and myelin. J. Lipid Res. 6:545–552; 1965.

    PubMed  Google Scholar 

  • Rist, R. J.; Romero, I. A.; Chart, M. W. K., et al. F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res. 768:10–18; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Romsicki, Y.; Sharom, J. The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry 38:6887–6896; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. L.; Staddon, J. M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22:11–28; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Scism, J. L.; Laska, D. A.; Horn, J. W., et al. Evaluation of an in vitro coculture model for the blood-brain barrier: comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources. In Vitro Cell. Dev. Biol. 35A:580–595; 1999.

    Google Scholar 

  • Shand, J. H.; Noble, R. C. Quantification of lipid mass by a liquid scintillation counting procedure following charring on thin-layer plates. Anal. Biochem. 101:427–434; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A. Essentially of fatty acids. Lipids 34:S1-S3; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A.; Mathur, S. N.; Kaduce, T. L.; Hyman, B. T. Lipid nutrition and metabolism of cultured mammalian cells. Progr. Lipid Res. 19:155–186; 1980.

    Article  CAS  Google Scholar 

  • Stein, O.; Stein, Y. Bovine aortic endothelial cells display macrophage-like properties towards acetylated 125I-labelled low density lipoprotein. Biochim. Biophys. Acta 620:631–635; 1980.

    PubMed  CAS  Google Scholar 

  • Suda, K.; Rothen-Rutishauser, B.; Günthert, M.; Wunderli-Allenspach, H. Phenotypical characterisation of ECV304 and T24 cells: endothelial versus epithelial features. In Vitro Cell. Dev. Biol. 37A:505–514; 2000.

    Google Scholar 

  • Tan, K. H.; Dobbie, M. S.; Felix, R. A., et al. A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport 12:1329–1334; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tayarani, I.; Chaudiere, J.; Lefauconnier, J.-M.; Bourre, J.-M. Enzymatic protection against peroxidative damage in isolated brain capillaries. J. Neurochem. 48:1399–1402; 1987.

    Article  PubMed  CAS  Google Scholar 

  • van't Hof, W.; Malik, A.; Vijayakumar, S., et al. The effect of apical and basolateral lipids on the function of the band 3 anion exchange protein. J. Cell Biol. 139:941–949; 1997.

    Article  Google Scholar 

  • Williard, D. E.; Harmon, S. D.; Kaduce, T. L., et al. Docosahexaenoic acid synthesis from n−3 polyunsaturated fatty acids in differentiated rat brain astrocytes. J. Lipid Res. 42:1368–1376; 2001.

    PubMed  CAS  Google Scholar 

  • Wunderli-Allenspach, H. Methodologies in cell culture. In: Testa, B.; van de Waterbeemd, H.; Folkers, G.; Guy, R., ed. Pharmacokinetic optimization in drug research: biological, physicochemical and computational strategies. New York: VCH Verlagsgesellschaft mbH; 2001.

    Google Scholar 

  • Yamaguchi, M.; Matsunaga, R.; Fukuda, K., et al. Highly sensitive determination of free polyunsaturated, long-chain fatty acids in human serum by high-performance liquid chromatography with fluorescence detection. Anal. Biochem. 155:256–261; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, K. A.; Dobbie, M. S.; Kuhnle, G., et al. Interaction between flavonoids and the blood-brain barrier; in vitro studies. J. Neurochem. 85:180–192; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie D. Krämer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, S.D., Schütz, Y.B., Wunderli-Allenspach, H. et al. Lipids in blood-brain barrier models in vitro II: Influence of glial cells on lipid classes and lipid fatty acids. In Vitro Cell.Dev.Biol.-Animal 38, 566–571 (2002). https://doi.org/10.1290/1543-706X(2002)38<566:LIBBMI>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2002)38<566:LIBBMI>2.0.CO;2

Key words

Navigation