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Accurate risk assessment is essential for the early detec-
tion and prevention of breast cancer. With the foresight 
offered by risk models, high-risk patients can benefit from 
supplemental imaging, more frequent screening, and chemo-
prevention to improve their outcomes. Similarly, low-risk 
patients can be guided toward longer screening intervals and 
avoid overtreatment. As such, there have been considerable 
investments in the development of risk-based guidelines for 
supplemental imaging, personalized screening frequency, 
and chemoprevention.1–4 However, the risk models under-
lying these national efforts give gross, generalized risk esti-
mates that are inaccurate at the individual level, limiting the 
efficacy of existing guidelines. For instance, current National 
Comprehensive Cancer Network (NCCN) guidelines recom-
mend supplemental magnetic resonance imaging (MRI) for 
patients with 20% or greater lifetime risk of breast cancer.5 
However, under these guidelines, more than 97% of supple-
mental screening MRIs will not detect cancer,6 indicating 
that most of these patients did not need MRIs. Conversely, 
only 25% of patients with breast cancer will be eligible for 
MRI before their diagnosis, indicating a missed opportunity 
for 75% of patients with cancer.7 Guidelines for chemopre-
vention and screening frequency are similarly inefficient. 
These challenges stem from the limitations of the guideline’s 
underlying risk models. Improving predictors of individual 
cancer risk remains essential to improving the systematic 
early detection and prevention of breast cancer.

In a recent Journal of Clinical Oncology article, Eriksson 
et al.8 have demonstrated that image-derived risk models, 
which were previously shown to outperform the Tyrer–Cuz-
ick model in short-term risk estimation (2-year risk),9 also 

outperform the baseline in long-term risk estimation (10-
year risk). Specifically, the study demonstrated that an 
image-based risk model, based on prespecified mammo-
graphic features, outperformed the Tyrer–Cuzick v8 model 
on a case-control cohort across a 10-year period. Through-
out their 10-year follow-up window, they found that 20% of 
all women with breast cancer were deemed as high risk by 
their image model, compared with 7.1% by Tyrer–Cuzick v8. 
While this result may be confounded by good performance 
cancers earlier in the observation window, the study remains 
promising. This improved capacity to predict long-term risk 
is especially important to support the primary prevention 
of breast cancer, as tumor development is estimated to take 
5–20 years. By extending the successes of image-based risk 
modeling9–14 to long-term risk estimation, Eriksson et al. 
contribute to a larger paradigm shift in risk modeling.

The traditional approach for developing risk predictors, 
as exemplified by the Tyrer–Cuzick model,15 relies on expert 
knowledge to identify key risk factors. These curated risk 
factors, (e.g., patient age, family history, mammographic 
density, etc.), are then combined in statistical models to 
estimate breast cancer risk. While traditional tools such as 
the Tyrer–Cuzick model are widely adopted, the models 
demonstrate limited performance at the individual level. 
Moreover, it has proven difficult for experts to improve these 
tools with new risk factors, suggesting that this approach 
may have already reached its limits. For instance, investiga-
tors have extensively explored mammographic breast den-
sity as a marker of risk; however, the performance of the 
Gail and Tyrer–Cuzick models improved only marginally 
after the introduction of this factor, obtaining areas under 
the curve (AUCs) of 0.61 and 0.59 compared with 0.57 and 
0.55, respectively.16 The manual identification of risk factors 
remains a critical bottleneck in improvement of risk models.

Recently, radiomics approaches,17–19 which evaluate com-
binations of texture or shape features, have emerged as a 
popular direction in medical imaging. Radiomics models 
promise to improve the flexibility of traditional risk models 
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by adding expert-defined, yet automatically measured, imag-
ing features. While significantly improved, this approach is 
still fundamentally limited by features selected by the inves-
tigator, restricting the ability of the developed tools to dis-
cover new features directly from the patient data.

Artificial intelligence (AI) methods, which can operate 
directly on full resolution images and leverage any predictive 
pattern available, offer a paradigm shift in the development 
of risk models. Instead of relying on investigator ingenuity, 
AI approaches allow us to view risk modeling as an optimi-
zation problem. In doing so, AI tools can uncover risk cues 
unknown to human readers directly from the data, allowing 
them to reap the full potential of the modality.

This AI approach has already transformed short-term risk 
prediction, with models such as Mirai7 and Sybil10 achiev-
ing state-of-the-art performance in 5-year breast cancer and 
6-year lung cancer risk, respectively, in large international 
external validation studies.10,11 In this study, Eriksson et al. 
further this general paradigm shift, extending these suc-
cesses to long-term risk estimation. Like prior studies in 
AI-derived risk assessment, the model in this paper did not 
outperform the Tyrer–Cuzick model because it had access 
to more data; as both methods used mammograms in some 
fashion. Instead, the methods differ in how they leveraged 
the mammograms. By detecting and combining subtle fea-
tures of the mammogram, the image-based model was able 
to significantly outperform the Tyrer–Cuzick model, which 
only benefits from breast density. These results reinforce the 
exciting promise of AI methods to transform risk assess-
ment. Moreover, while progress in traditional risk models 
has stagnated, AI-driven methods have the potential for fur-
ther dramatic improvement. Current AI methods only lever-
age a single episode of mammography to assess cancer risk, 
which only touches a fraction of the rich multi-modal and 
longitudinal imaging available. Ever larger multimodal data-
sets, improved algorithms, and increased computing power 
all have the promise to further advance AI risk assessment.

To realize the promise of AI-driven risk models, future 
work requires strengthened standards of rigor to ensure 
methodological progress. Specifically, studies should 
compare their proposed methods to published prior work, 
establishing means to gauge technical improvements. While 
Eriksson et al. focused on a single commercial model for 
their study, other image-based risk models, including Mirai, 
are publicly available. We believe the study would have ben-
efited from wider benchmarking. Similarly, the study would 
have benefited from validating their results on more diverse 
datasets, such as EMBED.20 Currently, the study only evalu-
ates their risk model on the same screening cohort used to 
develop the model; as a result, it remains difficult to gauge 
the external validity of the current results to more diverse 
populations. Finally, AI model developers should make their 
tools easily available to other researchers to enable new work 

to compare against their approaches. Open benchmarking 
and globally diverse validation efforts are critical to ensur-
ing that AI methods for cancer risk assessment are actually 
improving.

More clinical research is also needed to translate the 
advancements in cancer risk modeling into tangible 
advances in care. In both this study and prior work validat-
ing Mirai, AI risk scores show higher accuracies in the near 
term (within 2 years) than far term (5–10 years), suggesting 
the models are partially capturing cancers already present 
within the mammogram but not detected by the radiologist. 
These trends, in addition to the overall improved accuracy, 
suggest that leveraging these models to decide supplemental 
imaging, instead of current lifetime risk measures,5 would be 
more effective in reducing interval cancers. Moreover, while 
lifetime risk measures disproportionately exclude older 
women, image-based risk tools are not inherently skewed by 
patient age21 and they can identify the near-term risk signal 
most relevant for personalized screening. Given that AI risk 
scores remain more accurate than traditional measures after 
10 years,8 chemoprevention guidelines could also benefit 
from AI risk tools. While the broad opportunities for AI 
tools to improve guidelines for cancer prevention and screen-
ing are clear, the optimal clinical protocols for each of these 
use cases remain unclear. Prospective studies with diverse 
populations are needed to advance clinical guidelines and 
to achieve the broad promise22–24 of AI in medicine. The 
future is AI-derived risk estimation and AI-powered clinical 
guidelines, and the faster we get there, the better our patients 
will be cared for.
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