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ABSTRACT

Background. An intraductal papillary mucinous neoplasm

(IPMN) is a pancreatic tumor with malignant potential.

Although we anticipate a sensitive method to diagnose the

malignant conversion of IPMN, an effective strategy has

not yet been established. The combination of probe elec-

trospray ionization-mass spectrometry (PESI-MS) and

machine learning provides a promising solution for this

purpose.

Methods. We prospectively analyzed 42 serum samples

obtained from IPMN patients who underwent pancreatic

resection between 2020 and 2021. Based on the postoper-

ative pathological diagnosis, patients were classified into

two groups: IPMN-low grade dysplasia (n = 17) and

advanced-IPMN (n = 25). Serum samples were analyzed by

PESI-MS, and the obtained mass spectral data were con-

verted into continuous variables. These variables were used

to discriminate advanced-IPMN from IPMN-low grade

dysplasia by partial least square regression or support

vector machine analysis. The areas under receiver operat-

ing characteristics curves were obtained to visualize the

difference between the two groups.

Results. Partial least square regression successfully dis-

criminated the two disease classes. From another

standpoint, we selected 130 parameters from the entire

dataset by PESI-MS, which were fed into the support

vector machine. The diagnostic accuracy was 88.1%, and

the area under the receiver operating characteristics curve

was 0.924 by this method. Approximately 10 min were

required to perform each method.

Conclusion. PESI-MS combined with machine learning is

an easy-to-use tool with the advantage of rapid on-site

analysis. Here, we show the great potential of our system to

diagnose the malignant conversion of IPMN, which would

be a promising diagnostic tool in clinical settings.

An intraductal papillary mucinous neoplasm (IPMN) of

the pancreas is characterized by the production of mucin

with a dilated pancreatic duct.1-3 This category of pancre-

atic tumor was first conceptualized in the 2nd section of the

World Health Organization classification in 1996, which

made clinicians aware of IPMN as a differential diagnosis.

Since then, the number of IPMN cases has increased

because of the enhanced accuracy of imaging technology

and recognition of the disease.4,5
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An intraductal papillary mucinous neoplasm (IPMN) of

the pancreas is characterized by the production of mucin

with a dilated pancreatic duct.1-3 This category of pancre-

atic tumor was first conceptualized in the 2nd section of the

World Health Organization classification in 1996, which

made clinicians aware of IPMN as a differential diagnosis.

Since then, the number of IPMN cases has increased

because of the enhanced accuracy of imaging technology

and recognition of the disease.4,5

IPMN is pathologically divided into three classes: low-

grade dysplasia (IPMN-LGD), high-grade dysplasia

(IPMN-HGD), and invasive carcinoma (IPMN-IC).6-8

IPMN-HGD is considered potentially malignant and is

therefore treated as an indication for surgery, similar to

invasive carcinoma.9 The international Fukuoka criteria

coined words, such as ‘‘high-risk stigmata (HRS)’’ and

‘‘worrisome feature (WF),’’ to discern IPMN-HGD from

IPMN-LGD.10 However, there are no definitive methods to

predict their properties more accurately, and the latest

method achieves a diagnostic accuracy of no more than

63–76%.11-13

Recently, liquid biopsy has received great attention

worldwide because of its relatively higher sensitivity in

detecting the early phase of malignant conversion. Sero-

logical analysis by conventional mass spectrometry still

contributes to cancer screening, but because of its inherent

drawbacks in procedures, such as low throughput analysis,

complicated sample preparation, and chromatographic

separation, these techniques play a supporting role. Probe

electrospray ionization-mass spectrometry (PESI-MS) is a

derivative of ESI that uses a unique needle ion emitter

without a troublesome capillary.14 We took advantage of

PESI-MS to develop a medical device that is useful for

cancer diagnosis.14,15 Based on this perspective, we applied

this to various malignancies, such as head and neck,

stomach, liver, and breast cancer.16-19

The aim of this study was to verify the diagnostic power

of this system to accurately predict IPMN subtypes by

detecting tumor-specific serological changes.

MATERIALS AND METHODS

Patient Selection and Data Collection

This study was conducted in accordance with the ethical

standards of the Declaration of Helsinki, and the protocol

was approved by the ethics committees of the University of

Tokyo and the University of Yamanashi [approval num-

bers: 2019370NI-(2) and 2086]. Each patient provided

written informed consent before participating in this study,

and all clinicopathological data were anonymized.

We examined 42 IPMN patients who did not have his-

tologically proven cancer before resection, and who

underwent pancreatic resection between February 2020

and November 2021 at the University of Tokyo Hospital

and the University of Yamanashi Hospital. Preoperative

tumor evaluation was basically performed by endoscopic

ultrasonography. Endoscopic retrograde cholangiopancre-

atography was added as needed. We regularly assessed

the diameter of the cyst and the presence of an enhanced

mural nodule by endoscopic ultrasonography, but we did

not always perform aspiration for the cyst. If endoscopic

retrograde cholangiopancreatography was performed,

pancreatic juice cytology was simultaneously performed.

Surgical indications were as follows: main-duct type

IPMN, combined-duct type IPMN, branched-duct type

IPMN with high-risk stigmata, and malignant suspicious

branched-duct type IPMN with worrisome features.10

Clinicopathological data from patients were acquired from

a prospectively maintained database. Pathological findings

were evaluated based on IPMN international guidelines.10

We defined IPMN-HGD and IPMN-IC as advanced IPMN

(Ad-IPMN) and compared IPMN-LGD and Ad-IPMN.

Sample Collection and Preparation

The blood draw was performed just prior to the surgery.

Venous blood samples from 42 IPMN patients were pre-

operatively infused into thrombin-containing tubes by

experienced phlebotomists. After the tube remained upright

for 15–60 min at room temperature, it was centrifuged at

3000 rpm for 5 min. Then, the supernatant was collected

and frozen at -80 �C until PESI-MS analysis.

Ten microliters of dissolved serum samples were added

to 390 ll 50% ethanol and stirred using a vortex mixer

(Scientific Industries, Inc.) at 10 �C for 5 min. After being

placed on ice for 5 min, the sample was centrifuged at

15,000 rpm for 10 min at 4 �C. Nine microliters of

supernatant were added to a sample plate (Shimadzu,

Corp.)

PESI-MS Analysis and Data Processing

A Direct Probe Ionization-Mass Spectrometer-8060

(DPiMS, Shimadzu, Corp.) was used for the analysis. The

detailed method of operation of this instrument has been

described in previous reports.18-21 The ion intensity was

obtained in positive ion mode using this mass spectrometer

and analyzed by LabSolutions software (Shimadzu, Corp.).

The mass spectrum was visualized by m/z (the mass to

charge ratio) in the x-axis and ion intensity (A.U.) in the y-

axis. To obtain the peak value defined as the ‘‘peak

intensity,’’ the ion-intensity value was added to the maxi-

mum ion intensity within one m/z and the values before and
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after it. The corresponding m/z was rounded down to an

integer bin. An example of data processing is shown in

Supplementary Fig. 1. Bins with a peak intensity less than

500,000 A.U. were excluded from the analysis. This value

almost corresponded to the quartile of IPMN data and

corresponded to the maximum data of the solvent-only

sample (Supplementary Fig. 2). With the above processing,

328 out of 1191 peak intensities were excluded, and the

remaining 863 were used for the database for the support

vector machine (SVM) analysis. This flowchart is descri-

bed in Fig. 1.

Statistical Analysis

Continuous clinicopathological variables were expres-

sed as the median and range. The data were analyzed using

the Mann–Whitney U test and Fisher exact test or Pear-

son’s chi-square test, depending on data characteristics.

Diagnostic accuracy was analyzed using machine

learning as follows. First, partial least square (PLS)

regression was performed for all 863 peak intensities to

visually understand the difference in distribution between

IPMN-LGD and Ad-IPMN. PLS regression is a statistical

method used to project high-dimensional data into a series

of linear subspaces of the explanatory variables. In this

study, each serum sample had 863 explanatory variables

(i.e., 863 peak intensities after data processing), and new

one-dimensional variables that discriminate IPMN-LGD

from Ad-IPMN are made by combining the coefficients for

all 863 variables. The most discriminating new variable is

defined as component 1, and the second most discrimi-

nating one is defined as component 2.22 Second, a

discrimination test was performed using SVM. The vari-

ables used for the analysis by SVM were determined as

follows. The explanatory variables (represented as m/z) that

differed between IPMN-LGD and Ad-IPMC groups for the

objective variables were identified by Student’s t-test and

sorted by P-value. The SVM model was optimized by

sequentially adding the corresponding explanatory vari-

ables in order from the one with the lowest P-value. The

optimized SVM model determined the possibility score of

each serum sample as a continuous value between 0 and 1,

corresponding to IPMN-LGD and Ad-IPMN, respectively.

The possibility score is shown as a box plot graph in

Supplementary Fig. 4. To calculate the diagnostic accu-

racy, the threshold value used for the judgment was set to

0.5. If the value was closer to 1 than 0.5, the sample was

diagnosed as IPMN-LGD, and if it was closer to 0 than 0.5,

it was diagnosed as Ad-IPMN. This possibility score was

evaluated using a random sub-sampling method, a type of

cross validation. Finally, the receiver operating character-

istic curve (ROC) according to the possibility value was

described, and the area under the curve (AUC) was

calculated.

Furthermore, the discriminant accuracy of the diagnostic

algorithm was validated using 7 independent serum sam-

ples, which were obtained from patients who underwent

pancreatectomy in 2022. In the validation set, we applied

the same 130 variables obtained from training set analysis

for SVM. Sensitivity, specificity, and accuracy were ana-

lyzed in the same way for seven samples.

Statistical analyses were performed using SPSS Statis-

tics, version 25.0 (IBM Corp., Armonk, NY, USA) and

EZR (The R Foundation for Statistical Computing, Vienna,

Austria), and hierarchical analysis was conducted using

MetaboAnalyst 5.0 (Xia Lab) [Nature protocols (2011), 6,

743-760, Jianguo Xia and David S Wishart]. P\0.05 was

considered statistically significant.

RESULTS

Patient Backgrounds

Samples were collected from the University of Tokyo

(n = 26) and the University of Yamanashi (n = 16).

Seventeen patients were diagnosed with IPMN-LGD, while

25 patients were diagnosed with Ad-IPMN. Preoperative

chemotherapy was not administered for any participants. In

the endoscopic ultrasonography exam, an enhanced mural

nodule was identified in 64.7% of IPMN-LGD, and 76.0%

of Ad-IPMN. Of the entire cohort, cytology was performed

in 27 patients. Atypical cells (more than class 3) were

found in 70.0% of IPMN-LGD (7/10), and 94.1% of Ad-

IPMN (16/17). Of the patient who underwent cytology (10

Preoperative serum of IPMN patients
IPMN-LGD n=17, Ad-IPMN n=25

PESI-MS analysis is performed,
and the peak intensity is
calculated by data processing.

A total of 328 peak intensites
with values less than 500,000
A.U.were excluded.

1,191 peak intensities of each serum sample

863 peak intensities were finally
analyzed

FIG. 1 The patient flowchart for this study. A total of 1191 peak

intensities were obtained from each patient. Among them, 328 peak

intensities with values influenced by electronic noise were excluded.

The remaining 863 peak intensities were analyzed. IPMN, intraductal

papillary mucinous neoplasm; LGD, low-grade dysplasia; Ad,

Advanced
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patients in IPMN-LGD and 17 patients in Ad-IPMN), three

patients in LGD-IPMN and five patients in Ad-IPMN were

evaluated for KRAS mutation, and two patients in LGD-

IPMN and four patients in Ad-IPMN presented a mutation

of KRAS status. The clinicopathological backgrounds of

all patients are described in Table 1. No variables were

significantly different between IPMN-LGD and Ad-IPMN

patients, except for the carcinoembryonic antigen value

(median IPMN-LGD 1.7 and Ad-IPMN 2.6, P = 0.003).

Data Acquired by PESI-MS and Processing

Using PESI-MS, 1191 peak intensities from each serum

sample were acquired. Among them, 328 peak intensities

were excluded because these average intensities were less

than 500,000 A.U. The remaining 863 peak intensities were

integrated for further analysis. The mass spectrum com-

prising all average peak intensities is presented in Fig. 2.

The red line in this figure shows the 500,000 A.U. level.

The m/z values with peak intensities lower than this red line

were excluded from the analysis.

PLS Regression Analysis

A two-dimension plot generated by PLS regression is

shown in Fig. 3. Although the plotted regions of IPMN-

LGD and Ad-IPMN partially overlapped, they were well

separated by component 1 and 2 macroscopically.

SVM and Cross Validation

The ROC curve generated by SVM is presented in

Fig. 4. The selected number of variables for SVM was 130.

The m/z of these 130 variables and the corresponding P-

values of the Student’s t-test are shown in Supplementary

Table 1. The AUC generated by the SVM model using the

database of the 130 variables was 0.924 (95% confidence

interval: 0.831–0.981). The specificity, sensitivity, and

diagnostic accuracy calculated according to the possibility

scores of cross validations using the repeat random sub-

sampling method were 88.2% (15/17), 88.0% (22/25), and

88.1% (37/42), respectively. We show these scores for each

group with box plot graphs in Supplementary Fig. 4A.

TABLE 1 Clinicopathological

backgrounds
Variables IPMN-LGD Ad-IPMN p

n=17 n=25

Age, years 72 (49-84) 71 (49–83) 0.729

Sex, male(%) 8 (47.1) 17 (68.0) 0.175

CEA, ng/ml 1.7 (1.1–13.4) 2.6 (1.1–114.0) 0.003

CA19-9, U/ml 9.0 (1.0–58.0) 11.5 (1.0–863.0) 0.158

Triglyceride, mg/dl 126 (52–354) 110 (44–512) 0.894

Co-morbidity, n,(%)

Diabetes mellitus 4 (23.5) 11 (44.0) 0.174

Dyslipidemia 7 (41.2) 6 (24.0) 0.237

Hypertension 6 (35.3) 10 (40.0) 0.758

Synchronous other cancer 2 (11.8) 3 (12.0) 0.406

IPMN type, MD/BD/Combined 2/6/9 6/5/14 0.424

Malignant sign, HRS/WF 13/4 20/5 0.784

Enhanced mural nodule, yes(%) 11 (64.7) 19 (76.0) 0.426

Atypical cells (cytology C class 3), yes (%) 7 (70.0) 16 (94.1%) 0.084

KRAS mutation, yes(%) 2 (66.6) 4 (80.0) 0.809

Surgical procedure, n,(%)

Pancreaticoduodenectomy 9 (52.9) 15 (60.0) 0.650

Distal pancreatectomy 7 (41.2) 7 (28.0) 0.374

Total pancreatectomy 1 (5.9) 3 (12.0) 0.507

Ad-IPMN invasiveness, n,(%)

Non-invasive – 16 (64.0) –

Invasive – 9 (36.0) –

p value was calculated by Mann-Whitney U test or chi-square test

IPMN, intraductal papillary mucinous neoplasm; LGD, low-grade dysplasia; Ad, Advancedadvanced;

CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; MD, main -duct; BD, branched -

duct; HRS, high- risk stigmata; WF, worrisome feature
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Validation Analysis

In the validation set, one patient was classified into

IPMN-LGD, and 6 patients were classified into Ad-IPMN

by the pathological diagnosis. In total, 5 out of 7 serum

samples were correctly diagnosed by our method, the

sensitivity was 66.7% (4/6), the specificity was 100.0% (1/

1), and the accuracy rate was 71.4% (5/7). The box plot of

possibility score is shown in Supplementary Fig. 4B. The

possibility score of IPMN-LGD was quite low, 0.00003.

DISCUSSION

This study demonstrated that the combination of PESI-

MS and machine learning had the potential to detect IPMN

canceration by analyzing a small amount of patient serum.

The two-dimensional figure provided by PLS regression

enabled the visualization of the two diseases separately.
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When 130 parameters out of the entire dataset acquired by

PESI-MS were applied to the database for SVM, the sys-

tem showed that the discrimination rate of Ad-IPMN from

IPMN-LGD was 88.1%, and the AUC was 0.924. In the

validation set, sensitivity, specificity, and accuracy were

66.7, 100.0, and 71.4%, respectively. Additionally, this

diagnostic tool required *10 min without special prepa-

ration other than drawing patient blood. Conversely, HRS

and WF proposed in the International Consensus Guideline

in 2018 require invasive examination and have a diagnostic

accuracy of 63–75%. This diagnostic tool has a high ability

to diagnose IPMN canceration, providing a promising

diagnostic modality in clinical practice.

Although histopathology remains the gold standard for

diagnosing cancer, integrated molecular analysis using

mass spectrometry has gained attention in recent years for

detecting malignant tumors because of its high throughput

ability, sensitivity and specificity.23,24 Unlike other mass

spectrometry methods, PESI-MS provides a spectrum by

ionizing molecules with a distinct probe motion, which

requires minimal sample preparation, thereby addressing

the time-consuming processing of mass spectrometry.15

Other recent methods of mass spectrometry, including

matrix assisted laser desorption/ionization-mass spectrom-

etry, desorption electrospray ionization-mass spectrometry

or MasSpec Pen, have produced precise results and

promising biomarkers; however, they require complex

pretreatment and are not suitable for routine medical

care.25,26 In this study, PESI-MS analysis, data processing

and machine learning required *10 min in total, which is

sufficient for clinical situations, such as outpatient exami-

nation or rapid intraoperative diagnosis. Preoperative

pathological diagnosis of IPMN canceration is difficult

oncologically. PESI-MS analysis is considered meaningful

from that point of view.

This study is also significant in that only serum was used

for the sample rather than malignant tissue. The collection

of tumor tissue is not minimally invasive. Additionally, the

concept of intratumoral heterogeneity has recently become

widely accepted.27 Thus, examinations using tumor tissue,

including needle biopsy, can lead to false-negative results.

In contrast, serum samples can be obtained with no inva-

siveness, and their components do not change regardless of

where the serum sample is collected. Accordingly, this

diagnostic modality is easy to repeat and may have high

reproducibility.

The calculation method with maximization of separating

margins is named SVM, a type of machine learning. The

classification feature of SVM is expanding its use mainly in

cancer genomics.28 Multi-omics data obtained from clini-

cal specimens contain a lot of information, and it is

possible to extract latent features that lead to various

clinical questions and the elucidation of pathological

conditions by performing integrated analysis in combina-

tion with medical information. However, the omics data

obtained from clinical samples have large individual dif-

ferences and variations in distribution between samples,

and it is difficult to ensure the robustness and semantic

interpretability of results. Therefore, it requires optimal

variable selection to maximize differences between two

targeted factors. In this study, PESI-MS analysis first pro-

vided 11,910 ion intensity values, which were reduced to

one value for one integer, resulting in 1191 peak intensities

by data processing as described above. Among them,

variables with the largest difference were selected in the

comparative test, and the number of variables that maxi-

mized the difference was determined. Finally, 130

variables were selected. Previous studies selected SVM

variables using the same approach and demonstrated a

good discriminative ability with reproducibility.29,30 An

additional important point to note regarding the interpre-

tation is that the greater the number of variables, the higher

the probability of overfitting. In this study, cross validation

was performed to decrease overfitting.31 Further, analysis

of the validation set gave an accuracy rate of 71.4%.

Although it was lower than the training set analysis, per-

haps due to small samples, a probability score of 0.00003

for IPMN-LGD was a notable value. Therefore, this diag-

nostic modality may provide a good specificity for IPMN-

LGD, which could avoid over-surgery for benign IPMN

patients.

In this study, the largest difference between IPMN-LGD

and Ad-IPMN was identified at an m/z of 1035 (see Sup-

plementary Table 1). According to the Human Metabolome

Database version 5.0, this m/z is composed of phos-

phatidylinositol phosphates, asparagoside F, uttronin A,

and triglycerides.32 Considering that phosphatidylinositol

phosphates act intracellularly, and asparagoside F and

uttronin A are present in plants, triglycerides were a rep-

resentative molecule at this m/z. High serum triglyceride

concentrations have been considered to be associated with

metabolic syndrome. A few cohort studies revealed that

they were related to a risk of colon, breast, or cervical

cancer.33-35 As shown in Fig. 2, although the peak intensity

of m/z 1035 was not large among all plots, a slight dif-

ference in these molecules was detected by PESI-MS

analysis. The ROC curve drawn by only m/z 1035 is shown

in Supplementary Fig. 3. The AUC was 0.775, which was

equivalent to the value reported by previous clinical

research. 11-13 However, by adding 129 peak intensities that

were almost statistically different between IPMN-LGD and

Ad-IPMN, the AUC increased to 0.924, considerably

higher than that seen in previous reports. It should be noted

that m/z 1035 did not reflect actual serum triglycerides (ref.

Table 1). For example, both m/z 1035 and m/z 1024 (13th
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lower P-value in Supplementary Table 1) consist of

triglycerides. That is, PESI-MS discriminates finer part

differences in triglycerides.

There are several limitations to this work. First, this

study included a small sample of patients. In general, small

size prediction research should be accepted only to show

the potential of new biological insights. Although this

research applied cross validation to reduce overfitting,

more data and validation by other datasets are needed for

future clinical application. Second, the Ad-IPMN group in

this study included both carcinoma in situ and invasive

adenocarcinoma. Invasive adenocarcinoma can change

serum components more significantly. Third, when multi-

ple comparisons are performed, the false discovery rate

should be controlled. Supplementary Table 1 also shows a

‘‘q value’’ calculated according to the Benjamini-Hochberg

procedure. If the significant criterion is set as 0.05, all q

values were more than significant criteria. Thus, this study

cannot conclude the difference between IPMN-LGD and

Ad-IPMN as for the molecular identification.

CONCLUSIONS

The new diagnostic system consisting of PESI-MS and

SVM discriminated Ad-IPMN from IPMN-LGD with a

high accuracy using the top 130 variables with a potential

biomarker. Variable selection using more data will increase

the robustness of this diagnostic tool and facilitate its

clinical application.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1245/s10434-

022-13012-y.
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