Skip to main content

Advertisement

Log in

ctDNA for Risk of Recurrence Assessment in Patients Treated with Neoadjuvant Treatment: A Systematic Review and Meta-analysis

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We wanted to investigate the association between circulating tumor DNA (ctDNA) detection at baseline, during and after neoadjuvant treatment, after surgery, and recurrence, in patients with nonmetastatic cancer.

Patients and Methods

In this systematic review and meta-analysis, we included studies that investigated patients undergoing neoadjuvant treatment for nonmetastatic cancer and provided recurrence indices stratified for ctDNA status at the following timepoints: baseline, during treatment, posttreatment, and postsurgery. Study quality was reported with the Newcastle–Ottawa scale, REMARK checklist, and GRADE approach. PubMed, Embase, Cochrane Library, and Web of Science were our data sources (inception to 3 June 2021). The main outcome was risk of recurrence.

Results

We identified ten studies including 727 patients with rectal, breast, gastric, and bladder cancer. All studies reported posttreatment ctDNA analysis, while seven, four, and six reported baseline, during treatment, and postsurgery ctDNA analysis, respectively. ctDNA detection was associated to recurrence across all timepoints [baseline: risk ratio (RR) 2.86, 95% confidence interval (CI) 1.33–6.14, during treatment: RR 3.81, 95% CI 2.09–6.92, posttreatment: RR 4.29, 95% CI 2.79–6.60, postsurgery: RR 8.03, 95% CI 3.16–20.43]. Heterogeneity was low to moderate.

Conclusions

This meta-analysis of observational studies found that ctDNA detection in patients undergoing neoadjuvant treatment for nonmetastatic cancer was associated with recurrence. A stronger association was evident in posttreatment and postsurgery timepoints. However, some studies reported low negative predictive value (NPV) of pathological complete response, showing that ctDNA-detection-guided escalation and de-escalation studies following neoadjuvant treatment regimens are needed before its role as a treatment guidance can be affirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  2. Kapiteijn E, Marijnen CAM, Nagtegaal ID, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638–46. https://doi.org/10.1056/nejmoa010580.

    Article  CAS  PubMed  Google Scholar 

  3. Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66. https://doi.org/10.1056/nejmoa022148.

    Article  CAS  PubMed  Google Scholar 

  4. van Hagen P, Hulshof MCCM, van Lanschot JJB, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84. https://doi.org/10.1056/nejmoa1112088.

    Article  PubMed  Google Scholar 

  5. Burdett S. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet. 2014;383(9928):1561–71. https://doi.org/10.1016/S0140-6736(13)62159-5.

    Article  CAS  Google Scholar 

  6. Provencio M, Nadal E, Insa A, et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(11):1413–22. https://doi.org/10.1016/S1470-2045(20)30453-8.

    Article  CAS  PubMed  Google Scholar 

  7. Bahadoer RR, Dijkstra EA, van Etten B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(1):29–42. https://doi.org/10.1016/S1470-2045(20)30555-6.

    Article  CAS  PubMed  Google Scholar 

  8. Dossa F, Chesney TR, Acuna SA, Baxter NN. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(7):501–13. https://doi.org/10.1016/S2468-1253(17)30074-2.

    Article  PubMed  Google Scholar 

  9. Suppiah A, Hunter IA, Cowley J, et al. Magnetic resonance imaging accuracy in assessing tumour down-staging following chemoradiation in rectal cancer. Color Dis. 2009;11(3):249–53. https://doi.org/10.1111/j.1463-1318.2008.01593.x.

    Article  CAS  Google Scholar 

  10. Beets-Tan RGH, Beets GL. MRI for assessing and predicting response to neoadjuvant treatment in rectal cancer. Nat Rev Gastroenterol Hepatol. 2014;11(8):480–8. https://doi.org/10.1038/nrgastro.2014.41.

    Article  CAS  PubMed  Google Scholar 

  11. Dossa F, Acuna SA, Rickles AS, et al. Association between adjuvant chemotherapy and overall survival in patients with rectal cancer and pathological complete response after neoadjuvant chemotherapy and resection. JAMA Oncol. 2018;4(7):930–7. https://doi.org/10.1001/jamaoncol.2017.5597.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages i to III colorectal cancer. JAMA Oncol. 2019;5(8):1124–31. https://doi.org/10.1001/jamaoncol.2019.0528.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Christensen E, Birkenkamp-Demtröder K, Sethi H, et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol. 2019;37(18):1547–57. https://doi.org/10.1200/JCO.18.02052.

    Article  CAS  PubMed  Google Scholar 

  14. Schøler LV, Reinert T, Ørntoft MBW, et al. Clinical implications of monitoring circulating Tumor DNA in patients with colorectal cancer. Clin Cancer Res. 2017;23(18):5437–45. https://doi.org/10.1158/1078-0432.CCR-17-0510.

    Article  CAS  PubMed  Google Scholar 

  15. Reinert T, Schøler LV, Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2016;65(4):625–34. https://doi.org/10.1136/gutjnl-2014-308859.

    Article  CAS  PubMed  Google Scholar 

  16. Tie J, Wang Y, Cohen J, et al. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study. PLoS Med. 2021. https://doi.org/10.1371/journal.pmed.1003620.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages II to III colorectal cancer. J Hematol Oncol. 2021;14(1):80. https://doi.org/10.1186/s13045-021-01089-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarazona N, Gimeno-Valiente F, Gambardella V, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol. 2019;30(11):1804–12. https://doi.org/10.1093/annonc/mdz390.

    Article  CAS  PubMed  Google Scholar 

  19. Nors J, Henriksen TV, Gotschalck KA, et al. IMPROVE-IT2: implementing noninvasive circulating tumor DNA analysis to optimize the operative and postoperative treatment for patients with colorectal cancer—intervention trial 2. Study protocol. Acta Oncol (Madr). 2020;59(3):336–41. https://doi.org/10.1080/0284186X.2019.1711170.

    Article  CAS  Google Scholar 

  20. Taniguchi H, Nakamura Y, Kotani D, et al. CIRCULATE-Japan: Circulating tumor DNA–guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. 2021;112(7):2915–20. https://doi.org/10.1111/cas.14926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation. BMJ. 2015;349:g7647. https://doi.org/10.1136/bmj.g7647.

    Article  Google Scholar 

  22. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. J Am Med Assoc. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.

    Article  CAS  Google Scholar 

  23. Wells G, Shea B, O’Connell D, Peterson J. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, ON: Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Published 2000.

  24. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med. 2012;10:51. https://doi.org/10.1186/1741-7015-10-51.

    Article  PubMed  Google Scholar 

  25. Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients. BMJ. 2015;350:h870. https://doi.org/10.1136/bmj.h870.

    Article  PubMed  Google Scholar 

  26. Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71. https://doi.org/10.1186/2046-4053-2-71.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629.

    Article  CAS  Google Scholar 

  28. Vidal J, Casadevall D, Bellosillo B, et al. Clinical impact of presurgery circulating tumor DNA after total neoadjuvant treatment in locally advanced rectal cancer: a biomarker study from the GEMCAD 1402 trial. Clin Cancer Res. 2021;27(10):2890–8. https://doi.org/10.1158/1078-0432.CCR-20-4769.

    Article  CAS  PubMed  Google Scholar 

  29. Tie J, Cohen JD, Wang Y, et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut. 2019;68(4):663–71. https://doi.org/10.1136/gutjnl-2017-315852.

    Article  CAS  PubMed  Google Scholar 

  30. Khakoo S, Carter PD, Brown G, et al. MRI tumor regression grade and circulating tumor DNA as complementary tools to assess response and guide therapy adaptation in rectal cancer. Clin Cancer Res. 2020;26(1):183–92. https://doi.org/10.1158/1078-0432.CCR-19-1996.

    Article  CAS  PubMed  Google Scholar 

  31. Murahashi S, Akiyoshi T, Sano T, et al. Serial circulating tumour DNA analysis for locally advanced rectal cancer treated with preoperative therapy: prediction of pathological response and postoperative recurrence. Br J Cancer. 2020;123(5):803–10. https://doi.org/10.1038/s41416-020-0941-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou J, Wang C, Lin G, et al. Serial circulating tumor DNA in predicting and monitoring the effect of neoadjuvant chemoradiotherapy in patients with rectal cancer: a prospective multicenter study. Clin Cancer Res. 2021;27(1):301–10. https://doi.org/10.1158/1078-0432.CCR-20-2299.

    Article  CAS  PubMed  Google Scholar 

  33. Magbanua MJM, Swigart LB, Wu HT, et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol. 2021;32(2):229–39. https://doi.org/10.1016/j.annonc.2020.11.007.

    Article  CAS  PubMed  Google Scholar 

  34. Cavallone L, Aguilar-Mahecha A, Lafleur J, et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-71236-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ortolan E, Appierto V, Silvestri M, et al. Blood-based genomics of triple-negative breast cancer progression in patients treated with neoadjuvant chemotherapy. ESMO Open. 2021;6(2):100086. https://doi.org/10.1016/j.esmoop.2021.100086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leal A, van Grieken NCT, Palsgrove DN, et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-14310-3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ryan R, Gibbons D, Hyland JMP, et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology. 2005;47(2):141–6. https://doi.org/10.1111/j.1365-2559.2005.02176.x.

    Article  CAS  PubMed  Google Scholar 

  38. Jang JK, Choi SH, Park SH, et al. MR tumor regression grade for pathological complete response in rectal cancer post neoadjuvant chemoradiotherapy: a systematic review and meta-analysis for accuracy. Eur Radiol. 2020;30(4):2312–23. https://doi.org/10.1007/s00330-019-06565-2.

    Article  PubMed  Google Scholar 

  39. Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020;26(4):566–76. https://doi.org/10.1038/s41591-020-0805-8.

    Article  CAS  PubMed  Google Scholar 

  40. Patel A, Spychalski P, Corrao G, et al. Neoadjuvant short-course radiotherapy with consolidation chemotherapy for locally advanced rectal cancer: a systematic review and meta-analysis. Acta Oncol (Madr). 2021;60(10):1308–16. https://doi.org/10.1080/0284186X.2021.1953137.

    Article  CAS  Google Scholar 

  41. Tie J, Cohen JD, Wang Y, et al. Circulating tumor dna analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5(12):1710–7. https://doi.org/10.1001/jamaoncol.2019.3616.

    Article  PubMed  Google Scholar 

  42. Dasari A, Morris VK, Allegra CJ, et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol. 2020;17(12):757–70. https://doi.org/10.1038/s41571-020-0392-0.

    Article  PubMed  Google Scholar 

  43. Zhang L, Zhang Y, Chang L, et al. Intratumor heterogeneity comparison among different subtypes of non-small-cell lung cancer through multi-region tissue and matched ctDNA sequencing. Mol Cancer. 2019;18(1):7. https://doi.org/10.1186/s12943-019-0939-9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baumgartner JM, Riviere P, Lanman RB, et al. Prognostic utility of pre- and postoperative circulating tumor dna liquid biopsies in patients with peritoneal metastases. Ann Surg Oncol. 2020;27(9):3259–67. https://doi.org/10.1245/s10434-020-08331-x.

    Article  PubMed  Google Scholar 

  45. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094.

    Article  CAS  PubMed  Google Scholar 

  46. Cabel L, Proudhon C, Romano E, et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol. 2018;15(10):639–50. https://doi.org/10.1038/s41571-018-0074-3.

    Article  CAS  PubMed  Google Scholar 

  47. von Minckwitz G, Huang C-S, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28. https://doi.org/10.1056/nejmoa1814017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MG, IG; methodology: MG; software: MG; validation: NA; formal analysis: MG; investigation: MG, IG, resources: MG, NH; data curation: MG, NH; writing: original draft: MG, IG, writing: review and editing: MG, IG, NH, CQ, CA; visualization: MG, supervision: IG: project administration: MG; funding acquisition: no funding received.

Corresponding author

Correspondence to Mikail Gögenur MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1036 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gögenur, M., Hadi, N.AH., Qvortrup, C. et al. ctDNA for Risk of Recurrence Assessment in Patients Treated with Neoadjuvant Treatment: A Systematic Review and Meta-analysis. Ann Surg Oncol 29, 8666–8674 (2022). https://doi.org/10.1245/s10434-022-12366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12366-7

Navigation