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Robot-assisted surgery is an advanced minimally inva-

sive technique that provides more precision, control, and

flexibility compared with conventional approaches.1–3

While robotic technology allows surgeons to perform

complex interventions in limited anatomical spaces, the

operators’ technical skills remain a key determinant of

successful clinical outcomes. In this scenario, there is

growing interest in the assessment of proficiency among

trainees practicing robotic surgery. This would allow esti-

mating the position of an individual on a learning curve.4

The da Vinci Skills Simulator (dVSS) has emerged as an

interesting platform for objective evaluation of the abilities

required during robot-assisted surgery.5 On the simulator,

proficiency can be assessed through various virtual exer-

cises (e.g., ‘‘ring and rail’’) by means of built-in assessment

criteria. While simulation-based training allows trainees to

practice a procedure in a safe and controlled environment,

it does not invariably reflect real surgical situations. One

potential solution to address this issue is the use of the

Global Evaluative Assessment of Robotic Skills (GEARS),

a standardized and validated qualitative assessment tool for

robotic surgical skills.6 However, GEARS is a Likert-scale

measure susceptible to response biases. Another traditional

possibility is to investigate the improvement in surgical

performance over time, described as the learning curve. A

learning curve can be defined as the number of cases

required and/or the time taken by a surgeon to become

proficient in key indicators (e.g., operating time or occur-

rence of certain index complications).7

In this issue of the Annals of Surgical Oncology, Takeuchi

et al.8 describe a novel automated surgical step recognition

system for robot-assisted minimally invasive esophagectomy

(RAMIE). The tool was developed by applying deep learning

algorithms to video analysis of standardized procedures.

Specifically, the system was designed to quantitatively ana-

lyze the relationships between the duration of each step and

the surgeon’s learning curve. While there have been several

previous attempts to automatically identify surgical phases

through artificial intelligence (AI), the application of this

technique in the assessment of surgical proficiency is cer-

tainly innovative. By taking each surgical step into account in

an automated manner, this tool holds great promise for robot-

assisted evaluation of robotic surgery. In addition, longitu-

dinal investigation of surgical indicators using AI tools may

provide valuable information for improving surgical training.

However, certain hurdles that will likely impede the

rapid and effective translation of the automated system

developed by Takeuchi et al. should be briefly discussed.

First and foremost, the vast majority of previous learning

studies have relied on operative videos obtained from

either a single or a limited number of surgeons.9–13 In this

regard, the work by Takeuchi and coworkers is no excep-

tion. Specifically, all of the RAMIE video recordings

derived from a single surgeon without previous experience

in this procedure but with an extensive record in the field of

minimally invasive esophagectomy ([ 300 procedures).

The fact that the surgical steps utilized in the study were

not standardized and the lack of a consensus definition for

surgical proficiency are other significant caveats. For

example, the definition for proficiency used by Takeuchi

et al. (i.e., a minimum of 20 procedures) was based on a
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limited number of previous studies, which limits the

robustness of the analysis. These shortcomings call for

international working groups to make recommendations

vetted by the participating organizations. Second, marked

discrepancies in the number of frames across different

surgical steps may introduce bias in terms of recognition

accuracy. For example, the number of frames was as low as

104 in the video depicting azygos vein division but as high

as 4230 in the video showing left recurrent laryngeal nerve

(RLN) lymph node dissection (LND). The F1 scores for

these two videos were 76% and 89%, respectively, further

suggesting the existence of imbalanced sampling. Data

augmentation techniques, including image flipping, zoom-

ing, shifting, and generative adversarial networks (GANS)

synthesis,14 should also be implemented cautiously.

Accordingly, the resulting data are not always reflective of

real anatomy. Finally, object delineation and motion

tracking may be incorporated into the step recognition task

for confirmation purposes. While step recognition algo-

rithms are entirely based on automated feature extraction

from whole pictures or selected image portions, the

extracted features generally pose interpretation problems.

Only the incorporation of more contextualized tasks (e.g.,

object delineation15 and motion tracking16) will facilitate

proper assessment of the intrinsic discriminative ability of

an algorithmic system, with the ultimate goals of improv-

ing its accuracy and addressing potential pitfalls. By

comparing the instrument-handling abilities of trainees

versus those of experienced surgeons, information from

object delineation and motion tracking will also be para-

mount in the field of surgical training. Finally, establishing

ground-truth labels, viz. data that accurately represent real-

world situations, will be a crucial milestone for surgical

training, although this will surely be more demanding than

the relatively simple recognition step. That might sound

ambitious, but transformative advances are still expected in

the field of AI applied to surgical learning. There is much

we can learn from robots, very much like they are currently

learning from our own experiences.
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