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The legendary surgeon-scientist Judah Folkman con-

tributed a wealth of discoveries on the fundamental role of

angiogenesis in cancer and other diseases.1 This line of

investigation led to more than 50 angiogenesis inhibitors

being investigated in clinical trials and at least 10 that are

currently approved by the US FDA.2 Angiogenesis inhi-

bitors work via a variety of mechanisms of action. Some

specifically bind to (1) vascular endothelial growth factor

(VEGF) or its receptor; (2) other growth factors such as

platelet-derived growth factor (PDGF), fibroblast growth

factor (FGF), and epidermal growth factor (EGF); or (3)

receptors or proteins on endothelial cells, blocking the

growth of blood vessels.3,4 Angiogenesis inhibitors remain

an attractive topic for preclinical development for cancer

therapy.

Secreted frizzled-related protein 2 (SFRP2) is a modu-

lator of Wnt signaling that is expressed in the vascular

endothelium of the majority of solid tumors.5 Courtwright

et al. reported that SFRP2 mediates angiogenesis by

demonstrating that tacrolimus inhibition of SFRP2

decreased vascular tube formation in vitro and reduced the

growth of angiosarcoma xenografts in vivo.5 Garcia et al.

build upon this work in the article entitled ‘‘Development

of a novel humanized monoclonal antibody to secreted

frizzled-related protein-2 that inhibits metaplastic breast

cancer and angiosarcoma growth in vivo’’.6

This study focuses attention to SFRP2 inhibition in

angiosarcomas and triple-negative breast cancer, two

aggressive malignancies where there exists an unmet need

for targeted therapies directed at tumor biology. Targeted

therapy efficacy is improved when biomarkers can be

found that help identify a responding patient population. It

is encouraging that SFRP2 does appear to be strongly

expressed in around 70% of breast cancers as well as many

other types of cancers based on a query of The Human

Protein Atlas (www.proteinatlas.org).7 The authors have

found that SFRP2 is broadly expressed across a variety of

solid malignancies, both epithelial and mesenchymal in

origin. Specifically, high SFRP2 expression is seen in 85%

of triple-negative breast cancers and 100% of angiosarco-

mas.5 Other investigators have also shown that the family

of SFRPs appears to play an important role in osteosar-

coma.8 Importantly, SFRP2 and its related isoforms are

involved in the Wnt pathway, which plays a critical role for

many other sarcoma subtypes (e.g. desmoid tumors, syn-

ovial sarcoma),9–11 which suggests potentially even more

relevance for this particular group of malignancies.

The authors elegantly demonstrated that their human-

ized monoclonal antibody against SFRP2 reduced tumor

growth and increased apoptosis of SVR angiosarcomas and

Hs578T triple-negative breast cancers in vivo. There is

definitely a need to demonstrate preclinical efficacy in mice

prior to human clinical trials, but the immunodeficient

mouse model and the lack of immune response when tested

in vitro with healthy human blood argues against the

mechanism of action being related to the host immune

response. This could be further studied using immuno-

competent syngeneic mouse models such as 4T1 in BALB/

c mice to model triple-negative breast cancer. Alterna-

tively, genetically engineered mouse models such as FVB-
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Tg(C3-1-TAg) or the p53 null ‘T11’ models for triple-

negative breast cancer or the Pdgfrb-Cre, Trp53R172H/R172H

and H2 K-fos-tg mouse models for angiosarcoma and

osteosarcoma, respectively, could be used.12–15 These

models would need to be tested to see if they express the

human target antigen, or otherwise engineered to do so.16

Immunotherapy has become a widely used modality in

many advanced cancers. The concept of synergy between

angiogenesis inhibitors and immunotherapy is of great

interest and has been explored by several other groups.17,18

Vascular normalization could, in theory, lead to a more

effective influx of immune cells necessary to achieve an

antitumor response.19 Furthermore, the hypothesis that

immune checkpoint inhibitors could improve the efficacy

of antiangiogenic therapies in cancer is certainly deserving

of further investigation.12,20,21 Immunotherapies can inhibit

the immunosuppressive endothelial barrier via inhibition of

programmed death-1 (PD-1) activation.20 Endothelial pro-

grammed death-ligand 1 (PD-L1) expression has been

reported to regulate angiogenesis by directly modulating

VEGF receptor 2 (VEGFR2) expression and increasing

endothelial proliferation; therefore, PD-1 blockade could

have antivascular activity.22 This mechanism is in line with

emerging evidence that angiogenesis and immunosup-

pressive responses frequently occur simultaneously

physiologically but may be capitalized on by

malignancies.23

Antagonism of SFRP2 in the vascular endothelium

would be expected to inhibit tumor growth, angiogenesis,

and tumor migration. Accompanying these expected ther-

apeutic effects would be toxicities. Serious toxicities seen

with antiangiogenic therapeutics, such as VEGF inhibitors

and multitargeted tyrosine kinase inhibitors, include

hypertension, hemorrhage, thrombosis, stroke and/or

myocardial infarction, proteinuria, reversible posterior

leukoencephalopathy, and endocrine dysfunction.24–26

Impaired wound healing via inhibition of migration and

proliferation of endothelial cells is also an important

described adverse effect. Therapy utilizing monoclonal

antibodies have described infusion-related reactions to

varying degrees.27 Although experience with bevacizumab

(a humanized monoclonal antibody to VEGF) has not

demonstrated clinically significant hypersensitivity,28 the

potential for infusion-related reactions with this novel

agent should not be ignored. Finally, other described

adverse effects include fatigue, gastrointestinal symptoms,

hand–foot syndrome, stomatitis, cutaneous toxicity, and

hepatotoxicity.

Looking to the history of VEGF inhibition and other

angiogenesis inhibitors, clinical benefit has been described

with monotherapy of a few agents (e.g. cabozantinib,

ramucirumab, sunitinib, sorafenib), and, more significantly,

in combination with cytotoxic chemotherapy in a wide

range of solid tumors.24,25,29 Therefore, determining the

efficacy of preclinical and eventually clinical combinations

with cytotoxic chemotherapy and even immunotherapy

will be useful future strategies.29 Important directions

moving forward will be to understand mechanisms of

resistance to SFRP2 inhibition and examine the role of

SRFP2 inhibition in combination with other modalities of

therapy (i.e. chemotherapy, radiation, immunotherapy, and

other targeted therapies).

Garcia et al. are to be congratulated on optimizing and

developing a novel experimental therapeutic agent; how-

ever, much work still remains to be done before embarking

on clinical trials. Preclinical studies such as pharmacoki-

netics (PK), toxicokinetics (TK), serum concentrations of

treated animals, tissue cross-reactivity, local tolerance, as

well as single and repeat dose toxicity must be considered

prior to applying to the US FDA for an Investigational New

Drug (IND) application.30 It is customary that phase I trials

include a large spectrum of solid malignancies, including

patient populations suitable for treatment with a goal of

determining the recommended phase II dose (RP2D) and

establishing the safety of the drug in humans. It would be

anticipated that the target populations of interest,

angiosarcoma and triple-negative breast cancer patients,

would be well represented in a phase II trial, in which a

preliminary efficacy signal might be detected. The process

of drug discovery is an arduous one, but the timeline for

clinical trial testing of a novel cancer therapy may take an

additional decade. Given that patients with often lethal

cancers such as angiosarcomas and triple-negative breast

cancers may stand to benefit from this novel therapy, we

encourage the authors to go full speed ahead to embark on

clinical trials evaluating this monoclonal antibody.
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