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ABSTRACT

Objective. The aim of this study was to investigate whe-

ther pretherapeutic, multiparametric magnetic resonance

imaging (MRI) radiomic features can be used for predict-

ing non-response to neoadjuvant therapy in patients with

locally advanced rectal cancer (LARC).

Methods. We retrospectively enrolled 425 patients with

LARC [allocated in a 3:1 ratio to a primary (n = 318) or

validation (n = 107) cohort] who received neoadjuvant

therapy before surgery. All patients underwent T1-weigh-

ted, T2-weighted, diffusion-weighted, and contrast-

enhanced T1-weighted MRI scans before receiving

neoadjuvant therapy. We extracted 2424 radiomic features

from the pretherapeutic, multiparametric MR images of

each patient. The Wilcoxon rank-sum test, Spearman

correlation analysis, and least absolute shrinkage and

selection operator regression were successively performed

for feature selection, whereupon a multiparametric MRI-

based radiomic model was established by means of mul-

tivariate logistic regression analysis. This feature selection

and multivariate logistic regression analysis was also per-

formed on all single-modality MRI data to establish four

single-modality radiomic models. The performance of the

five radiomic models was evaluated by receiver operating

characteristic (ROC) curve analysis in both cohorts.

Results. The multiparametric, MRI-based radiomic model

based on 16 features showed good predictive performance

in both the primary (p\ 0.01) and validation (p\ 0.05)

cohorts, and performed better than all single-modality

models. The area under the ROC curve of this multipara-

metric MRI-based radiomic model achieved a score of

0.822 (95% CI 0.752–0.891).

Conclusions. We demonstrated that pretherapeutic, mul-

tiparametric MRI radiomic features have potential in

predicting non-response to neoadjuvant therapy in patients

with LARC.

The standard treatment for patients with locally

advanced rectal cancer (LARC) is neoadjuvant chemora-

diotherapy followed by total mesorectal excision.1 Many

studies have demonstrated that the response to neoadjuvant

therapy affects prognosis, and that, in particular, pathologic

complete response (pCR) has a favorable effect on

outcome.2–4
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However, a sizeable proportion of patients show non-

response to neoadjuvant therapy. These non-responders can

be defined as those who have no tumor regression changes,

based on resection specimens, after neoadjuvant therapy. A

number of studies have reported that approximately 7% of

LARC patients showed non-response to preoperative

chemoradiotherapy and more than 20% developed grade

3–4 toxic effects such as diarrhea, nausea, hematological

infection, and fever.5–7 These non-responders may benefit

little from neoadjuvant therapy, but still experience the

related toxicity. More importantly, tumor progression may

occur in a portion of these patients during therapy. Thus,

accurately predicting non-responders before administering

neoadjuvant therapy is important for devising a personal-

ized treatment plan, which includes avoiding overtreatment

and choosing alternative treatments in a timely manner.

However, there is currently no robust method for accu-

rately stratifying patients into non-response and response

groups, other than by pathologic evaluation after com-

pleting neoadjuvant therapy.

Due to the heterogeneity of tumors,8 accurately pre-

dicting a non-response to neoadjuvant therapy remains

challenging. Numerous studies have sought molecular

biomarkers for early identification of good and poor

responders to neoadjuvant therapy in patients with LARC,

but no robust predictive factors have been identified.9–12

Magnetic resonance imaging (MRI) is the most com-

monly used diagnostic imaging approach for rectal tumors.

Pretherapeutic MRI features, such as tumor volume, tumor

height, depth of tumor penetration, and absence of extra-

mural venous invasion, have been associated with a better

response to therapy;13–15 however, these visual features

have a poor ability to accurately predict non-response for

administering therapy.

Radiomics, a novel approach to medical image analysis,

can extract high-throughput quantitative features from

images, and thus provides a wealth of information that

cannot be assessed visually but is associated with tumoral

heterogeneity.16 Therefore, tumor characteristics can be

better understood by analyzing radiomic features. Radio-

mics has facilitated progress in precise diagnosis,17,18

prediction of lymph node metastasis,19,20 and survival

analysis.21,22 Previous radiomic studies focused on thera-

peutic responses in LARC patients were mainly based on

combining pre- and post-therapeutic imaging data or ima-

ges obtained during neoadjuvant therapy.23–25 Most of

these studies focused on single-modality imaging, such as

dynamic contrast-enhanced MRI,26 diffusion-weighted

MRI,27 T2-weighted MRI,28 and fluorodeoxyglucose

positron emission tomography,29 which may have inherent

limitations in reflecting tumor biology. A recent study with

a small sample size demonstrated that features derived

from multiparametric MRI performed better than that

derived from single-modality MRI in terms of predicting

good responders from poor responders, but the study

lacked independent validation.30

Based on the initial success of MRI-based radiomics in

assessing pCR, we hypothesized that pretherapeutic MRI-

based radiomics would have potential in predicting non-

responders to neoadjuvant therapy, and that multipara-

metric MRI would be more effective than single-modality

MRI in this task. Therefore, in this study we investigated

whether a pretherapeutic, multiparametric MRI-based

radiomic model could predict non-responders to neoadju-

vant therapy, as integrating a radiomic model and clinical

practice may facilitate a flexible therapeutic schedule prior

to commencing neoadjuvant therapy.

MATERIALS AND METHODS

Patients

This retrospective single-center study was approved by

the Ethics Committee of the Sixth Affiliated Hospital, Sun

Yat-sen University. The need for informed patient consent

was waived due to the retrospective nature of this study.

Overall, 425 patients with biopsy-proven LARC receiving

pretherapeutic, multiparametric MRI examination and

standard treatment between November 2012 and May 2017

at this hospital were enrolled; 248 of these patients

underwent 5-fluorouracil, leucovorin, and oxaliplatin

treatment, and 177 underwent 5-fluorouracil and concur-

rent radiation treatment (total dose 46.0–50 Gy). The

multiparametric MRI consisted of T1-weighted fast spin

echo imaging (T1w), T2-weighted fast spin echo imaging

(T2w), diffusion-weighted imaging (DWI), and contrast-

enhanced T1-weighted fast spin echo imaging (CE-T1w).

Two gastrointestinal radiologists with 10 and 30 years’

experience reassessed the rectal tumor in MRI without

medical record information, and obtained consistent stag-

ing results, including clinical T stage (cT stage) and

clinical N stage (cN stage). Other clinical information,

including sex, age, and carcinoembryonic antigen (CEA;

cutoff C 5 ng/ml, \ 5 ng/ml) blood level31 was com-

pletely recorded. Appendix 1 describes the recruitment of

patients.

Pathologic response after neoadjuvant therapy was

reassessed based on resection specimens by two patholo-
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gists with 10 and 20 years’ experience in consensus.

Pathologic grading of primary tumor regression was per-

formed according to the four-tier American Joint

Committee on Cancer (AJCC) tumor regression grade

(TRG) system.32 The four TRG groups are: TRG 0, no

residual tumor cells; TRG 1, single tumor cell or small

group of tumor cells; TRG 2, residual cancer with

desmoplastic response; and TRG 3, minimal evidence of

tumor response. According to the AJCC TRG system,

patients were categorized into two groups: non-responders

(TRG 3) and responders (TRG 0–2). Patients were then

randomly divided into two independent cohorts: a primary

cohort used for modeling (proportion = 3/4; TRG 3:

n = 39, TRG 0–2: n = 279) and a validation cohort used

for testing (proportion = 1/4; TRG 3: n = 13, TRG 0–2:

n = 94). The clinical characteristics of patients in the pri-

mary and validation cohorts are summarized in Table 1.

Image Data Acquisition and Radiomic Signature

Construction

Appendix 2 describes the pretherapeutic, multipara-

metric MRI acquisition; Appendix 3 describes details of

tumor masking and radiomic feature extraction; and

Appendix 4 describes details of the feature selection

method and radiomic signature construction. It should be

noted that we built a multiparametric MRI-based radiomic

(MPR) model and four single-modality models via the

same workflow on the primary cohort only.

Evaluation and Comparison of Different Prediction

Models

Receiver operating characteristic (ROC) curve analysis

was conducted in both cohorts to evaluate the predictive

ability of radiomic signatures. The Delong test was per-

formed to estimate whether the difference between two

arbitrary ROC curves was statistically significant.

Univariate and multivariate logistic regression analyses

were conducted to select the most useful predictive clinical

variables (Wald test p-values\ 0.05). A multivariate

logistic prediction model was then built by combining the

MPR signature and the selected clinical variables; this was

termed the CMPR model.

Calibration curves accompanied by the Hosmer–Leme-

show goodness-of-fit (GOF) test were plotted to assess the

consistency between the estimated probability and the

actual rate of TRG 3; p values[ 0.05 indicate a good fit of

TABLE 1 Clinical

characteristics of patients in the

primary and validation cohorts

Characteristic Primary cohort p value Validation cohort p value

TRG 3 TRG 0–2 TRG 3 TRG 0–2

Age, years 50.31 ± 13.89 53.98 ± 12.39 0.089 57.46 ± 8.99 54.06 ± 11.11 0.294

Sex 0.194 0.509

Male 31 191 11 69

Female 8 88 2 25

CEA 0.384 0.387

Positive 18 107 4 42

Negative 21 172 9 52

cT stage 1 0.744

T2 3 22 0 4

T3 29 203 11 71

T4 7 54 2 19

cN stage 0.573 0.196

N0 6 62 4 21

N1 18 108 3 47

N2 15 109 6 26

Continuous data are expressed as mean ± SD. p values for categorical variables, such as sex and CEA,

were from the Fisher’s exact test analysis. p values for categorical variables, such as sex and CEA, were

from the Fisher’s exact test analysis. p values for categorical variables, such as cT stage and cN stage, were

from the Pearson’s Chi square test analysis. p values for continuous variables were from the independent

samples t test analysis

TRG tumor regression grade, CEA carcinoembryonic antigen, cT stage clinical T stage, cN stage clinical N

stage
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the model.33 The classification accuracy, sensitivity, and

specificity, according to the Youden index cut-off,34 were

calculated to quantize the discrimination ability of the

prediction models in both cohorts.

RESULTS

Demographic and Clinical Characteristics

Detailed information regarding study participants is

presented in Table 1 and Appendix Table A3. In this study,

we enrolled 425 LARC patients who underwent standard

neoadjuvant therapy, including 52 (12.23%) non-respon-

ders (42 males, 10 females) and 373 (87.77%) responders

(260 males, 113 females). There were no significant dif-

ferences in clinical variables between cohorts.

Feature Selection and Radiomic Signature

Construction

Sixteen features were selected for constructing the MPR

model. In both cohorts, the MPR signature was signifi-

cantly higher in the TRG 3 group than in the TRG 0–2

group, as shown in Fig. 1. Single-modality radiomic

models, including the apparent diffusion coefficient (ADC;

seven selected features), T1w (five selected features), CE-

T1w (three selected features), and T2w (three selected

features) models, were also constructed.

Evaluation and Comparison of Different Prediction

Models

The MPR model yielded the highest area under the

curve (AUC) in both cohorts, and was statistically signifi-

cantly higher than other single-modality models (p\ 0.05)

in the primary cohort, as shown in Fig. 2.

In the multivariate analysis, both age [odds ratio (OR)

0.57, p = 0.0071] and MPR signature (OR 17.78,

p\ 0.001) were significantly associated with non-re-

sponse, as shown in Table 2. Thus, the CMPR model was

built using logistic regression, combining age and the MPR

signature in the primary cohort.

In both cohorts, the CMPR model performed similarly

as the MPR model (Delong test p values [ 0.05) in the

ROC analysis. However, the calibration curve generated

from the CMPR model did not show good consistency

between prediction and actual observation in the validation

cohort (Hosmer–Lemeshow GOF test p value \ 0.05), as

shown in Fig. 3. The AUC, accuracy, sensitivity, and

specificity of the MPR and CMPR models, according to the

Youden index cut-off, are listed in Appendix Table A4.

DISCUSSION

Our study demonstrated that pretherapeutic, multipara-

metric MRI radiomic features have great potential in

predicting non-responders to neoadjuvant therapy in

patients with LARC. Based on the 16 most predictive

features, as listed in Appendix Table A5, we established

the MPR model by multivariate logistic regression analy-

sis. In an independent validation cohort, the MPR model

showed good predictive performance (AUC 0.773).

For radiomic feature extraction, we mainly used the

Laplacian of Gaussian (LoG) filter for image preprocess-

ing. An LoG filter can smooth images through different

parameter scale settings, which may help to decrease the

influence of noise. It can also enhance textural details,
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which will help to increase the efficiency of capturing

phenotypic features that map to tumoral heterogeneity.

Because of these advantages, LoG filters have been wildly

used in radiomic studies, mostly using CT images.19,35,36 In

an early MRI-based radiomic study, an LoG filter was used

to extract features for predicting pCR in rectal cancer

patients,37 while, in the present study, we extracted LoG

features on five scales, in addition to the features from the

original images. We then selected 16 features and linearly

constructed an MPR signature by logistic regression anal-

ysis. In the MPR model, there was an apparent difference

between the number of features generated from LoG filters

and that from the original images. Given that the LoG filter

features accounted for a higher proportion of the features

employed in the MPR model (10/16) than the original

image features, it appears that LoG features may be more

suitable than original image features for predicting a non-

response. Nevertheless, original image features remain

indispensable to the MPR model because the odds ratio of

the feature GLCM_entropy_135 generated from the origi-

nal image was the largest among all the features employed

(OR 3.2808, p = 0.0059).

FIG. 2 Performance comparison of the MPR and single-modality

models. a, b ROC curves. c, d Delong test p-values. ROC receiver

operating characteristic, AUC area under the curve, MPR

multiparametric magnetic resonance imaging-based radiomic model,

ADC apparent diffusion coefficient, T1w T1-weighted, CE-T1w

contrast-enhanced T1-weighted, T2w T2-weighted, CI confidence

interval
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In the present study, we also investigated differences in

the performance of the MPR and single-modality models.

The CE-T1w model was the best-performing single-

modality model in both the primary and validation cohorts.

Compared with other imaging modalities, CE-T1w images

enhanced the contrast of the tumor area, making the texture

distribution clearer, which may have helped to improve the

predictive ability of the textural feature. The MPR model

performed significantly better than the CE-T1w model

(p = 0.01775) in the primary cohort, implying that each

modality has limitations in presenting tumor characteris-

tics. Fusing multimodal information could facilitate a more

comprehensive description of tumor characteristics, and

could undoubtedly help to establish a more precise pre-

diction model.

Some rectal cancer studies have shown that incorpo-

rating clinical variables into the radiomics model can

improve predictive performance.19,38 Hence, we attempted

to combine the MPR signature with a clinically associated

variable (age) to establish the CMPR model. However,

compared with the MPR model, the CMPR model did not

improve the predictive ability in the validation cohort.

More specifically, the MPR and CMPR models achieved

the same predictive accuracy (accuracy = 76.64%), and,

compared with the MPR model, the specificity of the

CMPR model increased by only 0.97%, while the sensi-

tivity of the CMPR model decreased by 7.69%. Predictive

robustness evaluation also showed that the predictive per-

formance of the two models was similar. Therefore, in the

present study, we deemed that the MPR model was more

suitable.

At present, our understanding of factors influencing the

effect of chemoradiotherapy is extremely poor. Several

factors, such as apoptosis, proliferation, hypoxia, and cell

cycle, have been investigated in this respect.39,40 Gene

mutations in the related pathways have been shown to

cause resistance to chemoradiation. With the help of

radiomics and increasing medical imaging data, it may be

possible to discover a relationship between medical images

and non-response. In future, mapping the predictive image

features to various molecules will help to discover major

biomarkers related to resistance to chemoradiation in a

more efficient and economical way.

There are some limitations to this study. First, the pro-

portion of non-responders was small in the cohort as a

whole, and, second, this was a single-center study.

Repeatability and reproducibility of radiomic features are

mainly affected by two factors: segmentation and image

acquisition protocol.41 In our study, the region of interest

was manually delineated by two experienced gastroin-

testinal MRI radiologists in consensus, resulting in a more

accurate segmentation and decreasing the influence derived

from interobserver variability. In addition, all these patients

were scanned by the same MRI machine with fixed scan-

ning parameters, avoiding the potential impact of a

heterogeneous acquisition protocol. In spite of this, and

considering the large heterogeneity of data from different

centers, the model should be validated using a multicenter

dataset before being applied to other institutions. Third,

additional clinical information should be collected in future

to investigate whether the CMPR model could perform

better than the MPR model.

CONCLUSIONS

This study showed that pretherapeutic, multiparametric

MRI radiomic features have potential in predicting non-

response to neoadjuvant therapy prior to commencing this

TABLE 2 Univariate and

multivariate logistic regression

analyses for clinical

characteristics and MPR

signature

Parameter Univariate Multivariate

p value OR 95% CI p value OR 95% CI

Sex 0.1645 1.78 0.78–4.04 0.8063 1.21 0.45–2.81

Age 0.0903 0.74 0.52–1.05 0.0055 0.55 0.36–0.84

CEA 0.3515 1.38 0.70–2.70 0.4292 1.37 0.86–1.10

cT stage 0.4768 0.63 0.17–2.27 0.2003 0.41 0.63–3.01

cN stage 0.6303 1.24 0.50–3.05 0.6935 0.80 0.27–2.38

MPR signature \ 0.0001 14.51 5.82–36.13 \ 0.0001 17.78 6.73–46.99

The p value was from the Wald test analysis. Bold values indicate p\ 0.05

OR odds ratio, CI confidence interval, MPR multiparametric magnetic resonance imaging-based radiomic

model, CEA carcinoembryonic antigen, cT stage clinical T stage, cN stage clinical N stage
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therapy. In addition, multiparametric MRI was more

effective than single-modality MRI in this prediction task.

This multiparametric MRI-based radiomic model may help

doctors make more appropriate treatment plans for patients

with LARC before they receive neoadjuvant therapy.
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