Skip to main content

Advertisement

Log in

Patient In-Use Stability Testing of FDA-Approved Metformin Combination Products for N-Nitrosamine Impurity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Between February 2020 and January 2022, the Food and Drug Administration (FDA) recalled 281 metformin extended-release products due to the presence of N-nitrosodimethylamine (NDMA) above the acceptable daily intake (ADI, 96 ng/day). Our previous studies indicated presence of NDMA levels above ADI in both metformin immediate and extended-release products. When metformin products have NDMA impurities, it is indispensable to check for the same impurities in metformin combination products. Therefore, the objective of the present study was to evaluate in-use stability of commercial metformin combination products for NDMA. For this purpose, metformin products in combination with glyburide (GB1-GB12), glipizide (GP1-GP8), pioglitazone (P1-P3), alogliptin (A1, A2), and linagliptin (L1, L2) were repacked in pharmacy vials, stored at 30°C/75% RH for 3 months, and monitored for NDMA impurity. The NDMA level varied from 0 to 156.8 ± 32.8 ng/tablet initially and increased to 25.4 ± 5.1 to 455.0 ± 28.4 ng/tablet after 3 months of exposure to in-use condition. Initially, 18 products have NDMA level below ADI limit before exposure which decreased to 7 products (GB5, GP3, GP5, A1, A2, L1, and L2) meeting specification. In conclusion, in-use stability study provides quality and safety risk assessment of drug products where nitroso impurities are detected in the probable condition of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

References

  1. World Health Organization, Diabetes key facts. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 5 Sep 2023

  2. Kinaan M, Ding H, Triggle CR. Metformin: An old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract. 2015;24:401–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Odawara M, Kawamori R, Tajima N, Iwamoto Y, Kageyama S, Yodo Y, Ueki F, Hotta N. Long-term treatment study of global standard dose metformin in Japanese patients with type 2 diabetes mellitus. Diabetol Int. 2017;8:286–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khokhar A, Umpaichitra V, Chin VL, Perez-Colon S. Metformin use in children and adolescents with prediabetes. Pediatr Clin North Am. 2017;64:1341–53.

    Article  PubMed  Google Scholar 

  5. Sirtori CR, Pasik C. Re-evaluation of a biguanide, metformin: Mechanism of action and tolerability. Pharmacol Res. 1994;30(3):187–228.

    Article  CAS  PubMed  Google Scholar 

  6. Ruisheng S. Mechanism of metformin: A tale of two sites. Diabetes Care. 2016. https://doi.org/10.2337/dci15-0013.

  7. Kanto K, Ito H, Noso S, Babaya N, Hiromine Y, Taketomo Y, Toma J, Niwano F, Yasutake S, Kawabata Y, Ikegami H. Effects of dosage and dosing frequency on the efficacy and safety of high-dose metformin in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig. 2017;9(3):587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drugs@FDA. FDA approved drugs. https://www.accessdata.fda.gov/scripts/cder/daf/. Accessed 5 May 2023.

  9. FDA guidance for industry on control of nitrosamine impurities in human drugs. 2020a. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/control-nitrosamine-impurities-human-drugs. Accessed 5 May 2023.

  10. FDA updates and press announcements on NDMA in metformin. Nostrum Laboratories voluntarily recalls an additional lot of extended release metformin. June 2021. https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-and-press-announcements-ndma-metformin. Accessed 5 May 2023.

  11. Ashworth IW, Curran T, Dirat O, Zheng J, Whiting M, Lee D. A Consideration of the extent that tertiary amines can form N-nitroso dialkylamines in pharmaceutical products. Org Process Res Dev. 2023. https://doi.org/10.1021/acs.oprd.3c00073.

    Article  Google Scholar 

  12. Boetzel R, Schlingemann J, Hickert S, Korn C, Kocks G, Luck B, Blom G, Harrison M, François M, Allain L, Wu Y, Bousraf Y. A nitrite excipient database: A useful tool to support N-nitrosamine risk assessments for drug products. J Pharm Sci. 2023;112:1615–24.

    Article  CAS  PubMed  Google Scholar 

  13. FDA requests removal of all ranitidine products (Zantac) from the market. 2020b https://www.fda.gov/news-events/press-announcements/fda-requests-removal-all-ranitidine-products-zantac-market. Accessed 1 May 2023.

  14. FDA-U.S. Food & Drug Administration. Questions and answers: NDMA impurities in metformin products. Q&A. 2020c. Available at: https://www.fda.gov/drugs/drugsafety-and-availability/questions-and-answers-ndma-impurities-metformin-products. Accessed 1 May 2023.

  15. FDA updates on NDMA in metformin. https://www.fda.gov/drugs/drug-safety-and-availability/search-list-recalled-metformin-products. Accessed 1 May 2023.

  16. ICH guideline M7(R1) on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. 2018 https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m7r1-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit_en.pdf. Accessed 5 May 2023.

  17. WHO-World Health Organization. Information note: Update on nitrosamine impurities. 2019. https://www.who.int/news/item/20-11-2019-information-notenitrosamine-impurities. Accessed 1 May 2023.

  18. Aldawsari FS, Alshehry YM, Alghamdi TS. N-nitrosodimethylamine (NDMA) contamination of ranitidine products: A review of recent findings. J Food Drug Anal. 2021;29(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoon HJ, Kim JH, Seo GH, Park H. Risk of cancer following the use of N-nitrosodimethylamine (NDMA) contaminated ranitidine products: a nationwide cohort study in South Korea. J Clin Med. 2021;10(1):153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charoo NA, Dharani S, Khan MA, Rahman Z. Nitroso impurities in drug products: an overview of risk assessment, regulatory milieu, and control strategy. AAPS PharmSciTech. 2023;24(2):60.

    Article  CAS  PubMed  Google Scholar 

  21. EMA-European Medicines Agency 2019. EMA to review ranitidine medicines following detection of NDMA. Press Release. Available at: https://www.ema.europa.eu/en/news/ema-review-ranitidine-medicines-following-detection-ndma. Accessed 1 May 2023.

  22. FDA-U.S. Food & Drug Administration. Laboratory analysis of ranitidine and nizatidine product. 2019a. https://www.fda.gov/drugs/drug-safety-and-availability/laboratory-tests-ranitidine. Accessed 1 May 2023.

  23. FDA-U.S. Food & Drug Administration. Statement alerting patients and health care professionals of NDMA found in samples of ranitidine. Statement. 2019b. Available at: https://www.fda.gov/news-events/press-announcements/statement-alertingpatients-and-health-care-professionals-ndma-found-samples-ranitidine. Accessed 1 May 2023.

  24. Schmidtsdorff S, Neumann J, Schmidt AH, Parr MK. Risk assessment for nitrosated pharmaceuticals: a future perspective in drug development. Arch Pharm. 2022;355: e2100435.

    Article  Google Scholar 

  25. Dharani S, et al. In-use stability assessment of FDA approved metformin immediate release and extended release products for N-nitrosodimethylamine and dissolution quality attributes. Int J Pharm. 2022;623: 121923.

    Article  CAS  PubMed  Google Scholar 

  26. Sabina P, Aernout H. The impact of N-nitrosamine impurities on clinical drug development. J Pharm Sci. 2023;112(5):1183–91.

    Article  Google Scholar 

  27. Zmysłowski A, Książek I, Szterk A. N-Nitrosodimethylamine contamination in the metformin finished products. Molecules. 2020;25(22):5304.

  28. Schlingemann J, Boucley C, Hickert S, Bourasseau L, Walker M, Celdran C, Chemarin T, Pegues C, Fritzsche M, Keitel J, Goettsche A, Seegel M, Leicht S, Guessregen B, Reifenberg P, Wetzel S, Müller T, Schooren F, Schuster T, Liebhold M, Kirsch A, Krueger P, Saal C, Mouton B, Masanes S. Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite. Int J Pharm. 2022;620: 121740.

    Article  CAS  PubMed  Google Scholar 

  29. Schlingemann J, Burns MJ, Ponting DJ, Martins Avila C, Romero NE, Jaywant MA, Smith GF, Ashworth IW, Simon S, Saal C, Wilk A. The landscape of potential small and drug substance related nitrosamines in pharmaceuticals. J Pharm Sci. 2023;112(5):1287–304.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyenpho A, Ciavarella AB, Siddiqui A. Rahman Z, Akhtar S, Hunt R, Korang-Yeboah M, Khan MA. Evaluation of in-use stability of anticoagulant drug products: Warfarin sodium. J Pharm Sci. 2015;104(12):4232–4240.

  31. Dharani S, Barakh Ali SF. Afrooz H, Bhattacharya R, Khan MA, Rahman Z. Quality and in-use stability comparison of brand and generics of extended release phenytoin sodium capsules. J Pharm Sci. 2019;108:1808–1817.

  32. ICH Guidance for industry. Validation of analytical procedures: Methodology, Q2B. 1996. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2b-validation-analytical-procedures-methodology. Accessed 1 May 2023

  33. USP41-NF36: General Chapters: <1225> Validation of compendial procedures. Rockville, MD: United States pharmacopeia; 2018. p. 7665–7671.

  34. Rahman Z, Dharani S, Barakh Ali SF. Afrooz H, Reddy IK, Khan MA. Effect of processing parameters and stability on the disproportionation and dissolution of extended release capsule of phenytoin sodium. Int J Pharm. 2018;550(1–2):290–299.

  35. Rahman Z, Dharani S, Barakh Ali SF. Nutan MTH, Khan MA. Effects of diluents on physical and chemical stability of phenytoin and phenytoin sodium. AAPS PharmSciTech. 2020;21:104.

  36. National center for biotechnology information. PubChem compound summary for CID 4091, Metformin. 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Metformin. Accessed 1 May 2023.

  37. National center for biotechnology information. PubChem compound summary for CID 6124, N- Nitrosodimethylamine. 2021. https://pubchem.ncbi.nlm.nih.gov/compound/N-Nitrosodimethylamine. Accessed 1 May 2023.

  38. Yang J, Marzan TA, Ye W. Sommers CD, Rodriguez JD, Keire DA. A cautionary tale: Quantitative LC-HRMS analytical procedures for the analysis of N-nitrosodimethylamine in metformin. AAPS J. 2020;22:89.

  39. EMA- European Medicines Agency 2020. Nitrosamine impurities in human medicinal products, EMEA/H/A-5(3)/1490, EMA/369136/2020. https://www.ema.europa.eu/en/documents/referral/nitrosamines-emea-h-a53-1490assessmentreporten.pdf. Accessed 1 May 2023.

  40. Hao G, Hu R, Wang X, Gao P, Wang L, Jiang M, Xin L, Tan G, Zhao Y, Sun F, Chu D, Lv J, You J, Huang F, Song X. N-Nitrosodimethylamine formation in metformin hydrochloride sustained-release tablets: Effects of metformin and hypromellose used in drug product formulation. J Pharm Biomed Anal. 2023;222: 115066.

    Article  CAS  PubMed  Google Scholar 

  41. Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Rojsitthisak P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. Saudi Pharm J. 2023;31(2):295–311.

    Article  CAS  PubMed  Google Scholar 

  42. Prachi S, Komal C, Priti MJ. Influence of peroxide impurities in povidone on the stability of selected β-blockers with the help of HPLC. AAPS PharmSciTech. 2017;2017(18):2410–7.

    Article  Google Scholar 

  43. Hartauer KJ, Arbuthnot GN, Baertschi SW, Johnson RA, Luke WD, Pearson NG, Rickard EC, Tingle CA, Tsang PK, Wiens RE. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: Identification and control of an oxidative degradation product. Pharm Dev Technol. 2000;5(3):303–10.

    Article  CAS  PubMed  Google Scholar 

  44. Nassar MN, Nesarikar VN, Lozano R, Parker WL, Huang Y, Palaniswamy V, Xu W, Khaselev N. Influence of formaldehyde impurity in polysorbate 80 and PEG-300 on the stability of a parenteral formulation of BMS-204352: Identification and control of the degradation product. Pharm Dev Technol. 2004;9(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  45. Javed M, Tasmim S, Abdelrahman MK, Ambulo CP, Ware TH. Degradation-induced actuation in oxidation-responsive liquid crystal elastomers. Crystals (Basel). 2020;10(5):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A. 2014;102(12):4244–51.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.D.: validation, investigation, and visualization. E.M.M.: validation, investigation, and visualization. Z.R.: conceptualization, formal analysis, writing—review and editing, supervision, and project administration. M.A.K.: conceptualization, formal analysis, writing—review and editing, supervision, and project administration.

Corresponding author

Correspondence to Mansoor A. Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharani, S., Mohamed, E.M., Rahman, Z. et al. Patient In-Use Stability Testing of FDA-Approved Metformin Combination Products for N-Nitrosamine Impurity. AAPS PharmSciTech 25, 19 (2024). https://doi.org/10.1208/s12249-023-02724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02724-3

Keywords

Navigation