Skip to main content

Advertisement

Log in

Separable and Inseparable Silk Fibroin Microneedles for the Transdermal Delivery of Colchicine: Development, Characterization, and Comparisons

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 22 March 2024

This article has been updated

Abstract

Colchicine is the first-line option for both the treatment and prophylaxis of gout flares. However, due to potentially severe side effects, the clinical use of colchicine is limited. A well-tolerated and safe delivery system for colchicine is widely desired. For this purpose, colchicine-loaded inseparable microneedles were fabricated using silk fibroin. Additionally, separable microneedles made of silk fibroin as the needle tips and PVP K30 as the base material were developed. Both types of microneedles were evaluated for their mechanical strength, swelling and dissolution characteristics, insertion abilities, degradation properties, in vitro penetration, skin irritation, and in vivo anti-gout effects. The results demonstrated that separable microneedles had greater mechanical strength and insertion ability. Moreover, the separable microneedles separated quickly and caused little skin irritation. In the pharmacodynamic test, mice with acute gouty arthritis responded significantly to treatment with separable microneedles. In conclusion, the separable silk fibroin-based microneedles provide a promising route for colchicine delivery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

Change history

Abbreviations

COL:

Colchicine

MNs:

Microneedles

SF:

Silk fibroin

SF-MNs:

Silk fibroin–based microneedles

SF-SMNs:

Silk fibroin–based separable microneedles

SF-IMNs:

Silk fibroin–based inseparable microneedles

PVP-MNs:

PVP-based microneedles

PF:

Parafilm

SF-SMNs-COL:

Silk fibroin–based separable microneedles loaded with colchicine

SF-IMNs-COL:

Silk fibroin–based inseparable microneedles loaded with colchicine

SF-SMNs-blank:

Silk fibroin–based separable microneedles without drug

SF-IMNs-blank:

Silk fibroin–based inseparable microneedles without drug

i.g.:

Intragastric administration

AGA:

Acute gout arthritis

MSU:

Monosodium urate

References

  1. Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: a review on chemical structure and clinical usage. Infect Disord Drug Targets. 2018;18:105–21.

    CAS  PubMed  Google Scholar 

  2. Mahboobi S, Sellmer A, Beckers T. Development of tubulin inhibitors as antimitotic agents for cancer therapy. In: Atta-ur-Rahman (ed). Studies in Natural Products Chemistry, 2006;33:719-750.

  3. Burns CM, Wortmann RL. Latest evidence on gout management: what the clinician needs to know. Ther Adv Chronic Dis. 2012;3:271–86.

    PubMed  PubMed Central  Google Scholar 

  4. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthrit Care Res. 2020;72:744–60.

    Google Scholar 

  5. FDA approves Lodoco (colchicine) as the first anti-inflammatory drug for cardiovascular disease. 2023. https://www.drugs.com/newdrugs/fda-approves-lodoco-colchicine-first-anti-inflammatory-cardiovascular-6041.html. Accessed 30 Aug 2023.

  6. Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol. 2010;48:407–14.

    CAS  Google Scholar 

  7. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E. Acute colchicine intoxication–possible role of erythromycin administration. J Rheumatol. 1992;19:494–6.

    CAS  PubMed  Google Scholar 

  8. Niel E, Scherrmann JM. Colchicine today. Joint Bone Spine. 2006;73:672–8.

    CAS  PubMed  Google Scholar 

  9. Luciani I. Fatal i.v. colchicine injection in a 60-year-old woman. J Emerg Nurs. 1989;15:80–2.

    CAS  PubMed  Google Scholar 

  10. Stemmermann GN, Hayashi T. Colchicine intoxication. A reappraisal of its pathology based on a study of three fatal cases. Hum Pathol. 1971;2:321–32.

    CAS  PubMed  Google Scholar 

  11. Terkeltaub RA. Colchicine update: 2008. Semin Arthritis Rheu. 2009;38:411–9.

    CAS  Google Scholar 

  12. Ferron GM, Rochdi M, Jusko WJ, Scherrmann JM. Oral absorption characteristics and pharmacokinetics of colchicine in healthy volunteers after single and multiple doses. J Clin Pharmacol. 1996;36:874–83.

    CAS  PubMed  Google Scholar 

  13. Rochdi M, Sabouraud A, Girre C, Venet R, Scherrmann JM. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur J Clin Pharmacol. 1994;46:351–4.

    CAS  PubMed  Google Scholar 

  14. Hello CL. Chapter 5 - the pharmacology and therapeutic aspects of colchicine. In: Cordell GA (ed). The Alkaloids: Chemistry and Biology, 1999;53:287-352.

  15. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016;23:564–78.

    CAS  PubMed  Google Scholar 

  16. Joshi SA, Jalalpure SS, Kempwade AA, Peram MR. Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine. J Drug Deliv Sci Tec. 2017;41:444–53.

    CAS  Google Scholar 

  17. El-Feky G, El-Naa M, Mahmoud A. Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation. J Drug Deliv Sci Tec. 2019;49:24–34.

    CAS  Google Scholar 

  18. Chen ZW, Han B, Liao LK, Hu XG, Hu QH, Gao YH, et al. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J Drug Deliv Sci Tec. 2020;55:101487.

  19. Karim Z, Karwa P, Hiremath S. Polymeric microneedles for transdermal drug delivery- a review of recent studies. J Drug Deliv Sci Tec. 2022;77:103760.

    CAS  Google Scholar 

  20. Matadh AV, Jakka D, Pragathi SG, Rangappa S, Shivakumar HN, Maibach H, et al. Polymer-coated polymeric (PCP) microneedles for controlled dermal delivery of 5-fluorouracil. AAPS PharmSciTech. 2022;24:9.

    PubMed  Google Scholar 

  21. Dabholkar N, Gorantla S, Waghule T, Rapalli VK, Kothuru A, Goel S, et al. Biodegradable microneedles fabricated with carbohydrates and proteins: revolutionary approach for transdermal drug delivery. Int J Biol Macromol. 2021;170:602–21.

    CAS  PubMed  Google Scholar 

  22. Ahmad Z, Khan MI, Siddique MI, Sarwar HS, Shahnaz G, Hussain SZ, et al. Fabrication and characterization of thiolated chitosan microneedle patch for transdermal delivery of tacrolimus. AAPS Pharmscitech. 2020;21:68.

    CAS  PubMed  Google Scholar 

  23. Yu W, Jiang G, Liu D, Li L, Tong Z, Yao J, Kong X. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mat Sci Eng C-Mater. 2017;73:425–8.

    CAS  Google Scholar 

  24. Yang Y, Song W, Wang N, Ren Y, Liu H. Tip-concentrated microneedle patch delivering everolimus for therapy of multiple sclerosis. Biomater Adv. 2022;135:212729.

    CAS  PubMed  Google Scholar 

  25. Chen G, Hao B, Ju D, Liu M, Zhao H, Du Z, Xia J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm Sin B. 2015;5:569–76.

    PubMed  PubMed Central  Google Scholar 

  26. Raja WK, Maccorkle S, Diwan IM, Abdurrob A, Lu J, Omenetto FG, et al. Transdermal delivery devices: fabrication, mechanics and drug release from silk. Small. 2013;9:3704–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. J Control Release. 2014;190:381–97.

    CAS  PubMed  Google Scholar 

  28. Zhang L, Liu X, Li G, Wang P, Yang Y. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res A. 2019;107:104–13.

    CAS  PubMed  Google Scholar 

  29. Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y, et al. Degradation mechanism and control of silk fibroin. Biomacromolecules. 2011;12:1080–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48–56.

    CAS  PubMed  Google Scholar 

  31. George KA, Shadforth AMA, Chirila TV, Laurent MJ, Stephenson S, Edwards GA, Madden PW, Hutmacher DW, Harkin DG. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films. Mater Sci Eng: C. 2013;33:668–74.

    CAS  Google Scholar 

  32. Rnjak-Kovacina J, DesRochers TM, Burke KA, Kaplan DL. The effect of sterilization on silk fibroin biomaterial properties. Macromol Biosci. 2015;15:861–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yavuz B, Chambre L, Harrington K, Kluge J, Valenti L, Kaplan DL. Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater. 2020;3:5375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stinson JA, Raja WK, Lee S, Kim HB, Diwan I, Tutunjian S, et al. Silk fibroin microneedles for transdermal vaccine delivery. Acs Biomater Sci Eng. 2017;3:360–9.

    CAS  PubMed  Google Scholar 

  35. Stinson JA, Boopathy AV, Cieslewicz BM, Zhang Y, Hartman NW, Miller DP, et al. Enhancing influenza vaccine immunogenicity and efficacy through infection mimicry using silk microneedles. Vaccine. 2021;39:5410–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. You R, Xu Y, Liu Y, Li X, Li M. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms. Biomed Mater. 2014;10:15003.

    Google Scholar 

  37. Ming J, Li M, Han Y, Chen Y, Li H, Zuo B, et al. Novel two-step method to form silk fibroin fibrous hydrogel. Mat Sci Eng: C. 2016;59:185–92.

    CAS  Google Scholar 

  38. Larraneta E, Moore J, Vicente-Perez EM, Gonzalez-Vazquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharmaceut. 2014;472:65–73.

    CAS  Google Scholar 

  39. Ronnander P, Simon L, Spilgies H, Koch A, Scherr S. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci. 2018;114:84–92.

    CAS  PubMed  Google Scholar 

  40. Kathuria H, Li H, Pan J, Lim SH, Kochhar JS, Wu C, et al. Large size microneedle patch to deliver lidocaine through skin. Pharm Res. 2016;33:2653–67.

    CAS  PubMed  Google Scholar 

  41. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.

    CAS  PubMed  Google Scholar 

  42. Chen R, Zhou L, Yang H, Zheng H, Zhou Y, Hu Z, et al. Degradation behavior and immunological detection of silk fibroin exposure to enzymes. Anal Sci. 2019;35:1243–9.

    CAS  PubMed  Google Scholar 

  43. Qiu Y, Li C, Zhang S, Yang G, He M, Gao Y. Systemic delivery of artemether by dissolving microneedles. Int J Pharmaceut. 2016;508:1–9.

    CAS  Google Scholar 

  44. Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37:1155–63.

    PubMed  Google Scholar 

  45. Kuang D, Wu F, Yin Z, Zhu T, Xing T, Kundu SC, Lu S. Silk fibroin/polyvinyl pyrrolidone interpenetrating polymer network hydrogels. Polymers-Basel. 2018;10:153.

    PubMed  PubMed Central  Google Scholar 

  46. Qiu Y, Guo L, Zhang S, Xu B, Gao Y, Hu Y, Hou J, Bai B, Shen H, Mao P. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv. 2016;23:2391–8.

    CAS  PubMed  Google Scholar 

  47. Zhang Q, Xu C, Lin S, Zhou H, Yao G, Liu H, et al. Synergistic immunoreaction of acupuncture-like dissolving microneedles containing thymopentin at acupoints in immune-suppressed rats. Acta Pharm Sin B. 2018;8:449–57.

    PubMed  PubMed Central  Google Scholar 

  48. Fan HF, Fang XY, Wu HL, Xu YQ, Gong LC, Yu DR, et al. Effects of Stephania hainanensis alkaloids on MSU-induced acute gouty arthritis in mice. BMC Complement Med Therap. 2021;21:202–12.

    CAS  Google Scholar 

  49. Yang H, Kang G, Jang M, Um DJ, Shin J, Kim H, et al. Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia. Pharmaceutics. 2020;12:1067–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang J, Zhu M, Tao Y, Wang S, Chen J, Sun W, et al. Therapeutic properties of quercetin on monosodium urate crystal-induced inflammation in rat. J Pharm Pharmacol. 2012;64:1119–27.

    CAS  PubMed  Google Scholar 

  51. Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther. 2014;36:1465–79.

    CAS  PubMed  Google Scholar 

  52. Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells-Basel. 2018;7:161.

    CAS  Google Scholar 

  53. Cunha TM, Talbot J, Pinto LG, Vieira SM, Souza GR, Guerrero AT, et al. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1beta maturation. Mol Pain. 2010;6:63–72.

    PubMed  PubMed Central  Google Scholar 

  54. Cunha TM, Verri WJ, Schivo IR, Napimoga MH, Parada CA, Poole S, et al. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukocyte Biol. 2008;83:824–32.

    CAS  PubMed  Google Scholar 

  55. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.

    CAS  PubMed  Google Scholar 

  56. Mitroulis I, Kambas K, Ritis K. Neutrophils, IL-1beta, and gout: is there a link? Semin Immunopathol. 2013;35:501–12.

    CAS  PubMed  Google Scholar 

  57. Liu Y, Zhu X, Ji S, Huang Z, Zang Y, Ding Y, Zhang J, Ding Z. Transdermal delivery of colchicine using dissolvable microneedle arrays for the treatment of acute gout in a rat model. Drug Deliv. 2022;29:2984–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang Y, Li Z, Huang P, Lin J, Li J, Shi K, Lin J, Hu J, Zhao Z, Yu Y, Chen H, Zeng X, Mei L. Rapidly separating dissolving microneedles with sustained-release colchicine and stabilized uricase for simplified long-term gout management. Acta Pharm Sin B. 2023;13:3454–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Anjani QK, Sabri A, Moreno-Castellanos N, Utomo E, Carcamo-Martinez A, Dominguez-Robles J, Wardoyo L, Donnelly RF. Soluplus(R)-based dissolving microarray patches loaded with colchicine: towards a minimally invasive treatment and management of gout. Biomater Sci-UK. 2022;10:5838–55.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Startup Fund for Distinguished Scholars of Guangdong Pharmaceutical University, and the Provincial university Students’ innovation and entrepreneurship training programs in 2021 (Grant No. S202110573031).

Author information

Authors and Affiliations

Authors

Contributions

Yuqin Qiu: conceptualization; writing—review and editing; supervision; project administration. Shiji Liao: investigation, formal analysis, writing—original draft.

Guirong Qiu: methodology, acquisition of data. Yanping Hu: methodology. Bohong Guo: resources.

Corresponding author

Correspondence to Yuqin Qiu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been corrected to replace the incorrect Figure 9.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 672 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, S., Qiu, G., Hu, Y. et al. Separable and Inseparable Silk Fibroin Microneedles for the Transdermal Delivery of Colchicine: Development, Characterization, and Comparisons. AAPS PharmSciTech 25, 3 (2024). https://doi.org/10.1208/s12249-023-02716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02716-3

Keywords

Navigation