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Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remod-
eling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more 
innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large spe-
cific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated 
by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, 
syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber 
that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing 
applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared 
by modified electrospinning techniques.

Keywords coaxial electrospinning · core–shell nanofiber · emulsion electrospinning · janus nanofiber · layer-by-layer · 
multi-layer nanofiber · side-by-side electrospinning · wound healing

Introduction

The skin is the largest organ in the body and accounts for 
15% of the total body weight. It is the first line of defense 
that plays an important protective role against physical, 
chemical, and biological external [1]. The skin consists 
mainly of the epidermis, dermis, and hypodermis with the 
presence of other sublayers [2].

Skin wounds result from the disruption and damage of 
the skin layers [3]. Wounds can be acute or chronic. In acute 
wounds, the skin can self-heal and undergo normal healing 

stages. While in chronic wounds, self-healing property is 
insufficient and stages of healing is interrupted [4].

Wound dressings act as protective barriers to the applied 
surface and should be biocompatible, biodegradable, prevent 
microbial infection and resemble the extracellular matrix 
(ECM) of normal tissue, and provide an optimum environ-
ment for accelerated healing [5]. An ideal wound dress-
ing should have an elastic mechanical structure but strong 
enough for easy handling and comfortable wear [6]. Too 
soft dressings are difficult to handle. On the other hand, high 
strength wound dressings often stick to wounds and may 
cause secondary injury [7].

Current treatments such as cotton, gauze films, foams, 
hydrogels, and hydrocolloid have low cost and high absorp-
tion capacity and play role in isolation of wound from con-
taminations [8]. Those treatments are often cause adhesion 
of the wound and delay on wound healing leading to decrease 
patient compliance [9]. Therefore, in order to improve the 
skin permeability of the drugs and to achieve better therapeu-
tic effects, researchers have designed a variety of nanoparticle 
drug delivery agents for transdermal use, such as nanosheets, 
liposomes, hydrogels, wafers, nanospheres, dendrimers, 
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nanosized colloids, and nanofibers [10]. Nanofibers resemble 
extracellular membrane (ECM) with large specific surface 
area, high porosity, good mechanical properties, and control-
lable morphology and size [11, 12].

Electrospun nanofiber properties used for wound healing 
including hydrophilicity, flexibility and strength, biocompat-
ibility, and specific cell interactions are largely determined by 
the chemical composition of the polymers used [13]. Many 
different polymers used together with various bioactive 
ingredients could be introduced as electrospun nanofibers for 
wound healing purposes. Based on their origin, polymers can 
be classified as natural and synthetic polymers [14]. Natural 
polymeric dressings can be fabricated from protein polymers 
(e.g., gelatin [15], egg white [16], casein [17], whey protein 
[18] collagen [19, 20], silk fibroin [21], zein [22], keratin 
[23], marine [24], and soy protein [25]), plant polysaccharide 
(e.g., cellulose [26, 27], starch [28], and pectin [29, 30]), 
animal polysaccharide (e.g., chitosan [31–33] and hyaluronic 
acid [34–36]), fungal polysaccharide (e.g., pullulan [37, 38]), 
bacterial polysaccharides (e.g., dextran [39]), and alginates 
[40]. Synthetic polymeric dressings include polyvinyl alcohol 
(PVA) [41, 42], polyurethane (PU) [43, 44], polycaprolac-
tone (PCL) [45], polylactic acid (PLA) [46], polyacrylic acid 
(PAA) [47], polyacrylonitrile (PAN) [48–50], poly-l-lactic 
acid (PLLA) [51], polyvinyl pyrrolidone (PVP) [52], poly-
ethylene oxide (PEO) [53], polyethylene glycol (PEG) [54], 
polylactic-co-glycolic acid (PLGA) [55], polyglycolic acid 
(PGA) [56], polydopamine (PDA) [57], polyamide-6 (PA-6) 
[58], polyhydroxy butyrate (PHB) [59], polyvinylidene fluo-
ride (PVDF) [60], poly-L-lactide-co-caprolactone (PLCL) 
[61], epsilon poly-lysine (ε-PL) [62], etc.

M. Wang et al. fabricated nanofibrous membrane of chi-
tosan and PVA loaded with antibiotics at different ratios suc-
cessfully, and they found that when low-molecular-weight 
chitosan to PVA ratio equaled 50/50, smooth and homo-
geneous fibers were obtained for potential wound healing 
applications [63]. H. Ezhilarasu et al. developed PCL/aloe 
vera (AV) nanofiber containing curcumin PCL/AV/CUR 
and tetracycline hydrochloride PCL/AV/TCH. The resulted 
fibers were nontoxic and have good mechanical properties 
within a range that resembles human skin properties that 
make them potential for wound healing applications [64]. F. 
Mwiiri , J. Brandner, and R. Daniels loaded birch bark dry 
extract (TE) on low-molecular-weight PVA fiber mats that 
showed significant increase in wound healing more than TE 
oleo gel with high drug permeation in a sustained release 
manner [65, 66]. Zaeri S, Karami F, and Assadi M prepared 
PVA solution containing 4% wt/vol propranolol and the 
result showed thin fibers that have good porosity and hydro-
philicity with no toxic effects [67]. PU/PVA-gel nanofibers 
incorporated with cerium oxide  (CeO2) nanoparticles and 
cinnamon essential oil (CEO) that showed good porosity, 
suitable fluid uptake capability with a slow degradation rate, 

and antibacterial effect on gram positive and gram negative 
bacteria [68].

In this context, nanofibrous scaffolds produced by elec-
trospinning technique could potentially provide an excellent 
dressing for wound healing.

Wound Healing Phases

Wound healing process includes four subsequent phases: 
hemostasis, inflammation, proliferation, and remodeling 
with a timescale of seconds to hours, hours to days, days to 
weeks, and weeks to months, respectively [69, 70] (Fig. 1).

In hemostasis phase, the main goal is to prevent exces-
sive blood loss and to protect vital function of the organ. 
Exposed extracellular matrix (ECM) components activate 
platelets, and three main steps occur: (a) platelet migration 
to the injured tissue; (b) secretion of alpha and dense gran-
ules containing adenosine diphosphate (ADP), thromboxane 
A2, and thrombin; and (c) aggregation. Chemical mediators 
released stimulate coagulation cascades. Thrombin catalyzes 
the conversion of fibrinogen to fibrin that promotes blood 
clot formation. This blood clot formed composed of plate-
lets entrenched in a mesh of cross-linked fibrin fibers linked 
together by fibrinogen with smaller amounts of plasma 
fibronectin, vitronectin, and thrombospondin [71–75]. Acti-
vated platelets release multiple pro-inflammatory cytokines 
and chemokines, such as interleukin factors (IL-1α, IL-1β, 

Fig. 1  Schematic diagram of wound healing phases
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IL-6, and IL-8) and tumor necrosis factor-α (TNF-α), and 
anti-inflammatory chemokines such as platelet factor-4 (PF-
4), platelet-derived growth factor (PDGF), transforming 
growth factor beta (TGF-β), and pro- and antiangiogenic 
factors such as vascular endothelial growth factor (VEGF) 
and epidermal growth factor (EGF) [76–79].

Inflammation phase divided into two stages, early stage 
and late stage, for the protection wounds against bacteria and 
removal of apoptotic tissues. The released mediators recruit 
neutrophils to the injury site first, followed by the accumu-
lation of monocyte as well as mast cells [80]. At first, neu-
trophils kill and phagocytose bacteria and damaged matrix 
proteins within the wound bed [81]. Neutrophils also recruit 
TNF-1 and IL-1 which aid in the healing process [82]. Sub-
sequently, neutrophils start to diminish, and monocytes dif-
ferentiate into macrophages M1 and then migrate into the 
extravascular space to phagocytose bacteria as well as tis-
sue debris [83]. Macrophages are divided into two catego-
ries based on their nature and function: inflammatory (M1) 
macrophages and anti-inflammatory (M2) macrophages. 
M1 macrophages are usually activated through various pro-
inflammatory signals, such as tumor necrosis factor-α (TNF-
α), interferon-gamma (IFN-γ), and lipopolysaccharide (LPS); 
M1 phenotype secretes cytotoxic agents (nitric oxide), pro-
inflammatory cytokines IL-1, IL-6, IL-12, IL-23, and TNF-α. 
M2 macrophages on the other hand are activated by IL-4 and 
IL-13, and they have various subtypes: M2a (alternatively 
activated macrophages), M2b (type 2 macrophages), and 
M2c (deactivated macrophages) [84]. The activation of M2a, 
M2b, and M2c macrophages occurs in response to IL-4 and 
IL-13, immune complexes and bacterial lipopolysaccharide 
(LPS), and glucocorticoids and TGF-b, respectively [85].

M2 macrophages contribute in cell proliferation phase by 
releasing of several growth factors such as PDGF, VEGF, 
TGF-β, insulin-like growth factor 1 (IGF-1), epidermal 
growth factor (EGF), and fibroblast growth factor-2 (FGF-
2) for the promotion of wound healing via angiogenesis and 
skin re-epithelialization [86]. M2 macrophages also act as 

regulatory cells by activating keratinocytes, fibroblasts, and 
endothelial cells that migrate into the clot and synthesize a 
new extracellular matrix components such as fibrin, collagen 
III, fibronectin, glycosaminoglycans, proteoglycans, and the 
matrix protein hyaluronan which contributes wound closure 
and initiate the formation of granulation tissue [87, 88].

In remodeling phase, replacement of collagen III by the 
stronger collagen I and rearrangement of collagen fibers 
leads the skin to reach its maximum elasticity and strength 
[89]. It also involves replacement of granulation tissue with 
the scar tissue by the fibroblasts and is completed to restore 
skin integrity [90].

Electrospinning Process

Many technologies have been developed to generate nanofib-
ers including bioprinting, wet spinning, dry spinning, and 
electrospinning [91]. Electrospinning is a simple, cost-effec-
tive, and versatile setup process which depends on electro-
static concept in the presence of high electrical field [92]. 
Electrospinning device is mainly composed of high voltage 
power source, syringe that serves as reservoir for storing 
polymer solution, needle (spinneret) for dispensing of solu-
tion, and collector to collect nanofibers [93] (Fig. 2a).

Firstly, a high voltage is applied, and polymer solution is 
expelled from needle, and a strong electric field is formed 
between the needle and collector. Secondly, the continuous 
application of high voltage makes the polymer solution elon-
gates to form a cone called Taylor cone. Thirdly, charged 
droplets of Taylor cone eject from the tip of the needle. 
Finally, the polymer solution is stretched and evaporated 
by the electric force and deposited on the collector to form 
nanofibers [94]. Insufficient entanglement of polymers due 
to instability of liquid jet and altered surface tension caused 
incomplete evaporation of solvent solution before reaching 
collector and led to the formation of beads instead of fibers 
[95–97] (Fig. 2b).

Fig. 2  Schematic diagram of a 
electrospinning process and b 
beaded fibers
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Electrospinning can be divided blend electrospinning, 
coaxial electrospinning, emulsion electrospinning, and side-
by-side electrospinning [98, 99]. Blending electrospinning is 
the conventional and the most common drug incorporation 
method, especially for miscible polymer–drug solutions [100]. 
It involves dispersing or dissolving drugs in the polymer solu-
tion to form a homogenous solution [101]. Their drug release 
kinetics depends on the morphology and distribution of drug 
in the resulted fibers in addition to drug–polymer interaction 
which influence the release behavior as drugs blended elec-
trospun nanofibers have frequently show burst release pat-
tern [102, 103]. X. Chen et al. incorporated tannic acid TA 
by electrospinning into PCL nanofibers, and release study 
showed initial burst release of tannic acid that increased with 
increasing drug distribution in the polymer [104]. However, 
beside the burst release limitation, the direct contact of drug 
to solvent may lead to denature and decrease activity of sensi-
tive bioactive agents (e.g., proteins and cytokines) that make 
a necessity for more recent electrospinning methods [105].

In contrast to conventional electrospinning, where polymer 
and drug are blended into one solution in which, coaxial elec-
trospinning uses a core solution and a shell solution [106]. 
Coaxial electrospinning is an electrospinning technique in 
which the core solution and shell solution are placed into the 
core syringe and shell syringe, respectively [107] (Fig. 3a). 
The core–shell structure fabricated by coaxial electrospinning 
provides improved mechanical strength, declined the initial 
burst release, and protected drug from degradation by avoid-
ing direct exposure to solvents by encapsulating the drug 
in the nanofiber [108–110]. Coaxial technique have many 
advantages such as the high encapsulation efficacy, the high 
variety in the selection of drugs and materials, and the sim-
ple procedure and cheapness [111]. Emulsion electrospinning 
is another method to encapsulate the drug inside a core of 
a core–shell fiber by electrospinning of oil-in-water (O/W) 
or water-in-oil (W/O) emulsions using the ordinary single 

needle instead of the two needles of coaxial electrospinning 
[112, 113] (Fig. 3b). In side-by-side electrospinning, two 
polymer solutions exposed to the electrical field in the pres-
ence of side-by-side needles for the different solutions, which 
makes it very easy for them to parting from each other allow-
ing incorporation of solutions with different chemical proper-
ties (e.g., hydrophilic and hydrophobic) [114–116] (Fig. 3c).

Many techniques used to characterize and evaluate mor-
phological, mechanical, chemical, and structural properties 
of the produced electrospun nanofiber [117]. Morphological 
properties include diameter, size distribution, and pore size 
distribution [118]. Diameter and size distribution of nanofib-
ers can be measured by transmission electron microscopy 
(TEM) [119], scanning electron microscopy (SEM) [120], and 
atomic force microscopy (AFM) [121]. Pore size distribution 
and porosity can be measured by mercury intrusion porosime-
ter [122], liquid extrusion porosimeter [123], nuclear magnetic 
resonance [124], or capillary flow porometer [125]. Chemi-
cal properties of nanofibers can be characterized by Fourier 
transform infrared spectroscopy (FT-IR) [126], Raman spec-
troscopy [127], thermogravimetric analysis (TGA) [128], dif-
ferential scanning calorimetry (DSC) [129], and differential 
thermal analysis (DTA). Structural evaluation can be charac-
terized by X-day diffraction (XRD) technique [130]. Mechani-
cal properties of the nanofibers can be characterized by tensile 
strength test according to the ISO 5270:1999 standard test 
methods using uniaxial tensile testing device [131, 132].

Electrospinning Parameters

Many parameters can affect electrospinning process which 
can be classified into process parameters (applied voltage, 
flow rate, diameter of needle to collector distance), solution 
parameters (concentration, molecular weight, viscosity, and 
conductivity), and environmental parameters (humidity and 
temperature) [133].

Fig. 3  Schematic diagram of a coaxial electrospinning, b emulsion electrospinning, and c side-by-side electrospinning
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Process Parameters

The increase of applied voltage more than critical value will 
result in increase in diameter and formation of beaded fibers. 
This effect is attributed to that with the same flow rate, the 
size of Taylor cone decrease, and the velocity and length of 
the jet increase [134]. The application of high voltage to the 
polymer solution breaks the balance of its surface tension 
and creates a charge on the surface of the liquid. Recipro-
cated charge repulsion and the contraction of the surface 
charges to the counter electrode cause a force opposite to 
the surface tension. As the intensity of the electric field is 
increased, the hemispherical drop formed at tip of the needle 
tip gets converted into conical shape [135]. At voltage value 
lower than the critical value, the electrical force will not be 
enough to form the homogenous fibers [136].

L. Miranda Calderon et al. fabricated rifampicin-loaded 
methacrylic nanofiber and noticed that when decrease voltage 
from 20.3 to 14.2 KV lowered nanofiber diameter [137]. C. 
Kumar et al. developed of composite electrospun nanofibers 
based on PCL and collagen hydrolysate loaded with ferulic 
acid and increased applied voltage up to 18 kV that led to 
increased fiber diameter and further increase to 25 kV resulted 
in electrical bubbles due to the stagnant potential exceeding 
the confined air resistance [138]. M. Ignatova, N. Manolova, 
and I. Rashkov also noticed increased fiber diameter by 
increasing voltage [139]. N. Chinatangkula et al. designed 
shellac nanofiber loaded with monolaurin, and they noticed 
that moving capacity of polymer solution towards the tip was 
poor when the applied voltages was below 9 kV [140].

A minimum flow rate is required to produce fibers with 
lower defects and smaller diameter. At high flow rate, a larger 
drop is produced that results in a faster movement of solution 
to the collector lead to gradual increase in the volume of the 
Taylor cones, and the length of the straight fluid jets shortened 
as a result incomplete evaporation of the solvent occur and 
solvent-wet fibers produced that increase the probability of 
beads formation and increase fiber diameter [141, 142].

X. Wu et al. loaded magnesium l-ascorbic acid 2-phos-
phate and α-tocopherol acetate (MAAP/α-TAC) on PAN 
nanofibers to the form of core–shell structure and by increas-
ing the flow rate of MAAP/α-TAC core solution and bead 
formation increased [143]. M. Almukainzi produced PEG/
PVP nanofibers and noticed that nanofibers with increased 
diameter produced by increasing flow rate under the same 
conditions [144]. F. Davani et al. fabricated core–shell 
nanofiber by PEO, chitosan, and vancomycin in shell and 
PVP, gelatin, and imipenem/cilastatin in core compartments. 
They noticed that by increasing flow rate of both core and 
shell solutions, nanofibers with increased diameter produced 
[145]. M. Hajikhani, Z. Emam-Djomeh, and G. Askari 
encapsulated PLA\PEO\cefazolin inside within PVP shell, 
and when flow rate of core solution is less than 0.1 mL\h, 

extra thin fibers were formed that reduce cefazoline loading. 
On the other hand, when increase to more than 0.2 mL/h, it 
will cause jet break. In the case of shell solution, a flow rate 
of less than 0.6 mL/h resulted in the formation of numerous 
beads in the nanofibers due to insufficient solution to fully 
cover the surface of the core fibers. On the other hand, an 
excessive flow rate of about 1 mL/h resulted in the formation 
of large droplets on the tip of the needle that can fell on the 
collector and destroy the fabricated fibers [146].

Needle to collector distance determines the morphology 
of electrospun nanofibers. An optimized distance should be 
applied to allow all of the solvent to evaporate and to prevent 
bead formation [141]. The increase in the distance between 
needle and collector causes reduction in the electrostatic 
field strength and led to complete evaporation of the solvent 
occurs which make polymer solution fully stretched hence 
results in increased fiber diameter [147–149].

X. Zhang et al. fabricated silk fibroin nanofiber and showed 
that at 6 cm, continuous fibers with small number of beads 
were formed, while in distance above 9 cm, a smooth, bead-
free, and fine fiber was formed. However, distance above 15 
cm showed to be unsuitable for electrospinning [150].

Solution Parameters

Optimized polymer concentration range should be used. 
Below this range, only droplets are formed rather than fibers. 
This may occur because the polymer solution is not reaching 
the collector due to entangled polymer chains are broken 
under surface tension and electric field forces. On the other 
hand, when concentration is above this range, uncontrolled 
fibers morphologies may appear [151].

T. Baykara and G. Taylan developed core–shell nanofiber 
with PVA as shell solution and Nigella sativa seed oil as 
the core solution. Increasing concentration of PVA solution 
resulted in continuous and thicker fibers with low number 
of beads [152]. N. Chinatangkul et al. used shellac solution 
to develop nanofiber, and they noticed that by increasing 
shellac concentration, bead formation decreased [153]. B. 
Poornima and P. Korrapati incorporated ferulic acid and res-
veratrol into PCL\chitosan core–shell nanofiber. The found 
that chitosan optimum concentration was 2%, and when con-
centration was higher than 2% large, beaded fibers formed, 
while concentration less than 2% resulted in spray formation 
instead of fibers [154]. Z. Li et al. prepared core–shell fibers 
with small unilamellar vesicles (SUVs)\sodium hyaluronate 
in the core and PVP in the shell. Optimum sodium hyaluro-
nate concentration was 2%, and when concentration was 1%, 
droplets were formed instead of fibers. On the other hand, 
increasing concentration to 3% caused blockage of needle 
during electrospinning process [155].

The molecular weight, controlled by the length of the 
polymer chain, therefore smooth and uniform fibers can 
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be obtained if the molecular weight is appropriate. With 
extremely low molecular weight, beads are highly probable to 
be formed. Conversely, very high molecular weight increases 
fiber diameter and affects their morphology [156]. Viscos-
ity is dependent on solution’s concentration and molecular 
weight. In extremely low viscosity, only droplets are formed, 
and fiber formation is interrupted. High viscosity prevents 
polymer solution flow through the needle [157, 158].

F. Zulkifli et al. fabricated hydroxyethyl cellulose (HEC)/
PVA, and when the amount of HEC in the HEC/PVA increased 
from 30 to 50%, the viscosity of the solution was also increased 
[159]. W. Sarhan and H. Azzazy fabricated honey\chitosan\
PVA nanofiber and found that increasing chitosan concentra-
tion from 1.5 to 3.5% resulted in highly viscous solution that 
is unable to spin [160]. L. Moradkhannejhada et al. prepared 
PLA nanofiber loaded with curcumin, and then PEG of differ-
ent weights have been added. PEG addition led to a decrease in 
average weight of nanofibers because of the decreased viscos-
ity of PLA solution; therefore, the jet solution with low viscos-
ity can increase instability and consequently lead to fibers with 
small diameter. On the other hand, average size of nanofibers 
have been increased by increasing the PEG weight [161]. Z. 
Hadisi, J. Nourmohammadi, and S. Nassiri developed Lawso-
nia inermis–gelatin–starch nanofiber in which with an increase 
in gelatin content, the viscosity of the solution increased. They 
noticed that at low viscosities, the molecular entanglements 
between polymeric chains are not enough to form a uniform 
fiber, and thus, beads were formed [162]. M. Wang et al. 
PVP/PVDF core–shell shows the viscosity of neat PVDF and 
PVP is low, and once mixing the two solutions, the viscosity 
increased significantly. This change in viscosity resulted in 
good chain entanglement between the two substances, which 
lead to advanced electro-spinnability [163].

Polymer solution conductivity is dependent on intrinsic 
polymer properties, solvent, and ionizable salts. An increase 
in electric conductivity tends to decrease fiber diameter. Above 
the critical limit, polymer solutions become very unstable in 
the presence of strong electric fields, resulting in a broad diam-
eter fibers and may prevent the formation of Taylor cone [164].

A. Abdel Gawad et al. fabricated PVA nanofibers from chi-
tosan and iodoacetamide and complexes. Increasing the chitosan 
content increased conductivity due to progression of  NH3

+ 
groups from −NH2 in acidic medium which increases the charge 
density on the surface of the ejected jet formed during elec-
trospinning, and therefore, it decreases diameter of the formed 
fibers [165]. Similar results are obtained by M. Ganesh [166].

Environmental Parameters

The humidity (RH%) influences the diffusive equilibrium 
between solvent and water vapor, affecting the fiber mor-
phology. A decrease in the RH% humidity leads to fibers 

with decreased diameter. However, an excessive decrease 
in humidity tends to accelerate the evaporation rate of sol-
vent and induce inadequate extension of the jet resulting in 
thicker nanofiber [167]. In contrast, humidity higher than 
certain limit inhibits solvent evaporation so that water vapor 
may penetrate into the jet leading to thinner fibers [168]. 
A highly humid environment may affect electrospinning 
and contribute to the formation of pores on the nanofibers 
surface. Additionally, high humidity in the environmental 
atmosphere can prevent blockage at the needle caused by 
quick evaporation of volatile solvent during electrospinning 
[169]. R. Augustine et al. loaded connective tissue growth 
factor (CTGF), and they found that humidity can lead to 
formation of secondary pores on fibers due to condensation 
of droplets from air and subsequent difference in the rate of 
evaporation of the solvent from the surface [170].

The temperature affects the rate of evaporation and the vis-
cosity of polymer solution. The elevated temperature increases 
viscosity leading to increasing evaporation time and limiting 
further jet stretching. For low temperature, they decrease the 
viscosity and facilitate formation of thinner fibers [171].

Applications of Electrospun Nanofiber 
as Wound Healing Dressings

Morphology and structure of nanofibers play an important 
role in cell behavior by improvement of cell attachment 
and proliferation [172, 173]. Nanofibers are characterized 
by their similar structure to ECM, increasing cell viability, 
allowing gas exchange, and absorbing excess exudates from 
the wound as they have large surface area and high porosity 
[174]. They also have inert cell property which allow pain-
less removal of wound dressing and protect newly formed 
skin layer combined with minimal scars [175].

Core–shell Nanofiber

Coaxial electrospinning and emulsion electrospinning are two 
new techniques for the fabrication of core–shell nanofibers, 
where the outer shell layer can encapsulate and prevent the 
release of the active components in the inner core layer [176].

Y. Li et al. suggested PLA\chitosan core–shell nanofiber 
as a potential scaffold for wound healing [177]. S. Afshar 
et al. prepared PLA\chitosan core–shell nanofiber by coax-
ial electrospinning loaded with curcumin. PLA-chitosan 
core–shell nanofiber showed better mechanical properties 
than that of neat chitosan nanofiber. Chitosan shell layer 
showed a burst release, and around 80% of drug released 
in less than 10 h. In contrast, curcumin inserted in the PLA 
exhibited a two-stage release behavior: an initial burst 
release of about 25% in the first 4 h followed by a sustained 
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release in the second stage [178]. A. Joshi et al. used 
coaxial electrospinning to prepare PCL\gelatin core–shell 
nanofiber loaded with heparin. Compared to single-phase 
gelatin nanofiber, PCL\gelatin nanofiber showed improved 
mechanical and swelling properties. After that heparin\PCL\
gel treated with bFGF that showed more accelerated heal-
ing than non-treated group [179]. C. Gao developed PCL/
gelatin-ciprofloxacin/Fe3O4 multi-functional dressing that 
allowed controlled release of drug and improved re-epitheli-
alization, granulation tissue formation, and collagen deposi-
tion at the wound site [180].

A. Basar et al. prepared ketoprofen-containing PCL and 
PCL/gelatin binary electrospun fibers by solution and emul-
sion electrospinning, respectively. PCL nanofiber exhibited 
a burst release profile that released approximately 90% of 
the drug after only 12 min. In contrast, PCL\gelatin binary 
structure extended release for about 4 days. Furthermore, 
electrospun PCL/gelatin binary nanofiber improved attach-
ment and wettability more than PCL nanofiber [181]. M. 
Hussein et al. prepared core–shell and loaded phenytoin into 
PCL shell layer and silver-chitosan nanoparticles into PVA 
core layer that showed two-stage release behavior in addi-
tion to improved biocompatibility and mechanical properties 
[182]. X. Bai et al. prepared zeolite imidi framework (ZIF-
8)-coated PCL/ε-PL core–shell nanofibers and found that 
ZIF-8 and ε-PL exhibited dual antibacterial properties and 
enhanced wound healing process [183].

C. Wang et al. fabricated core–shell nanofibers based on 
core layer involving gelatin, quaternary ammonium salt-
grafted sulfonated chitosan and EGF/bFGF, shell layer of 
PCL, and polydopamine. This nanofiber improved mechan-
ical properties and antimicrobial effect. Wounds treated 
with core–shell nanofiber exhibited the smallest wound 
area with superior angiogenesis effect and increased col-
lagen deposition accompanied with decreased inflammatory 
mediators [184]. C. Cui et al. used coaxial electrospinning 
to encapsulate ciprofloxacin into PCL\chitosan core–shell 
nanofiber that showed ideal porosity and good mechanical 
properties. Nanofiber scaffolds showed three-stage release 
with an initial burst release of ciprofloxacin during the first 
12 h, followed by a gradual release over more than 8 days. 
After 15 days, the release of ciprofloxacin reached a plateau 
at 56%. They also showed enhanced healing process with 
improved well-organized granulation tissue, better epitheli-
alization, less lymphocyte, and neutrophil infiltration which 
were observed in the wounds [185]. N. Zandi et al. prepared 
core–shell nanofiber with gelatin with phenytoin as a shell 
layer and PVA\gelatin with lysozyme as a core layer, and 
release profiles can be considered in three stages including 
an initial burst release within 8 h followed by gradual release 
lasting to 33 h and then reached plateau [186].

M. Najafiasl et al. fabricated nanofibers using PVA/
sodium alginate (SA) as core layer and chitosan as shell 

layer loaded with D-panthenol which exhibited enhanced 
mechanical properties and accelerated wound healing pro-
cess [187]. A. Khan et al. incorporated ZnO nanoparticles 
and oregano essential oil into PLCL core–shell nanofiber, 
and results revealed good antibacterial activity and acceler-
ated wound healing process. The untreated wound exhibited 
an elevated level of IL-6 which indicated inflammation in the 
wound area. Compared to untreated group, wounds treated 
by core–shell nanofiber showed complete epithelialization, 
and angiogenesis with highly organized collagen fibers in 
addition to that inflammatory activity decreased significantly, 
and scar was replaced by newly formed epithelium [188].

J. Wang et al. loaded nanohydroxyapatite (n-HAP) with 
tetracycline and subsequently encapsulated in chitosan\
gelatin nanofiber. Compared to tetracycline\n-HAP and 
tetracycline\chitosan\gelatin which showed burst release of 
>90% of drug within 4 days, they showed sustained release 
where only 45% released within 4 days [189]. Z. Xie loaded 
chitosan and PEO nanofiber with VEGF- and PDGF-encap-
sulated PLGA nanoparticles embedded inside them. This 
scaffold has a biphasic release pattern: an initial burst release 
of VEGF followed by sustained release of PDGF. They facil-
itated easy detachment and promoted fast cell growth and 
proliferation in addition to complete wound closure within 
2 weeks with less inflammatory cell presence and higher 
fibroblast cells. Furthermore, collagen deposition is shown 
to be more mature with more hair follicle formation [190].

Z. Dong et al. biological prepared ethyl cellulose-
modified zein with tea carbon dots (TCDs) and calcium 
peroxide  (CaO2) that shown to significantly accelerate 
the wound closure rate and the production of sebaceous 
glands and hair follicles. They also promoted the trans-
formation of macrophages from M1 to M2 in diabetic rat 
wound models, shortened the duration of the inflamma-
tory stage, and facilitated further wound healing [191]. C. 
Lee et al. prepared core–shell nanofiber loaded with insu-
lin as core and PLGA\vildagliptin as shell. The core–shell 
nanofiber demonstrated improved wettability, porosity, 
surface area, and mechanical properties. It exhibited ini-
tial burst release in the first day followed by continuous 
release until day 30. The nanofiber promoted diabetic 
wound healing and reduced fibrotic effects [192].

S. Homaeigohar et al. developed PAN core–shell 
nanofiber together with bovine serum albumin (BSA) 
and calcium-deficient hydroxyapatite (HA) and showed 
to be nontoxic and resemble ECM of the skin with good 
mechanical properties [193]. M. Aljohani coated chi-
tosan silver nanoparticles within poly-lactate calcium salt 
(PLCS) that revealed good water permeability and dis-
played high antimicrobial efficiency against gram positive 
and gram negative bacterial pathogens [194]. A. Aldal-
bahi et al. fabricated PVDF\cellulose acetate nanofiber 
that contains gold nanoparticles and displays enhanced 
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cell spread and proliferation [195]. Z. Li et al. prepared 
core–shell nanofiber by cellulose acetate as shell and 
naproxen-loaded liposomes\sodium hyaluronate as core 
which showed biphasic release pattern with initial burst 
release of 47.1% naproxen in the first 8 h followed by 
sustained release of residual drug for about 12 days [196]. 
H. Zhang et al. synthesized 5-fluorouracil (5-Fu)-loaded 
dendritic mesoporous bioglass nanoparticles (dMBG) in 
PEO\poly (ether-ester-urethane) urea core–shell nanofiber 
that found to have good wettability and mechanical prop-
erties. The nanofiber effectively inhibits hypertrophic 
scars, accelerates wound healing process, and promotes 
angiogenesis and collagen deposition [197].

G. Jin et al. encapsulated multiple epidermal induction 
factors (EIF) such as the epidermal growth factor (EGF), 
insulin, hydrocortisone, and retinoic acid with gelatin and 
PLCL nanofiber that showed to promote cell prolifera-
tion. Compared to EIF blended nanofibers that showed 
burst release over a period of 15 days, there was no burst 
release which was detected from EIF core–shell nanofib-
ers [198]. A. Li et al. loaded epigallocatechin-3-O-gal-
late (EGCG) in PLCL\gelatin core–shell nanofiber and 
results appropriate biocompatibility, antibacterial, and 
antioxidant ability, which could support cell viability 
and proliferation. Compared to gauze, wounds treated 
with core\shell nanofibers showed accelerated wound 
closure, angiogenesis, and re-epithelialization [199]. M. 
Movahedi et al. prepared PU\starch core–shell nanofib-
ers and showed to have improved mechanical properties 
compared to starch nanofibers and higher cell prolifera-
tion compared to PU nanofibers. Wounds treated with the 
scaffold showed accelerated wound closure and presence 
of hair follicles and sebaceous glands [200].

Janus Nanofiber

Janus nanofiber involves two separate compartments which 
allow incorporation of solutions with different chemical 
properties [201]. F. Ao et al. designed Janus nanofiber con-
tains hydrophilic and hydrophobic properties. They used 
ethyl cellulose as hydrophobic layer and ethyl cellulose\
gelatin as hydrophilic layer [202].

K. Zhang et al. loaded curcumin in quaternized chitosan/
PVA Janus nanofibrous aerogel, and the result showed uni-
form, homogenous, and biocompatible fibers with enhanced 
mechanical properties and liquid absorption capacity, while 
it retains the inherent soft texture and ECM architecture from 
nanofibers. It also showed noticeable antioxidant and anti-
inflammatory effect. They were able to decrease TNF-α expres-
sion and increase IL-10 and VEGF expression [203]. Y. Shi et 
al. fabricated PVA\PLGA Janus nanofiber with copper sulfide 
nanoparticles (CuS), mupirocin (M), and valsartan (V) to form 
PLGAV-CuS/PVAM that showed good cytocompatibility and 

antibacterial activity. In the early stage of wound healing, the 
hydrophilic layer of the Janus fibrous membrane enables con-
tinuous and slow release of hydrophilic antimicrobial drugs 
(M), thereby avoiding infection [204]. X. Ji et al. incorporated 
Rana chensinensis skin peptides (RCSPs) and silver nanopar-
ticles (Ag-NPs) into PCL\PVP Janus nanofibers that showed 
good wettability, mechanical properties like ECM, antibacte-
rial activity, and effectively enhanced wound healing [205]. 
L. Li et al. prepared Janus nanofiber with PVA/hydroxylpro-
pyl trimethyl ammonium chloride chitosan (HACC) on the 
hydrophilic side and thermoplastic polyurethane (TPU) on the 
hydrophobic side that showed to have good unidirectional wet-
tability properties and high elasticity [206].

Multi‑layer Electrospun Nanofibers

Multi-layer nanofibers are prepared by electrospinning of 
a second polymer solution on the same collector directly 
after the first electrospun nanofiber has been collected 
[207]. Each layer of produced multi-layer structures has 
its own biological, physical, and chemical properties 
to improve nanofiber characteristics [208]. A dense top 
layer can protect the wound site from mechanical stresses, 
dehydration, and microbial infections, while the sublayer 
is designed to resemble ECM in order to accelerate wound 
healing and improve cell proliferation [209–211]. Multi-
layer nanofibers provide sustained release profile and pre-
vent burst release when compared to single-layer struc-
tures [212]. Furthermore, multi-layer structures have the 
ability to load and release various drugs with different 
release profiles in each layer due to differences in morpho-
logical characteristics and degradability of different layers 
[213]. Layer-by-layer self-assembly nanofibers are formed 
by applying oppositely charged molecules to nanofibers 
followed by electrostatic interaction that results in mol-
ecules adsorption to the surface of nanofiber and formation 
of a multi-layer structure [214–216]. Table I shows the 
recent potential multi-layer nanofiber for wound healing.

Conclusion

Ideal wound dressing should have an elastic mechanical struc-
ture but strong enough for easy handling and comfortable wear. 
Nanofibers is characterized by its good mechanical strength 
and inert cell property allowing painless removal with minimal 
scars. They also resemble the ECM of the skin and provide a 
large surface area so they can absorb excess exudates from the 
wound. Many technologies have been developed for nanofib-
ers preparation. Many parameters can affect electrospinning 
process that classified to process parameters (applied voltage, 
flow rate, diameter of needle to collector distance), solution 
parameters (concentration, molecular weight, viscosity, and 
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conductivity), and environmental parameters (humidity and 
temperature). Electrospinning is a simple, cost-effective, and 
versatile setup process which depends on electrostatic concept 
in the presence of high electrical field. Conventional method 

involves dispersing or dissolving drugs in the polymer solution 
to form a homogenous solution. However, this method fre-
quently shows burst release patterns and may lead to denature 
and decrease activity of sensitive bioactive agents. That gives 

Table I  Potential Multi-layer Nanofiber for Wound Healing

Type Top layer Intermediate layer Bottom layer Reference

Bi-layer PCL/quaternized silicone (PQS) - PVA/collagen/ quaternized chitosan 
(PCQC)

[217]

PVA\chitosan\ CuNPs - PVP [218]
PU - Gelatin\keratin [219]
PCL\hyaluronic acid - Chitosan\zein\salicylic acid [220]
PLA - PLA\natural rubber\curcumin [221]
PVA-aloe vera-tetracycline\chitosan-

PVA\collagen core–shell nanofiber
- Gelatin\Calenula essential oil [222]

Methacrylated gelatin (MeGel)/
PLLA

- Salvia miltiorrhiza Bunge-Radix 
Puerariae herbal compound 
(SRHC)-loaded MeGel hydrogel

[223]

PCL\α-tocopherol - PLA [224]
PCL\ quaternized silicon nanofiber - Collagen\quaternized chitosan 

sponge
[225]

PLGA - PVA\gel\vancomycin-thrombin [226]
Thermoplastic polyurethane nanowo-

vens
PU\AgNPs [227]

Chitosan - PVA\gelatin\curcumin-Lithospermi 
Radix extract

[228]

Sodium alginate\PVA - Chitosan\PVA\deferoxamine [229]
Sodium alginate\PVA - Solvent cast film of PVA\sodium 

alginate
[230]

PCL - Collagen\skin graft hydrogel [231]
Silk fibroin - Human amniotic membrane (AM) [232]
PCL\fish collagen - Chito-oligosaccharides [233]

Tri-layer PLGA\collagen PLGA\vancomycin, gentamycin, and 
lidocaine

PLGA\collagen [234, 235]

PU Gelatin\PRGF PU [236]
Collagen Silk fibroin Bioactive glass [237]
PVA chondroitin sulfate Gelatin [238]
PVA\gentamicin Gelatin\capsaicin PVA\chitosan iodoacetamide [239]
Cellulose acetate\PEO\ciprofloxacin Silk fibroin nanofiber Cellulose acetate\PEO\ciprofloxacin [240]
PCL PCL\gelatin\AgNps PCL\gelatin [241]
Stearic acid PAA-aloe vera sponge\ insulin-like 

growth factor-1 (IGF1)
Aloe vera nanofiber\carbon nano-

tubes
[242]

PCL PCL\collagen Collagen\Melilotus officinalis extract [243]
PCL Carboxyethyl chitosan\PVA\chamo-

mile\PCL
Carboxyethyl chitosan\PVA\chamo-

mile
[244]

PLA PVA\cerium oxide nanoparticles PLA [245]
Gelatin PVA\sodium alginate Chitosan\PVA\silk fibrin [246]
PCL nanofiber Micro-skin PCL microwells [247]

Layer-by-layer Fibroblasts and keratinocytes - PCL\collagen nanofiber [248]
Transforming growth factor 

(TGF)-β1
- PCL\collagen nanofiber [249]

ε-PL - PGA\PL6-curcumine core–shell 
nanofiber

[250]

Gold nanoparticles Lysozyme Cellulose acetate nanofiber [251]
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the need for more advanced electrospinning techniques like 
coaxial electrospinning, emulsion electrospinning, and side-
by-side electrospinning. Coaxial electrospinning and emul-
sion electrospinning are used for the fabrication of core–shell 
nanofibers, where the outer shell layer can encapsulate and 
prevent the release of the active components in the inner core 
layer. Janus nanofibers synthesized by side-by-side electrospin-
ning incorporate two separate solutions with different chemical 
properties. Multi-layer nanofibers can be prepared either by 
electrospinning of a second polymer solution directly after the 
first nanofiber is collected or by self-assembly of oppositely 
charged molecules that adsorb on the surface of the nanofiber. 
In this context, we believe that electrospun nanofibers are 
promising dressings for wound healing applications.
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