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Abstract
Data variations, library changes, and poorly tuned hyperparameters can cause failures in data-driven modelling. In such 
scenarios, model drift, a gradual shift in model performance, can lead to inaccurate predictions. Monitoring and mitigating 
drift are vital to maintain model effectiveness. USFDA and ICH regulate pharmaceutical variation with scientific risk-based 
approaches. In this study, the hyperparameter optimization for the Artificial Neural Network Multilayer Perceptron (ANN-
MLP) was investigated using open-source data. The design of experiments (DoE) approach in combination with target drift 
prediction and statistical process control (SPC) was employed to achieve this objective. First, pre-screening and optimiza-
tion DoEs were conducted on lab-scale data, serving as internal validation data, to identify the design space and control 
space. The regression performance metrics were carefully monitored to ensure the right set of hyperparameters was selected, 
optimizing the modelling time and storage requirements. Before extending the analysis to external validation data, a drift 
analysis on the target variable was performed. This aimed to determine if the external data fell within the studied range or 
required retraining of the model. Although a drift was observed, the external data remained well within the range of the 
internal validation data. Subsequently, trend analysis and process monitoring for the mean absolute error of the active content 
were conducted. The combined use of DoE, drift analysis, and SPC enabled trend analysis, ensuring that both current and 
external validation data met acceptance criteria. Out-of-specification and process control limits were determined, provid-
ing valuable insights into the model’s performance and overall reliability. This comprehensive approach allowed for robust 
hyperparameter optimization and effective management of model lifecycle, crucial in achieving accurate and dependable 
predictions in various real-world applications.
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ANN-MLP	� Artificial Neural Network Multilayer 
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API	� Active pharmaceutical ingredient
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DoE	� Design of experiments
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thereby mitigating their impact.
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Multilayer Perceptron (ANN-MLP) with design of experiments (DoE), 
data drift analysis, and SPC leads to enhanced prediction and improved 
model lifecycle management (LCM).
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K-S	� Kolmogorov-Smirnov test
LCM	� Life cycle management
MAE	� Mean absolute error
MSE	� Mean square error
MCR	� Multivariate curve resolution
NIR/NIRS	� Near-infrared spectroscopy
OOS	� Out-of-specification
PLS	� Partial least squares
R2	� R-squared
RMSE	� Root mean square error
SPC	� Statistical process control
USFDA	� United States Food and Drug Administration

Introduction

Near-infrared spectroscopy (NIR) is a non-destructive ana-
lytical tool widely used in various industries [1]. It provides 
chemical and physical information by measuring the absorp-
tion of near-infrared light by a sample [1–3]. To decode 
this information, chemometrics, data pre-processing, and 
advanced analytical techniques such as artificial intelligence 
(AI) and machine learning (ML) deep learning are needed. 
NIR can be used in food [4–7], pharmaceutical [1–3, 8], 
alternative medicines like ayurveda [9], agricultural [10–13], 
dairy [14–16], and process analytics [17–19] to analyze raw 
materials, monitor processes, and evaluate final products 
without damaging them, thus offering a fast and cost-effec-
tive method of analysis.

Chemometrics methods such as multivariate curve resolu-
tion (MCR) and partial least squares (PLS) have been exten-
sively used in the analysis of complex data sets [20–22]. 
However, in recent times, machine learning techniques such 
as multilayer perceptron or artificial neural networks (ANN) 
have gained popularity. Hussain et al. [23–25] pioneered 
the introduction of artificial neural networks in pharma-
ceutical science. Currently, it is extensively used owing to 
its capacity to manage large datasets and intricate variable 
relationships [3, 26, 27]. Hyperparameter tuning, model per-
formance validation, and cross-validation are crucial steps 
in machine learning to ensure model accuracy and general-
izability [28, 29]. Model interpretability [30], explainabil-
ity [31], generalizability [3, 32], and transferability [3, 32] 
have also become essential factors in the development of 
machine learning models to facilitate their deployment in 
real-world applications. These topics are widely discussed 
in the literature, and their implementation can improve the 
reliability and robustness of machine learning models in 
various industries.

In our earlier works [2, 3, 33], we discussed methods for 
handling sampling, data pre-processing, data comprehen-
sion, model selection, model performance, model generali-
zation, explainability, interpretability, and transferability. 

Regarding open-source datasets, we found that a multilayer 
perceptron (MLP) model, trained using a lab-scale dataset, 
outperformed the partial least squares (PLS) model on pilot-
scale data. However, the MLP model failed to deliver satis-
factory results when applied to full/production-scale datasets 
[3]. It is therefore the need of the hour as well as a mandate 
to carefully evaluate the problems and options available to 
address such difficulties.

This research focuses on decoding the aforementioned 
issues and introduces a design of experiments-guided hyper-
parameter selection approach for ANN-MLP to achieve 
more reliable and consistent results [29]. By using design 
of experiments (DoE), the study systematically identifies the 
optimal combinations of neuron activation functions, hid-
den ANN layers, and max iterations, leading to the deter-
mination of the best ANN architecture. The DOE-based 
approach replaces conventional ANN-MLP training with 
a mathematically optimized exploration, making the ANN 
highly efficient for analyzing NIR data. Additionally, the 
implementation of DoE-guided ANN-MLP is anticipated 
to overcome the commonly encountered saddle-point chal-
lenges. The objectives of this study are as follows:

1.	 DoE of hyperparameters: optimize hyperparameters 
through design of experiments (DoE) to enhance model 
performance in the Artificial Neural Network Multilayer 
Perceptron (ANN-MLP)

2.	 Target drift detection: develop a structured methodology 
for detecting and addressing target drifts in the model’s 
predictions

3.	 Specification criteria: determine the most suitable speci-
fication criteria, process/data shifts, and model transfer 
to production-scale

4.	 Trend analysis: implement trend analysis with a control 
plan and conduct failure mode effect analysis/root cause 
analysis using statistical process control (SPC) methods 
to ensure process reliability and quality control

Materials and Methods

Data Set and Data Understanding

In this investigation, a tablet dataset acquired employ-
ing near-infrared transmittance spectroscopy data related 
to Escitalopram® tablets (publicly available [34]) from 
the literature was utilized. Tablet data set was constructed 
through the analysis of 310 pharmaceutical tablets acquired 
employing NIR spectroscopy, which included around 400 
wave numbers in the spectral wavenumber range between 
7400 and 10,500 cm−1.The tablets were manufactured at the 
laboratory scale (lab scale), pilot scale, and production scale, 
for details refer [3, 34].
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Design‑of‑Experiments

The development of an D-optimal ANN-MLP model involved 
the application of design of experiments (DoE) and statistical 
modelling, which were performed using JMP Pro software ver-
sion 14 by SAS Institute, NC, USA. ANN-DOE for multilayer 
perceptron constructed for predicting active content (in %w/w). 
The D-optimal DoE to determine ANN architecture (hidden 
layer, max iterations, activations, etc.) were carried out. The 
ANN model performance metrics considered were R2, MAE, 
MSE, RMSE, total time for modelling (in seconds), MSE for 
bias-variance decomposition, bias, variance, time taken for BVD 
(in seconds), and time taken for BVD (in minutes). All essential 
primary terms, second-level interaction terms, and curvilinear 
(quadratic terms) were included in the model to ensure compre-
hensive coverage of the variables and their potential interactions.

Drift Monitoring

Evidently AI [35] is a tool that helps to monitor machine 
learning pipelines. It detects the following changes: (i) input 
feature distribution, hereinafter be termed as “Data Drift”; 
(ii) provides feature statistics and behavior overview; (iii) 
detect changes in dependent variable, hereinafter be termed 
as “Target Drift”; and (iv) evaluate the quality of machine 
learning model and errors, hereinafter be termed as “Model 
Drift” [36]. In this study, “Target Drift” is investigated, and 
model performance is evaluated accordingly. The research-
ers aim to understand how changes in the target variable over 
scale (lab, pilot, and full or production) impact the regres-
sion metrics and reliability of the model.

Performance Metrics

The coefficient of determination (R2), mean absolute error 
(MAE), mean square error (MSE), and root mean square 
error (RMSE), which are specified in the following Eqs. 1–4, 
were each errors to assess the model’s predictive power 
[37, 38]. While the absolute values of the MAE, MSE, and 
RMSE results should be as low as feasible, the R2 ranges on 
a scale from 0 to 1 and should have higher values (> 0.95).
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actual and yi

pred represented the reference and ML 
predicted values, respectively. On the other hand, yactual,mean 
represents the experimental value meanwhile number of data 
points is represented as “n.”

Training‑Test Split

The training and test split of a dataset is necessary for evalu-
ating the performance of algorithm and models’ predictabil-
ity, generalizability, and transferability.

Establishing Data‑Split Criteria

Hold‑out Dataset or Internal Validation or Model 
Generalizability

To choose the optimal ML model, the laboratory batch data 
used in this study served as the hold-out dataset. This data 
is divided using a random selection method in proportions 
of 80 (for the train): 20 (for the test). Using this hold-out 
approach, the effectiveness of the machine learning algo-
rithms could be evaluated objectively.

External Validation Dataset or Model Transferability

The external validation sample could be made up of brand-
new pilot or production-scale samples. This is precisely few 
of the ways how the model lifecycle management can be 
established. Additionally, a novel strategy known as inter-
nal–external validation architecture, is utilized by Muthu-
doss et al. [2]. This strategy combines the advantages of 
internal and external validation. The model performance 
on production scale batches is predicted using these two 
approaches.

Bias‑Variance Decomposition (BVD)

BVD used to analyze data and algorithm performance 
characteristics [2, 39]. Based on these results, the need for 
hyperparameter tuning was approached. The BVD demon-
strates that mean squared error of a model generated by a 
certain algorithm is indeed made up of two components: (1) 
irreducible error (as noise) and (2) reducible error (as bias 
and variance), as shown in Eqs. 5 and 6. The irreducible 
error includes instrument/sample/sampling causes. On the 
other hand, bias measures how well predictions match the 
optimal values; variance indicates precision across different 
training sets that is considered crucial for evaluating model 
performance. Lowering bias and/or variance would allow in 
developing more accurate models. That said, a model with 
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minimal bias and minimal variance is better, often difficult 
to achieve. Hence, the bias-variance trade-off principle is 
employed,

Data Analysis and Statistics

For this study, we explored the tablets datasets acquired 
using NIR as described in Ref [34] (http://​www.​models.​
life.​ku.​dk/​Table​ts). Python was used to analyze data using 
univariate and ML approaches (version 3.9.0). Machine 
learning models were built by using Scikit-learn package 
(version “0.24.0”) [40] and in Python. Evidently AI (version 
“0.24.0”) is used to monitor data/target/model drift [35]. 
Matplotlib package (version “3.4.1”) [41] was employed in 
generating plots. The bias-variance decomposition was per-
formed using the mlxtend package (version “0.18.0”) [39] 
in Python (Raschka, 2018). Design of experiments (DoE) 
for ANN-MLP, statistical modelling, statistical analysis, and 
graphical visualization was carried out using JMP standard 
package (JMP®, Version 16, SAS Institute Inc. Cary, NC, 
1989–2022).

Results

Design of Experiments and Hyperparameter 
Optimization

Classical design of experiments (like full factorial, fractional 
factorial, central composite, and Box-Behnken) involves 
manual planning and limited exploration. In contrast, com-
puter-aided methods use algorithms and statistical methods 
to optimize designs efficiently, exploring factor spaces and 
identifying key factors affecting the response using mini-
mal experiments. This approach enables informed deci-
sions and better results with fewer experiments. A designed 
experiment is a controlled set of tests designed to model and 
explore the relationship between factors and one or more 
responses. With respect to ANN-MLP, the hyperparameters 
can be considered factors and the regression performance 
metrics can be considered responses. The regression per-
formance metrics considered were R2, MAE, MSE, RMSE, 
total time for modelling (in seconds), MSE for bias-variance 
decomposition (BVD), bias, variance, time taken for BVD 
(in seconds), and time taken for BVD (in minutes). Two 
types of D-optimal (refer to Table I) design of experiments 
(DoE) were conducted to enhance the experimental design: 

(5)
Mean squared error (model) = reducible error + irreducible error

(6)
Mean squared error (model) = bias2 (model) + variance (model)

+ irreducible error

(i) a broader range of factors also termed “pre-screening 
DoE” (additionally identifies the optimal test size split) and 
(ii) a narrower range of factors also termed “optimization 
DoE” to optimize the pre-screened DoE. The first approach 
involved exploring a wide spectrum of factor levels to cap-
ture potential non-linear effects and interactions across a 
broader parameter space. On the other hand, the second 
approach focused on a more constrained range of factor lev-
els, seeking to delve deeper into specific regions of interest 
and gain precise insights into the factors’ behavior within 
a narrower scope. By employing both strategies, the DoE 
aimed to comprehensively explore the effects of the fac-
tors and optimize the experimental design for more robust 
and informative results. A custom design platform in JMP 
software was utilized to create a 36-treatment pre-screening 
experimental design and 22-treatment optimization experi-
mental design (Table I). This design allowed for estimates of 
main, interaction, and quadratic effects in predicting active 
content (in %w/w).

Pre‑screening DoE

The effect summary provides a concise overview of the sig-
nificant effects observed in an experiment or statistical anal-
ysis, highlighting main factors, quadratic effects, and inter-
actions with a statistically significant impact on the response 
variable. Researchers and decision-makers can use this sum-
mary to make informed decisions, optimize processes, and 
enhance the overall performance of the studied system. The 
analysis considers a p-value of less than 0.05 as significant, 
and examining the p-values for each factor helps determine 
their statistical significance. Additionally, understanding 
the nature of effects, whether linear or quadratic, further 
explains their influence on the response variable. Moreover, 
investigating interactions between factors reveals their com-
bined impact on the response. The effect summary is used 
to screen model. Pre-screening DoEs in this study demon-
strates the presence of main effects (hidden layer X, Y, Z, 
and max iterations) and all interactions between factors, as 
shown in Fig. 1a. Except max iterations, other factors did not 
demonstrate quadratic effect. Among the considered factors, 
pre-screening DOE indicated providing valuable insights for 
further analysis and decision-making.

Prediction Profiler

The prediction profiler serves as a valuable tool for com-
prehending statistical model outcomes, enabling visualiza-
tion of how predictor variables influence the response. Pre-
diction profiles are especially useful in multiple-response 
models to help judge which factor values can optimize 
a complex set of criteria. Incorporation of bootstrapping 
through resampling enhances the analysis by generating 

http://www.models.life.ku.dk/Tablets
http://www.models.life.ku.dk/Tablets
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estimates of model parameters and evaluating prediction 
stability. Additionally, accounting for random noise factors 
in the process improves model performance, especially in 
complex scenarios. High R2 values, approaching 1, indi-
cate a robust model fit, while low MAE, MSE, RMSE, 
time for modelling, MSE-BVD, bias, variance, time for 
BVD (in seconds), and time for BVD (in minutes) val-
ues signify precise predictions with minimal errors. This 
comprehensive approach empowers researchers to make 
informed decisions and enhance the reliability and effec-
tiveness of statistical models across various real-world 
applications. By gaining deeper insights into the interplay 
between predictor variables and the response, researchers 
can better optimize their models for improved predictive 
performance. From effect summary, it was inferred that 
all the considered factors demonstrate main effects and 
interaction effects, while max iterations demonstrate quad-
ratic effect as well. This is visible from the prediction pro-
filer; except max iterations, all other factors show a linear 
dependency with the response while max iterations show 
a quadratic effect. In the design of experiments (DoE), a 
quadratic effect refers to the non-linear impact of a fac-
tor on the response variable, capturing curvature in the 
response surface, as shown in Fig. 1b.

Optimization DoE

In the optimization design of experiments (DoEs), a fixed 
test size was employed, while other factors like hidden layer 
X, Y, Z, and max iterations were varied within a narrow 
range. To evaluate variability, bootstrapping with random 
noise was utilized. Most factors demonstrated linear depend-
encies, similar to the pre-screening DoE, except for max 
iterations. The max iterations factor exhibited a quadratic 
effect, indicating a non-linear relationship with the response. 
This quadratic effect revealed the presence of curvature in 
the response surface, indicating that changes in max itera-
tions led to non-linear variations in the response variable. 
The findings from this analysis are crucial in understand-
ing the optimal settings for the factors and identifying the 

influence of each factor on the response variable, facilitat-
ing informed decision-making and process optimization, as 
shown in Fig. 2a below.

Robustness of Optimized Model

Evaluating the robustness of a model involves testing its 
performance across a range of hyperparameter values, 
including lower, mid, and higher settings. By systemati-
cally varying the hyperparameters within their respective 
ranges, we can assess the model’s ability to consistently 
deliver improved performance. If the model consistently 
performs better at mid-range or higher hyperparameter 
values, it indicates that these settings are optimal for 
achieving superior results. This observation suggests 
that the model is robust to variations in hyperparameter 
choices and can consistently perform well under different 
conditions. On the other hand, if the model shows poor 
or inconsistent performance across different hyperparam-
eter values, it may indicate sensitivity to hyperparameter 
choices. In such cases, further experimentation and anal-
ysis may be needed to identify the best hyperparameter 
configuration for optimal performance. Understanding the 
robustness of the model by considering a range of hyper-
parameter values helps in selecting the most effective set-
tings that lead to improved performance and reliability. 
Furthermore, this will help in overcoming the blackbox 
problems and the inconsistency in model performance.

Table II demonstrates that the model’s performance met-
rics, including R2, MAE, MSE, RMSE, bias, variance, and 
time for model/BVD are acceptable for both training and 
test of the internal validation data. These results indicate 
that the model performs well and produces reliable as well 
as reproducible predictions. The metrics’ values are satis-
factory, signifying the model’s effectiveness in capturing 
the underlying patterns in the data without overfitting or 
underfitting.

When the chosen hyperparameters consistently dem-
onstrate exceptional performance across all relevant 
metrics, they are regarded as the optimal configuration 
for the model, as shown in Fig. 3. The fact that they con-
sistently yield superior results in various aspects of the 
model’s evaluation irrespective of the slight changes in 
the hyperparameters indicates their reliability and robust-
ness. By excelling across multiple performance metrics, 
these hyperparameters ensure that the model performs 
consistently well in different scenarios and tasks. This 
reliability and versatility make the selected hyperparam-
eters a preferred choice for achieving optimal and stable 
model performance. Researchers and practitioners can 
have confidence in their effectiveness and rely on them to 
deliver superior results in various real-world applications 
and data distributions.

Table I   The Factors and Ranges Considered for the Two Different 
DoEs

Factors Pre-screening DoE Optimization DoE

Lower Upper Lower Upper

Test size 0.05 0.3 Optimized and fixed 
to 0.3

Hidden layer X 1 275 1 50
Hidden layer Y 1 275 1 50
Hidden layer Z 1 275 1 50
Max iterations 1 275 1 200
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Fig. 1   a Effect summary for the 
DoE 1. b Prediction profiler for 
pre-screening DoEs
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Optimized Hyperparameters

The optimized hyperparameters that will be employed 
for external validation data are test size, 0.3; hidden layer 
X, 35; hidden layer Y, 4; hidden layer Y, 11; max iter, 
179; activation = “identity”;learning_rate = “invscaling”; 
solver = “lbfgs”; shuffle = false; and random_state = 123.

Target Drift Detection for the Dependent Features

Drift detection employing the K-S method can be utilized 
to understand whether the data come from similar or dif-
ferent distribution. If the data comes from the same distri-
bution, the performance of the model can be described as 
model generalizability, while if the data comes from a dif-
ferent distribution and the model performs better, it is model 
transferability.

After optimizing the model architecture and hyperpa-
rameters using internal validation data, it becomes cru-
cial to assess the similarity or dissimilarity between the 
external validation data and the data utilized during the 
optimization stage. This understanding is necessary to 
ensure the reliability and generalizability of the model. 
By comparing the characteristics and distribution of the 
external validation data with the data used for optimiza-
tion, we can gain insights into potential variations, iden-
tify any potential drift, and evaluate how well the model 
performs on unseen data. It is possible to analyze the drift 
of independent features (NIR spectra), dependent features 
(active content in %w/w), or combination of both. Since 
influence of minor changes on NIR spectra is obvious, in 
this study, the drifts in dependent feature/active content 
is emphasized. The target drift report offered by evidently 
AI enables to delve into the modifications occurring in the 
target function and gain insights on how to adjust accord-
ingly. Target or prediction drift signifies a scenario where 
the connection between the input variables (spectra) and 
the predicted target variable (API content in %w/w) under-
goes changes over time. In simpler terms, the fundamen-
tal distribution of the target variable may shift, resulting 
in inaccurate or untrustworthy predictions. This drift can 
transpire due to alterations in the data generating process 
(NIR spectra), variations in sample characteristics, manu-
facturing process changes (lab to pilot to production, etc.), 
or shifts in the environment (humidity, temperature, etc.). 
From Table III, it can be inferred that no drifts in internal 
validation data (lab-scale train data vs. lab-scale test data) 
are observed. Similarly, no drift in external validation data 
(pilot-scale vs. full/production-scale) is observed. How-
ever, drifts in lab-scale vs. pilot-scale and lab-scale vs. 
full/production-scale are observed. In order to understand 
in depth the impact of such drifts, histogram was plotted, 
as shown in Fig. 4a–d.

Since the data points more or less follow the pattern for 
internal validation data (lab-scale train data vs. lab-scale test 
data) and external validation data (pilot-scale vs. full/produc-
tion-scale), there is no drift observed. However, the lab-scale 
vs. pilot-scale or lab-scale vs. full/production-scale patterns 
does not match. Drift detected in the target drift algorithm 
could mean this. Since the data fall within the range of the 
trained model, the authors believe that the ANN-MLP algo-
rithm and optimized hyperparameters should perform well.

In the context of the model, we can assess its generalizabil-
ity by comparing the performance between lab scale train and 
lab scale test data since they originate from the same distribu-
tion. On the other hand, model transferability can be examined 
through (i) comparing lab scale train with pilot scale data and 
(ii) comparing lab scale train with production scale data, where 
the distribution of the target variable (active content in %w/w) 
differs, as summarized in Table IV. These comparisons allow us 
to determine how well the model can adapt and perform on data 
from different distributions or different scales of manufacture 
or different instruments or different excipients or domains, indi-
cating its transferability to new and diverse NIR spectral data.

Assessing Model Transferability

Before calculating point/interval estimate or employing 
control charts, it is crucial to assess whether there are any 
data drifts or distribution differences between the actual 
and predicted values, as well as the presence of outliers. 
This evaluation aids in determining whether the model 
requires retraining. Besides, this could be incorporated 
into model lifecycle management protocol for effective 
performance and reliability. Identifying drifts or discrep-
ancies in the data helps in understanding potential shifts 
in the underlying patterns and the model’s reliability in 
current data conditions. By addressing these discrepan-
cies through model retraining or adjustment, the model’s 
performance and effectiveness in predictions are ensured, 
leading to better decision-making based on reliable 
insights. Additionally, model transferability is also guaran-
teed. To this end, the drift detection method using the K-S 
test indicates p < 0.05 for pilot-scale actual vs. predicted 
active content (refer Fig. 5a), showing drift, while full-
scale actual vs. predicted has p > 0.05, implying no drift 
(refer Fig. 5b). This sensitivity of the target drift detection 
method suggests it can serve as a monitoring alarm. Con-
sequently, precautionary trend analysis/control charts can 
be plotted to track the data proactively.

Specification Limits and Trend Analysis

The test for uniformity of content in single-dose prepara-
tions involves assaying the individual contents of active sub-
stances in multiple units. It checks if each content is within 
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Fig. 2   a Effect summary for the 
optimization DoE. b Prediction 
profiler for optimization DoEs
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85–115% of the average content. Conformance of a process 
to certain specification limits is one of the desired outcomes. 
The specification limit was achieved as mentioned in the 
paper (85 to 115%) which works out to be between 6.9 and 
9.1% w/w. The internal validation data (Fig. 6a) includes 
both in-specification and out-of-specification (OOS) data, 
while the external validation data (Fig. 6b) complies with 
the specified requirements.

Control Chart and Trend Analysis

Typically, control charts and/or trend analysis act as moni-
toring thresholds for numerical decision-making purposes 
[42–44]. The paper employs trend analysis and control charts 
to assess whether the predictions generated by the ANN model 
fall within the specified limits. These visualizations are used 
to monitor both the internal validation data (lab scale train and 
lab scale test) and external validation data (pilot scale and full/
production scale), ensuring the consistency and performance 
of the process. By utilizing these tools, the study demonstrates 

the effectiveness of the process in adhering to the specified 
limits and identifies any potential deviations from the desired 
outcomes. Control charts play a crucial role in detecting trends, 
patterns, and outliers, enabling timely adjustments or inter-
ventions to maintain process quality. The relative error rate, 
computed using the lab scale train data (actual or original), 
is illustrated in Fig. 7. The ANN model accurately predicts 
out-of-specification results for lab scale train and test data, 
indicating its capability to identify deviations. Furthermore, it 
successfully predicts within specification limits for pilot scale 
and full-scale data, showcasing its robustness, generalizability, 
and transferability across different scales and datasets.

Discussion

With respect to pharmaceutical products and processes, 
both the US Food and Drug Administration (USFDA) and 
the International Council for Harmonisation of Techni-
cal Requirements for Human Use (ICH) have established 
regulatory guidelines to address variation [45–48]. The pri-
mary objective of these guidelines is to exert control over 
variability and promote the adoption of scientific and risk-
based approaches for assessing, managing, and controlling 
variation in pharmaceutical processes [49–51]. This study 
specifically focuses on addressing variability in Artificial 
Neural Network Multilayer Perceptron (ANN-MLP) models 

Table II   Performance Metrics of the Model (Robustness)

Metrics Low Mid High

Train R2 0.9466 0.9587 0.9582
Train MAE 0.1858 0.1730 0.1749
Train MSE 0.0711 0.0551 0.0556
Train RMSE 0.2666 0.2347 0.2359
Test R2 0.9079 0.9336 0.9320
Test MAE 0.2658 0.2405 0.2450
Test MSE 0.2658 0.0746 0.0764
Test RMSE 0.2658 0.2731 0.2763
Time for modelling in seconds 1.1514 1.2972 1.6293
MSE-BVD 0.1130 0.0970 0.0990
Bias 0.0900 0.0760 0.0730
Variance 0.0230 0.0210 0.0260
Time for BVD in seconds 63.4700 103.2583 148.5502
Time for BVD in minutes 1.0578 1.7210 2.4758

Fig. 3   Validation of the optimization DoE

Table III   Evaluating the Target (Active Content in %w/w) Drift as a 
Function of Manufacturing Process

Drift detection Detection 
method

Drift score 
(p-value)

Lab (train vs. test) Not detected K-S 0.166
Lab (train vs. pilot) Detected K-S 0.00
Lab (train vs. full) Detected K-S 0.00
Pilot vs. full Not detected K-S 0.22
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Fig. 4   a Target drift detection for internal valida-
tion data lab scale (train vs. test). b Target drift 
detection for external validation data (lab scale 
train vs. pilot scale). c Target drift detection for 
external validation data lab scale (train vs. full/
production scale). d Target drift detection for 
external validation data (pilot scale vs. full/pro-
duction scale)

▸
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(especially hyperparameter tuning), which are powerful 
tools used in various applications, including pharmaceutical 
research and development. To meet the regulatory require-
ments and ensure product quality, safety, and efficacy, a sys-
tematic approach is employed.

The study utilizes design of experiments (DoE) to identify 
sources of variability in ANN-MLP models. This approach 
allows researchers to comprehensively understand the fac-
tors that influence the model’s performance. By identifying 
these factors, researchers can take measures to control and 

optimize the model’s behavior. To maintain control over the 
ANN-MLP model, a target drift or a Kolmogorov–Smirnov 
test is employed. This ensures that the model remains within 
desired limits and avoids any potential issues related to out-
of-trend or out-of-specification results. By closely monitor-
ing the model’s performance, researchers can take timely 
corrective actions if any deviations are detected, preventing 
potential quality problems. Variability in the ANN-MLP 
model is further monitored through trend analysis and sta-
tistical process control (SPC). This allows researchers to 
evaluate the model’s performance over time and identify 
any deviations from the expected behavior. Early detection 
of variations enables researchers to fine-tune the model and 
ensure its stability and reliability.

By integrating these methodologies, the study aims to 
enhance the stability and reliability of ANN-MLP models. 
This makes them more adaptable to diverse datasets and 
real-world applications, providing robust and reliable tools 
for various pharmaceutical processes. The ultimate goal is 
to ensure compliance with USFDA guidelines and promote a 
scientific and risk-based approach to achieve optimal product 
quality while mitigating potential risks associated with vari-
ability in pharmaceutical processes.

Conclusions

In conclusion, this study underscores the importance of 
addressing ML model drift or errors arising from data vari-
ations, library changes, and missing parameter information 
to ensure accurate predictions. The comprehensive approach 
integrating DoE, drift analysis, and SPC enables robust 
hyperparameter optimization and effective model lifecycle 
management, leading to dependable predictions in real-world 
scenarios. Continuous monitoring and mitigation of model 
drift are essential to maintain model effectiveness over time. 
The findings contribute to enhancing decision-making pro-
cesses and optimizing model performance in dynamic data 
environments. Overall, this study provides valuable insights 
into managing and achieving reliable predictive models that 
can be integrated in production environments.

Table IV   Demonstrates the 
Evaluation of Distribution 
Similarity to Determine the 
Model’s Generalizability and 
Transferability on Unseen Data

Distribution-same Distribution-different

ML prediction (suc-
cessful)

Model generalizability Model transferability

In this study Internal validation data (lab scale 
train vs. lab scale test)

External validation data (lab scale train vs. 
pilot scale and lab scale train vs. production 
scale)

Fig. 5   a Target drift detection for pilot scale actual vs. predicted. b 
Target drift detection for full scale actual vs. predicted
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Fig. 6   a  Specification Limit (85%–115% w/w) and Internal Valida-
tion Data.  Note: The specification limit is between 6.9% w/w and 
9.1% w/w. The internal validation data (Lab Scale Train  Actual vs. 
Predicted and Lab Scale Test Actual vs. Predicted) includes both in-
specification and out-of-specification  (OOS) data.  b  Specification 

Limit (85%–115% w/w) and External Validation Data.  Note: The 
specification limit is between 6.9% w/w and 9.1% w/w. The external 
validation data (Pilot Scale Actual vs. Predicted and Full Scale Actual 
vs. Predicted) includes both in-specification and out-of-specification 
(OOS) data

Fig. 7   Individual data points 
demonstrating the predicted 
active content %w/w
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