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Abstract
This study reports on the synthesis of Mn1 − xZnxFe2O4 (Mn, Zn ferrite) magnetic nanoparticles (MNPs) as drug delivery 
carriers for effective therapeutic outcomes. The MNPs were prepared using the coprecipitation method, and their magnetic 
properties were investigated based on their composition. Among the compositions tested, Mn0.8Zn0.2Fe2O4 MNPs exhibited 
superparamagnetic properties with a saturation magnetization moment of 34.6 emu/g at room temperature (25°C). To enhance 
the water solubility of curcumin (Cur), known for its hydrophobic nature, it was successfully loaded onto alginate (Alg)/
chitosan (Chit)@Mn0.8Zn0.2Fe2O4 nanoparticles (NPs). The nanocomposite was characterized by field emission scanning 
electron microscopy (FE-SEM) which revealed a particle size of approximately 20 nm. The crystalline structure of the NPs 
was analyzed using X-ray diffraction, while Fourier-transform infrared (FTIR), energy-dispersive X-ray, and map analysis 
techniques were employed for further characterization. In terms of drug release, there was an initial burst release of Cur 
(around 18%) within the first hour, followed by a slower release (approximately 61%) over the next 36 h. The anti-tumor prop-
erties of the Cur-loaded NPs were evaluated using the Methyl Thiazol Tetrazolium (MTT) assay and quantitative real-time 
polymerase chain reaction. The MTT assay confirmed a higher cytotoxic effect of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 
NPs on the MCF-7 breast cancer cell line compared to free Cur, highlighting the significance of incorporating Cur into 
nano-sized carrier systems.
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Introduction

Nanomaterials have shown considerable potential to cure a 
wide range of diseases. Among these nanomaterials, mag-
netite nanoparticles (MNPs) have attracted much attention 
because of their unique properties [1, 2]. At present, mag-
netic oxide complexes containing iron ions have attracted 
significant interest owing to the intricate interplay between 
their functional attributes and chemical composition [3, 4]. 
The presence of optimal magnetic and electrical proper-
ties [5] as well as microwave characteristics [6] renders 
these iron oxides highly suitable for various practical 
applications.

Magnetic oxide complexes have been used in several 
fields such as catalysis, drug delivery, protein separation, 
magnetic resonance imaging (MRI), and magnetic sensors 
[7–9]. Some studies have revealed the positive effects of 
doping iron oxide NPs with B2O3, Co, or Zn ions on mag-
netic parameters, including permeability and saturation 
magnetization [10]. Because of their superparamagnetic 
activity at room temperature, ZnFe2O4 NPs are attracting 
much attention in the biomedical sector [11]. MnFe2O4 NPs 
are receiving intensive attention for their significant inher-
ent biocompatibility due to the doping of Mn2+ ions, higher 
transition temperature, tunable magnetic response, and con-
siderable chemical stability at room temperature [12, 13].

Mn-Zn ferrite have distinctive physical and chemical 
properties such as low core loss; high magnetic perme-
ability; and thermal, mechanical, and magnetic properties 
[14, 15]. The chemical and physical properties of magnetic 
ferrite NPs mainly rely on their preparation conditions and 
techniques used. Numerous methods have therefore been 
used in the production of NPs of Zn–Mn ferrite. These 
include high-energy ball milling [16], co-precipitation 
[17], sol–gel [18], microemulsion [19], and the hydrother-
mal technique [20]. The co-precipitation technique seems 
to be the utmost promising technique because of its high 
productivity and simplicity of use [21].

The ferrite NP surfaces have also been decorated with 
biocompatible/biodegradable polymers to improve their 
surface properties. Several reports have suggested the use 
of surface coatings such as chitosan (Chit) [22], alginate 
(Alg) [23], polyethylene glycol (PEG) [24], and dextran 
[25] for the MNPs.

Among various marine biomaterials, Chit has attracted 
great attention because of its biodegradable, biocompat-
ible, and bioactive properties. Chit is widely used in medi-
cal and pharmaceutical applications, including artificial 
matrices for drug delivery [26], tissue engineering [27], 
wound dressing [28], and anti-bacterial coatings [29]. 
Metal oxide NPs have also been incorporated into various 
Chit matrix forms such as films or gels.

Alg is a naturally linear polysaccharide that has attracted 
attention in the progress of advanced drug delivery systems 
based on electrostatic interactions [30, 31]. The most signifi-
cant properties of this polysaccharide are biocompatibility, 
nontoxicity, biodegradability, water solubility, and accessi-
bility of carboxyl and hydroxyl functionalities for chemical 
modification [32, 33].

Recent research implies that curcumin (Cur) has gained 
considerable attention due to its multiple pharmacological 
effects, such as an anti-oxidant [34], anti-inflammatory [35], 
anti-microbial [36], and has a wide spectrum of actions against 
tumors [37]. Many researchers have demonstrated that Cur 
modulates cancer cell growth by the interference with multi-
ple cellular signaling pathways, including mitochondrial path-
ways, caspase activation, tumor suppressor, cell proliferation, 
and survival [38–40]. Despite the excellent biological proper-
ties of Cur, the administration of Cur is restricted due to its 
low bioavailability, instability, low aqueous solubility, and thus 
poor absorption. Several methods have been used to overcome 
the low aqueous solubility of Cur through encapsulation in 
liposomes [41], dendrimers [42], cyclodextrin [43], and hydro-
gels [44]. It has also been reported that encapsulated Cur in 
nanoformulations is effectively protected against degradation 
and assists in its delivery to target cells [45, 46].

Based on the above information, to the best of our knowl-
edge, there have been a few reports on the examination of 
the usage of rare-earth-doped Mn–Zn ferrites on cancer 
cells. The electrical, microwave, and magnetic properties 
of ferrite spinels are noteworthy for applications as func-
tional materials in high-frequency and biomedical uses. 
High residual magnetization and low coercive force (optimal 
magnetic properties) permit the application of spinels for 
targeted drug delivery in humans through a magnetic field. 
The current work aimed to develop curcumin (Cur)-loaded 
alginate/chitosan@Mn1 − xZnx-Fe2O4 nanoparticles (NPs) 
using the nanoprecipitation method. In this study, we opted 
for Mn1 − xZnxFe2O4 nanocarriers due to their simplicity in 
preparation, resulting in small-sized particles, and possess-
ing the requisite magnetization to enable responsiveness to 
an external magnetic field. Subsequently, a comprehensive 
investigation was conducted into the physicochemical char-
acteristics and in vitro efficacy of Cur-loaded alginate/chi-
tosan@Mn0.8Zn0.2Fe2O4 NPs. The performance of these NPs 
and a curcumin solution were then evaluated against MCF-7 
human breast cancer cell lines to determine its effectiveness.

Materials and Methods

Materials

Low molecular weight (50,000–190,000 Da) chitosan (Chit), 
alginate (Alg), ethylene glycol (EG), citric acid, sodium 
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dodecyl sulfate (SDS), and Na2SO4 were purchased from 
Fluka (Switzerland). Curcumin (Cur) powder was obtained 
from Merck Company, Darmstadt, Germany. Manganese 
nitrate (Mn(NO3)4H2O), zinc nitrate ((Zn(NO3)2.6H2O), 
ferric chloride (FeCl3 anhydrous), 3-[4, 5-2-yl]-2,5-diphe-
nyl-tetrazolium bromide (MTT) assay, Dulbecco’s modified 
eagle medium (DMEM), Roswell Park Memorial Institute 
(RPMI) 1640 medium, fetal bovine serum (FBS), penicillin/
streptomycin (P/S), l-glutamine, and trypsin/EDTA were all 
obtained from Sigma-Aldrich (Germany). The human breast 
cancer (MCF-7) cell lines were purchased from the Pasteur 
Institute, Tehran, Iran.

Preparation of Cur‑Loaded Alg/Chit@(Mn, Zn) 
Ferrite NPs

Synthesis of (Mn, Zn) Ferrite NPs

(Mn1 − xZnx) Fe2O4 NPs were fabricated using a simple co-
precipitation technique with an x value from 0.2 to 0.8. For the 
co-precipitation method, 1.36 g of ferric chloride (FeCl3 anhy-
drous), 0.97–0.33 g of manganese nitrate (Mn (NO3)2.4H2O), 
and 0.39–1.16 g of zinc nitrate ((Zn (NO3)2.6H2O)) was dis-
solved in 50 mL of de-ionized water. Five-milliliter hydro-
chloric acid (0.2 M) and 10 mL EG were then added slowly to 
the solution under stirring conditions (500 rpm on a stirring 
plate at room temperature (25°C) for 30 min). After that, in 
a three round-neck bottom flask (250 mL) equipped with a 
magnetic stirring bar, 0.54 g SDS and 3 g sodium hydroxide 
were dissolved in distilled water at about 80°C. The former 
solution was poured slowly into the flask under stirring (700 
rpm), which was continued for 1 h under a N2 atmosphere at 
80°C. The precipitate was washed three times with 120 mL of 
de-ionized water and absolute ethanol and then centrifuged 
for 10 min at 8000 rpm. To induce the surface modification of 
(Mn, Zn) ferrite NPs, the mixture was modified by adding 0.05 
M citric acid. This mixture was stirred (500 rpm) together for 
1 h under N2 at 85°C. At the end of the reaction, the resulting 
mixture was washed three times with 120 mL de-ionized water 
and then centrifuged for 20 min at 14,000 rpm.

Synthesis of Cur‑Loaded Alg/Chit@(Mn, Zn)Ferrite NPs

For the synthesis of Cur incorporated Alg/Chit@
Mn0.8Zn0.2Fe2O4 NPs, 50 mg of Chit was dissolved in 50 mL 
1% acetic acid with the pH adjusted to 4.9 by use of a 1 M 
sodium hydroxide solution. Cur powder (5 mg) was dissolved 
in 5 mL absolute ethanol and added to the Chit solution at a 
stirring speed of 700 rpm. The Cur-loaded Chit solutions were 
introduced into a modified Mn0.8Zn0.2Fe2O4 NP mixture under 
stirring (700 rpm). Twenty-five-milliliter Alg (1 mg/mL) solu-
tion was then added to the mixed solution and the pH of the 

suspension was adjusted to 4.6 by the use of a 0.5 M hydro-
chloric acid solution. The Alg was injected slowly into this 
solution. Finally, the obtained NPs were washed three times 
with 120 mL of de-ionized water and ethanol, respectively, 
and then centrifuged for 20 min at 14,000 rpm. Finally, the 
product was dried at room temperature (25°C) for 24 h.

Characterization

Dynamic light scattering (DLS) is a well-established and 
non-invasive technique for determining the size distribution 
and size of small particles in the submicron region. DLS via 
a Zetasizer Nano ZS system (Malvern Instruments Worces-
tershire: UK) with an angle of 90° at 25°C was applied to 
measure the diameter of the NPs. Laser Doppler electropho-
resis was applied to determine the zeta potential of the NPs. 
The final concentration of the sample was 0.05 ppm.

Loading Capacity

The amount of loaded Cur was measured by high-performance 
liquid chromatography (HPLC) analysis (Knauer; Smartline, 
Berlin, Germany). The Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 
solution in the “Synthesis of (Mn, Zn) Ferrite NPs” section 
was centrifuged, and the supernatant was decanted. Air-dried 
NPs (1 mg) were dissolved in ethanol 70% (1 mL), and the 
Cur-loaded nanocomposite was extracted using ethanol and 
acetonitrile. The mobile phase of the HPLC was a mixture 
of water, ethanol, and acetonitrile in a ratio of 30:30:40 (v/v), 
respectively. Eurospher 100-5 C18 5 µm, 4.6/250 mm was 
used as the column (Knauer, Berlin, Germany). The ultraviolet 
(UV) detector at a wavelength of 428 nm was used to detect 
the eluent, and the mobile phase had a flow rate of 1 mL/min. 
The EZChrom software was used to calculate the area under 
the peaks. The amount of Cur was calculated from the standard 
calibration curve derived from a range of Cur concentration 
of 2–50 µg mL−1. Cur loading capacity of NPs was measured 
using the equation below:

Morphology

The morphologies (e.g., particle size and shape) of the 
samples were studied by a field-emission scanning electron 
microscope (FE-SEM) (Mira3, Tescan) equipped with an 
energy-dispersive X-ray (EDX) spectrometry and dynamic 
light scattering (DLS). In the FE-SEM analysis, the nano-
composite was scanned at 15 kV and had a working dis-
tance of 10.46 mm. To avoid charge buildup on the product 

Drug loading (%) =Total amount of Cur in nanocomposite

∕Total weight of nanocomposite × 100
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surface, it was covered with conductive metallic compounds, 
in this case, gold.

Fourier‑Transform Infrared Analysis

A Cary 630 Fourier-transform infrared (FTIR) spectropho-
tometer (Agilent Technologies Inc., CA, USA) was used to 
identify the structural information of the starting materials 
(e.g., Cur, Alg, Chit) and Cur-loaded MNPs. The spectra 
were recorded between 400 and 4000 cm−1.

X‑ray Diffraction Analysis

The crystalline structure of Cur-loaded Alg/Chit@
Mn1 − xZnxFe2O4 NPs was evaluated using X-ray diffraction 
(PHILIPS-PW1730; Netherland) (40 kV; 30 mA) at 2θ of 
between 10° and 80°. The samples were exposed to Cu Kα 
radiation (λ = 1.5406 A°) and scanned from 10 to 80° at 2θ 
with a step time equal to 1 s and a step size of 0.050°.

Vibrating‑Sample Magnetometer Analysis

The magnetic moment of compounds as a function of the 
applied magnetic field was registered as a vibrating-sample 
magnetometer (VSM). The samples were placed in a gel 
capsule and then air dried. To prevent movements during 
the measurement, the samples were clamped using a sample 
holder. The maximum applied field was deemed to be about 
2 T in a 10-mm air gap. Magnetization properties of the 
NPs were investigated with a VSM (MDKB, Kashan, Iran) 
at room temperature (25°C).

In Vitro Release Study

The in vitro release study is one of the important tests used 
to evaluate and assess the efficacy, safety, and quality of 
nanocomposite-based drug delivery systems [47, 48]. The 
dialysis bag (cutoff = 12–14 KD) method was used for the 
in vitro release study. Before starting the process, the dialysis 
bag was pre-treated/soaked in double-distilled water and kept 
overnight. The pre-treated dialysis bag was individually filled 
with 5 mg of samples (pure Cur and Cur-loaded Alg/Chit@
Mn0.8Zn0.2Fe2O4). The bag was then tied at both ends and 
placed in 150 mL of dissolution media at 37°C. At time inter-
vals of 0, 1, 3, 5, 7, 9, 11, 24, and 36 h, the dissolution medium 
was centrifuged at 14,000 rpm for 15 min. The released Cur 
was dissolved in absolute ethanol (2 mL), and the absorb-
ance was determined via a UV spectrophotometer (SQ4802; 
UNICO, Dayton, NJ, USA) at λ = 428 nm. The in vitro release 
data was calculated based on the following equation:

where Ct indicates the released Cur concentration at the 
time t and C0 is the total value of Cur-loaded in Alg/Chit@
Mn0.8Zn0.2Fe2O4 NPs.

Cell Culture Examination

The MCF-7 cells were cultured in a DMEM-high glucose 
growth medium containing 10% of FBS and 1% of P/S. The 
cells were then incubated 5 h with 5% CO2 at 37°C.

Cell Viability Assay (IC50)

The MTT assay was used to examine the Cur, nanocarrier, 
and nanocomposite’s efficacy on the MCF-7 cells. The cancer 
cell was plated in a 96-well cell (1 × 105 cells/mL) at 200 
µL and then incubated at 37°C with 5% CO2 for 24 h. The 
cells were treated with various concentrations (15.62–250 µg/
mL) of Cur, Alg/Chit@Mn0.8Zn0.2Fe2O4, and Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4. After 48 h of the incubation period, 
20 µL of the MTT was incorporated into each well. After an 
incubation period of 4 h, 100 µL of DMSO was poured into 
each well to dissolve the blue formazan precipitate. Absorb-
ance was subsequently measured at 570 nm by a microplate 
reader. The IC50 values were measured from the concentra-
tions of Cur and Cur-loaded synthesized NPs, which prevent 
50% of cell growth. The experimentations were performed in 
triplicate. The average absorbance was applied to measure the 
average cell viability by employing the following equation:

The primary objective of this research was to explore 
and analyze the impact of various key parameters on the 
synthesis of nanomagnetic particles, specifically designed 
for drug delivery applications. In pursuit of this goal, the 
study focused primarily on the MTT assay as a crucial indi-
cator of cell viability and compatibility with the produced 
nanomagnetic particles which have been the case in other 
studies [49–52]. However, it is worth acknowledging that the 
vast landscape of nanoparticle research offers a multitude of 
characterization and assessment techniques. Notably, some 
researchers have suggested the inclusion of cytotoxicity 
assays among other tests [53–55].

Statistical Analysis

One-way ANOVA was applied to examine the statistically 
significant differences between the groups. The data were 

Release (%) = Ct∕C0
× 100

% Cell viability =Average absorbance of treated sample

∕Average absorbance of control × 100
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shown as mean ± SD. P-values < 0.05 were measured as 
being significant throughout the studies.

Results and Discussions

Characterization

DLS is an effective tool used to measure the size of NPs in 
an aqueous solution or suspension. The nanoparticles (NPs) 
were sonicated at room temperature (25°C). This resulted in 
average hydrodynamic diameters of 66.5 nm for (Mn, Zn) 
ferrite, 111.7 nm for Cur-loaded chitosan@(Mn, Zn) ferrite, 
and 122.4 nm for the Cur-loaded alginate/chitosan@(Mn, 
Zn) ferrite NPs (Table I). This methodology is very differ-
ent from the imaging of dried compounds and is sensitive to 
dynamic aggregation and agglomeration of the particles in 
solution [56]. It is important to note that the different sizes of 
the samples in aqueous solutions and dry compounds can be 
caused by the Brownian motion of the particles in the aqueous 
solution [57]. The DLS histogram of Cur-loaded Alg/Chit@
Mn0.8Zn0.2Fe2O4 NPs depicts that the NP size was in the range 
of 50–250 nm, with an average size distribution of 122.4 ± 
4.10 nm (Fig. 1). It is important to also note that the surface 
charge can impact the NP distribution stability. NPs with high 
amounts of zeta potential in the range of 20 to 40 mV could 
be an indication of good nanoparticle stability and a reduction 
in the likelihood of an increase in the particle size or aggre-
gation of nanoparticles occurring in the system. The surface 
charge of nanoparticles is also a vital factor for NPs to interact 
with oppositely charged cell membranes or make aggregates 
in blood flow. The blood cells and plasma commonly display 
a negative charge. NPs with a negative surface charge can 
reduce undesirable interactions with blood cells [58]. The 
zeta potential values of coated and non-coated/naked MNP 
suspensions are shown in Table I. The presence of Chit-Cur 
on MNPs creates positively charged amino groups (NH3

+) 
(zeta potential = +46.5) appropriate to ionic interactions with 
negatively charged Alg. The negative charge on the Alg/Chit-
Cur@(Mn, Zn) ferrite NPs comes from the carboxyl groups 
present on the surface of the Alg. It can be concluded that the 
variation in surface charge is mainly because of the difference 
in the functional groups on the surface of the NPs [59]. These 
values are an indication of the good colloidal stability of NPs.

Loading Capacity

The drug loading capacity of the NPs carrier is a signifi-
cant parameter for therapeutic applications. To estimate the 
drug-loading potential of NPs, Cur, with a large spectrum 
of biological activities, was selected. Cur was chosen as an 
anti-tumor model drug to evaluate the uptake of the drug by 
Alg/Chit@Mn0.8Zn0.2Fe2O4 NPs as a nanocarrier. The drug 
loading percentages of Cur were validated using HPLC on 
the Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 NP mixture in 
ethanol 70%. It must be mentioned that the concentration of 
Cur was calculated using the standard curve obtained from 
a series of standard solutions of Cur in ethanolic solution 
(70%) as explained in the “Loading Capacity” section. The 
loading capacity for NP was found to be about 35%. Pazouki 
et al. reported that the loading capacity of Cur-loaded car-
boxymethyl Chit-Fe3O4 NPs was <5% [60]. In the current 
study, the higher Cur loading capacity may have resulted 
from the usage of citric acid as a modifier of MNPs. It can 
therefore be concluded that the incorporation of citrate-mod-
ified MNPs strengthened the binding to Chit-Cur.

FE‑SEM Analysis

FE-SEM shows the morphology and size of the Cur-loaded 
Alg/Chit@Mn0.8Zn0.2Fe2O4 surface (Fig. 2a, b, c). FE-SEM 
study reveals that synthesized NPs are spherical and well 
dispersed. FE-SEM images in the higher magnification dis-
played that the diameters of NPs are around 20 nm. The 
elemental composition of the nanocomposite was also ana-
lyzed by EDX measurements (Fig. 2d). The EDX results 
confirmed the existence of Fe, Zn, Mn, N, C, and O ele-
ments. The element mapping image of Cur-incorporated 
Alg/Chit@Mn0.8Zn0.2Fe2O4 is displayed in Fig. 2e, which 
indicates the uniform distributions of Fe, Zn, Mn, N, C, and 
O throughout the nanocomposite.

FTIR Analysis

The FTIR spectra of Cur, Chit, Alg, and Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4 are shown in Fig. 3. The spectra 
indicate a wide peak of Chit at around 3447 cm−1 exhibit-
ing vibration stretching of −NH2 and −OH groups. From the 

Table I   Zeta Potential, 
Polydispersity Index, and 
Hydrodynamic Size of Various 
Nanoparticle Formulations

* This is the naked/bare or uncoated NP

Sample Zeta potential (mV) ± SD Particle size (nm) ± SD Polydispersity

(Mn, Zn) Fe2O4
* −36.8 (±0.37) 66.5 (±7.51) 0.08

Chit-Cur@(Mn, Zn) Fe2O4 +46.5 (±0.20) 111.7 (±6.60) 0.10
Alg/Chit-Cur@(Mn,Zn) Fe2O4 −24.8 (±0.28) 122.4 (±4.10) 0.09
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Chit spectra, the peak around 1650 cm−1 was allocated to 
carbonyl vibration stretching. The peak around 1637 cm−1 
on the Chit spectra was assigned to the N–H group.

The OH stretching of an Alg shows a peak at ~2891 cm−1. 
The peak at ~1644 cm−1 was allocated to the carboxyl group. 
The C–O–C stretching of a saccharide shows a peak at 
~2891 cm−1 and around 1127 cm−1. In the Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4, the peak around 1649 cm−1 proves 
the presence of the carboxyl group of Alg overlapping with 
the NH group of Chit. Compared to Cur, in the Cur-loaded 
Alg/Chit@Mn0.8Zn0.2Fe2O4 spectra, there was a broad peak 
at ~3150–3486 cm−1 which indicated the addition of the 
OH group after the addition of Alg and Chit. In compari-
son with Chit, Alg, and Cur, the peak around 1640 cm−1 
of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 assigned to the 
hydroxyl group overlapping with the NH2 group of Chit [61]. 
Besides, in Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4, the band 

at approximately 590 cm−1 is due to the characteristic peaks 
of the Fe–O stretching vibrations of Fe2O4 [62]. Moreover, 
the observed peak at 460 cm−1 indicates Zn–O bonding [63]. 
The FTIR spectrum of Cur shows multiple peaks at 1508 
cm−1 (C = C and C = O), 3478 cm−1 (N–H), and 1625 cm−1 
(C = C). These peaks also appear in the FTIR spectrum of 
Cur-loaded NPs, but most of the peak intensities are rela-
tively weak. These analyses suggest that Cur was effectively 
loaded into the particles [61].

XRD Analysis

Figure 4 illustrates the X-ray diffraction (XRD) patterns 
with different proportions of Mn:Zn in (Mnx,Zn1 − x) Fe2O4 
NPs with an x value in the range of 0.2 to 0.8. In the 
XRD pattern, all peaks at 2θ = 30.1°, 35°, 42°, 57°, and 
62.25° can be ascribed to the diffraction of cubic (Mn, 

Fig. 1   DLS images of Alg/Chit/
Cur@Mn0.8Zn0.2Fe2O4
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Zn) ferrite crystal with the (220), (311), (400), (511), 
and (440) planes, respectively. All XRD diffractions dis-
play the characteristic peaks of the cubic structure, with-
out any impurity of other metal oxides such as ZnO and 
MnO. It was also observed that the peaks in the XRD pat-
terns were slightly shifted to lower angles with increas-
ing Zn concentration. For instance, the situations of the 
(311) peaks are 35.55° for Mn0.8Zn0.2Fe2O4, 35.14° for 
Mn0.6Zn0.4Fe2O4, 34.75° for Mn0.4Zn0.6Fe2O4, and 34.7° 

for Mn0.2Zn0.8Fe2O4, respectively. The reduced angle of 
the diffraction peaks originating from the increased lattice 
spacing is in accordance with Bragg’s law. Fe2+ ion and 
Mn2+ ion have a radius of 0.75 A° and 0.81 A°, respec-
tively. This is smaller than the radius of a Zn2+ ion (0.88 
A°), and therefore, the increase in Zn2+ ion substitution 
caused the expansion of the lattice spacing. This result 
confirms that the Mn2+ and Zn2+ ions were effectively 
doped in the relevant ferrite nanocrystals [64].

Fig. 2   a FE-SEM images of 
Alg/Chit/Cur@Mn0.8Zn0.2Fe2O4 
with a magnification of 
×35,000. b FE-SEM images of 
Alg/Chit/Cur@Mn0.8Zn0.2Fe2O4 
with magnification of ×75,000. 
c FE-SEM images of Alg/Chit/
Cur@Mn0.8Zn0.2Fe2O4 with a 
magnification of ×150,000. d 
EDX graph of Alg/Chit/Cur@
Mn0.8Zn0.2Fe2O4. e Elemental 
map of Mn, Fe, C, O, Zn
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VSM Analysis

The magnetization curves of (Mn, Zn) ferrite with dif-
ferent ratios of (Mn:Zn) and Cur-loaded Alg/Chit@
Mn0.8Zn0.2Fe2O4 are presented as Fig. 5. The hysteresis 
curves of the manufactured NPs do not display any coer-
civity magnetization. Nevertheless, all (Mn, Zn) ferrite 
nanoparticles show a saturation magnetization (MS), which 
indicates their paramagnetic behavior.

The MS of Mn1 − xZnxFe2O4 composite relied on the ratio 
of the Mn:Zn (Fig. 5a). The introduction of the Zn2+ dopants 
as non-magnetic ions in the nanostructure led to a decrease 
in MS. The variation in MS was caused by the effect of the 
occupancy of cations in specific sites and cationic stoichi-
ometry. The presence of the polymer shell could reduce the 
MS of NPs in the latter NPs. The MS of Mn0.8Zn0.2Fe2O4 
(34.6 emu/g) NP was higher than that of Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4 (23.9 emu/g) NPs (Fig. 5b). Even 
though the magnetization of the Cur-loaded Alg/Chit@
Mn0.8Zn0.2Fe2O4 was less than that of the uncoated polymer, 
it still presented acceptable magnetic properties. Montha et 
al. prepared doxorubicin (DOX)-loaded PLGA@Chit@
(Mn, Zn) ferrite NPs through the co-precipitation method 
and found the MS of the PLGA@Chit@Mn0.9Zn0.1Fe2O4 
(13.2 emu/g) NPs to be lower than the Mn0.9Zn0.1Fe2O4 
(56.1 emu/g) NPs due to the presence of the polymer shell 
in the latter NPs. Besides, at concentrations of less than 
125 μg/mL, the DOX-PLGA@Chit@Mn0.9Zn0.1ferrite NPs 
exhibited lower toxicity against HeLa cells compared to the 
free DOX. At higher concentrations (e.g., 250 μg/mL), the 
DOX-PLGA@Chit@Mn0.9Zn0.1 ferrite revealed a relatively 
higher anti-cancer activity to HeLa cells compared to free 
DOX [65]. Li et al. reported that Mn–Zn ferrite inserted in 
a polymer matrix showed low Curie temperature close to 

Fig. 2   (continued)

Fig. 3   FTIR spectra of Alg/Chit/Cur@Mn0.8Zn0.2Fe2O4, Cur, Chit, 
Alg

Fig. 4   XRD spectra of prepared magnetic Mn1 − xZnxFe2O4 MNPs
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the body temperature which was beneficial for safety and 
clinical viability [66].

In Vitro Release of Cur and Cur From Alg/Chit@
Mn0.8Zn0.2Fe2O4

The in vitro release study was assessed at pre-determined 
time intervals. The in vitro drug release study of Cur and 
Cur-loaded MNPs is depicted in Fig. 6. Pure Cur released 
around 5% of its drug load within 5 h followed by a 10% 
release at 36 h. To control the release rate, Alg beads are 
blended with Chit to prepare a complex through ion-ion, 
hydrogen bonding, and dipole-ion interactions [67, 68]. The 
release studies showed that 18% of Cur was released from 
the MNPs after 1 h. After 25 h, the release of curcumin 

increased slowly and finally reached 61% within 36 h. The 
initial release of Cur from Alg/Chit@Mn0.8Zn0.2Fe2O4 
MNPs is attributed to the fraction of the drug which is 
adsorbed or weakly bound to the surface area of the Chit 
and the slow and controlled release of Cur is due to hydro-
gen bonding or Van der Waals forces between Cur and Chit 
[69]. In comparison with free Cur, the gradual increase in 
the release of Cur from Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs 
can be related to its uniform dispersibility and capability 
to keep the drug in a solubilized condition without causing 
precipitation. In fact, the natural polymers that covered the 
Cur during the preparation process may be responsible for 
the sustained release profile.

Zhao et  al. developed layer-by-layer functionalized 
Fe3O4 nanoparticles by coating MNPs with positively 

Fig. 5   a Magnetization curves 
of the Mn1 − xZnxFe2O4 MNPs. 
b Magnetization curves of the 
as-prepared Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4 and 
Mn0.8Zn0.2Fe2O4 NPs
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charged Chit and negatively charged Alg. Cur-loaded 
magnetic Alg/Chit nanoparticles were used to enhance 
the uptake efficiency, bioavailability, and cytotoxicity of 
Cur to Human Caucasian Breast Adenocarcinoma cells. 
The authors postulated that the release rate of Cur can 
be controlled by adding more layers of Chit and Alg as 
well as by changing the outermost polymer (Chit or Alg). 
An increase in the biopolymer layers caused a slower Cur 
release profile, whereas Chit as the outermost layer pre-
sented a faster Cur release [70]. Naderi et al. prepared 
magnetic MnFe2O4 and Fe3O4 MNPs with crosslinked 
carboxymethyl Chit hydrogel (CMCS). The maximum 
Cur release was obtained ranging 25.1–51.52% because 

of the weak bonds from the surface of Fe3O4/CMCS and 
MnFe2O4/CMCS [71].

MTT Assay

Cytotoxicity properties of Alg/Chit@Mn0.8Zn0.2Fe2O4, Cur, 
and Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs were per-
formed by using the MTT assay. This assay was performed 
at various concentrations (250, 125, 62.5, 31.25, and 15.625 
µg/mL) of Alg/Chit@Mn0.8Zn0.2Fe2O4, Cur, and Cur-loaded 
Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs. Figure 7 indicates the 
effect of Alg/Chit@Mn0.8Zn0.2Fe2O4, Cur, and Cur-loaded 
Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs and chemotherapeutics 
on MCF-7 cells through the MTT assay after 48 h of expo-
sure. Cur has the potential to operate through several path-
ways in cancer cells [72]. In comparison with the untreated 
cells (p ≤ 0.05), the MTT outcomes showed that the growth 
of MCF-7 cells was meaningfully inhibited after the treat-
ment with Cur-loaded synthesized NPs and Cur. The Cur-
loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 at a concentration of 250 
µg/mL displayed the highest inhibition (81%) for the MCF-7 
cells after 48 h of exposure. The effectiveness of Cur-loaded 
Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs on the MCF-7 cell line 
was considerably higher than the free Cur. The IC50 value 
of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 in MCF-7 cells 
was about 90.6 µg/mL, which is significantly lower than 
free Cur (213 µg/mL). It can therefore be proposed that 
the cytotoxicity of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 
MNPs is because of the improvement of water solubil-
ity and internalization ability inferred on Cur as a result 
of the NP manufacturing process. Cur-loaded Alg/Chit@
Mn0.8Zn0.2Fe2O4 MNPs and free Cur displayed a consider-
able impact on the cancer cells, which indicates that Cur 

Fig. 6   Release of Cur and Cur from Alg/Chit/Cur@Mn0.8Zn0.2Fe2O4 
MNPs

Fig. 7   Cell viability of breast 
cancer cells with different 
amounts of Cur-loaded Alg/
Chit@Mn0.8Zn0.2Fe2O4, Cur, 
and Alg/Chit@Mn0.8Zn0.2Fe2O4 
for 48 h determined by MTT 
assay



AAPS PharmSciTech (2023) 24:222	

1 3

Page 11 of 13  222

preserved its anti-tumor property even after encapsulation 
in Alg/Chit@Mn0.8Zn0.2Fe2O4 MNPs. No significant toxic-
ity was detected on the cells related to the plain Alg/Chit@
Mn0.8Zn0.2Fe2O4 MNPs, indicating the potential of Alg/
Chit@Mn0.8Zn0.2Fe2O4 MNPs as a useful carrier for bio-
medical applications.

Conclusion

The formulation of Curcumin (Cur)-loaded alginate/chi-
tosan@Mn0.8Zn0.2Fe2O4 MNPs exhibited highly promising 
therapeutic efficacy in combatting MCF-7 cancer cells. The 
nanoparticles underwent rigorous characterization through 
various techniques, including Fourier-transform infrared 
spectroscopy (FTIR), X-ray diffraction (XRD), and field 
emission scanning electron microscopy (FE-SEM). These 
analyses unveiled a magnetic core enveloped by a polymer 
shell, affirming the desired structural features and demon-
strating a satisfactory degree of magnetic responsiveness. 
Notably, FE-SEM examinations revealed that the Cur-
loaded alginate/chitosan@Mn0.8Zn0.2Fe2O4 MNPs pos-
sessed a mean particle size of approximately 20 nm. The 
in vitro biological testing showed a clear dose-dependent 
cytotoxic effect of the Cur-loaded NPs on MCF-7 cells. 
Importantly, this cytotoxicity surpassed that observed with 
free Cur, signifying the enhanced therapeutic potential of 
the nanomaterial formulation. Remarkably, the highest 
inhibition activity, amounting to an impressive 81%, was 
achieved at a concentration of 250 µg/mL of the Cur-loaded 
MNPs. One particularly intriguing discovery of importance 
that emerged from the investigations was that an ascending 
trend in the Mn content, transitioning from x = 0.2 to x = 
0.8, resulted in a corresponding increase in the saturation 
magnetization of the MnxZn1 − xFe2O4 NPs. These remark-
able outcomes strongly indicate that Cur-loaded alginate/
chitosan@Mn0.8Zn0.2Fe2O4 MNPs hold substantial promise 
as a desirable chemotherapy agent. it is therefore the belief 
of the authors that further investigation, particularly around 
in vivo studies, is warranted to unlock their full therapeutic 
potential and pave the way for potential clinical applications.
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