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Abstract
The aim of the current study is to explore the potential of artificial intelligence (AI) when integrated with Quality by Design 
(QbD) approach in the formulation of a poorly water-soluble drug, for its potential use in carcinoma. Silymarin is used as 
a model drug for its potential effectiveness in liver cancer. A detailed QbD approach was applied. The effect of the critical 
process parameters was studied on each of the particle size, size distribution, and entrapment efficiency. Response surface 
designs were applied in the screening and optimization of lecithin/chitosan nanoparticles, to obtain an optimized formula. 
The release rate was tested, where artificial neural network models were used to predict the % release of the drug from the 
optimized formula at different time intervals. The optimized formula was tested for its cytotoxicity. A design space was 
established, with an optimized formula having a molar ratio of 18.33:1 lecithin:chitosan and 38.35 mg silymarin. This resulted 
in nanoparticles with a size of 161 nm, a polydispersity index of 0.2, and an entrapment efficiency of 97%. The optimized 
formula showed a zeta potential of +38 mV, with well-developed spherical particles. AI successfully showed high predic-
tion ability of the drug’s release rate. The optimized formula showed an enhancement in the cytotoxic effect of silymarin 
with a decreased IC50 compared to standard silymarin. Lecithin/chitosan nanoparticles were successfully formulated, with 
deep process and product understanding. Several tools were used as AI which could shift pharmaceutical formulations from 
experience-dependent studies to data-driven methodologies in the future.

Keywords artificial neural network · deep learning · hepatocellular carcinoma · Ishikawa diagram · lecithin chitosan 
nanoparticles · quality by design · response surface design

Introduction

Pharmaceutical nanocarriers have been extensively investigated 
as potential drug delivery systems [1] because of their ability 
to improve the solubility and bioavailability of drugs, which 

leads to the enhancement of the therapeutic effectiveness of 
these drugs. Moreover, nanocarriers can control the release of 
the drug and increase its site specificity to certain organs [2].

The formulation of nanocarriers requires a deep under-
standing of the product and process, in order to control the 
variables that may impact the performance of the system. 
For a successful nanocarrier system, many process and 
material variables, which may have significant changes 
during the manufacturing and preparation, should be con-
trolled. Thus, a thorough understanding of the product and 
the process of its preparation is required in order to produce 
a robust product and to ensure its continual improvement. 
Quality by design (QbD) is a strategic product development 
approach that gives a thorough knowledge about the pro-
cess and the product understanding. QbD provides complete 
information about the critical process parameters (CPP) and 
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material attributes (MA) that affect the critical quality attrib-
utes (CQA). It results in the creation of design space, which, 
when controlled, could result in an increase in the robustness 
and the quality of the product [3]. QbD uses several tools 
such as risk assessment and Ishikawa diagrams, which lead 
to the creation of a full quality target product profile (QTPP). 
One of the powerful tools that could be integrated with QbD 
is deep learning.

Deep learning is a branch of artificial intelligence (AI) 
and computer science which focuses on the use of data and 
algorithms to imitate the way that humans learn [4], which 
speeds the development process, saves the cost, and keeps the 
product consistent [5]. It could also help find the non-linear 
relationships between the independent variables, or between 
the causal factors and the dependent variables, or between 
the pharmaceutical responses. Deep learning depends on 
iterative training of data obtained from a designed experi-
ment [6]. Using deep learning, knowledge and experiences 
from previous work could be preserved and efficiently used 
to build models that greatly assist in drug formulations [4].

Cancer accounts for about 10 million deaths worldwide in 
2020, as reported by the World Health Organization (WHO) 
[7]. It remains the major cause of morbidity and mortal-
ity, despite decades of basic and clinical research and trials 
of promising new therapies [8]. Hepatocellular carcinoma 
(HCC) is the fifth most common cancer worldwide and is 
estimated to reach 564,000 cases per year. HCC manage-
ment requires controlling cancer and protecting the liver, 
to reduce the incidence and mortality rates [7]. However, 
systemic treatment with anticancer agents could result in 
many undesirable effects, due to their non-site specificity, 
which makes them attack normal cells as well [9].

Natural products have gained much attention over the last 
40 years in fighting different cancer types. Plant flavonoids, 
alkaloids, taxoids, and podophyllotoxins are considered from 
the major resources of these natural compounds, which may 
have mild side effects on the normal cells [10]. Silymarin, 
the dry extract of Silybum marianum, is a natural flavono-
ligand and flavonoid that has been widely used in the treat-
ment of different acute and chronic liver toxicities, owing 
to its hepatoprotective effect. In addition, it has been exten-
sively used in the treatment of inflammation, fibrosis, and 
oxidative stress. Recently, it was discovered that silymarin 
has a promising anticancer activity, owing to its anti-pro-
liferation activities through cell cycle regulation, apoptosis 
induction, chemo-sensitization, growth inhibition, inhibi-
tion of angiogenesis, reversal of multi-drug resistance, and 
inhibition of invasion and metastasis [11]. A major problem 
with silymarin is its low solubility, which results in its low 
bioavailability. It has been reported that only 20–50% of 
orally administered silymarin can be absorbed from the gas-
trointestinal tract, due to its extensive first pass metabolism 
and its low solubility [12].

Legalon® and  Silipide® capsules are commercially 
available, which are products containing silymarin. How-
ever, these products are rapid-release dosage forms that are 
administered 3 times daily for a long period of time, which 
increases the possibility of missed doses [13]. Thus, there 
is a need to develop a controlled release dosage form that 
enhances the solubility of silymarin.

Several approaches have been followed to enhance the 
solubility and, hence, the bioavailability of poorly soluble 
drugs as dendrimers [14], nanosuspension [15], nanostruc-
tured lipid carriers [16, 17], hydrogels [18], and self-emulsi-
fying drug delivery systems [19]. A great attention had been 
focused on the biodegradable polymers, which overcomes 
the drug-associated problems [11].

Lecithin chitosan nanoparticles (L/CH) are nanoparticle 
systems, formed as a result of the supra-molecular self-organ-
izing interaction between the positively charged chitosan and 
the negatively charged lipids of lecithin. L/CH as drug deliv-
ery systems have many advantages due to the use of lecithin, 
which is a natural lipid mixture of phospholipids and is con-
sidered safe and biocompatible and widely used in the fabri-
cation of numerous delivery systems [20], and together with 
the use of chitosan, being a biocompatible and biodegradable 
non-toxic cationic polysaccharide which has bioadhesive and 
penetration-enhancing properties [11]. Several studies were 
based on loading the drug into L/CH nanoparticles [21–25]. 
To our knowledge, this is the first study to prepare silymarin-
loaded L/CH nanoparticles and to evaluate its efficacy in the 
treatment of hepatocellular carcinoma

Thus, prediction of % drug release from the L/CH nan-
oparticles, using deep learning model, is presented in this 
study.

The objective of the current study is to apply systematic 
QbD approach integrated with artificial intelligence to fabri-
cate silymarin-loaded L/CH nanoparticles for the treatment 
of hepatocellular carcinoma and to create a complete QTPP 
for any L/CH nanoparticle system.

Material and Methods

Material

Silymarin was a generous gift from Sedico Pharmaceutical 
Company (Cairo, Egypt). Lecithin 90% soybean was pur-
chased from Alfa Aesar (Erlenbachweg 1 Kandel, Germany), 
while medium molecular weight chitosan and 96% ethanol 
were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Isopropyl myristate was supplied from Loba Chemie (Mum-
bai, India). All other reagents were of analytical grade and 
were used as received.

HepG2, a hepatocellular carcinoma cell line, was obtained 
from Nawah Scientific Inc., (Mokatam, Cairo, Egypt).
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Methods

Fabrication of Lecithin/Chitosan Nanoparticles

Self-organized nanoparticles of L/CH were prepared by ionic 
gelation method as described by Sonvico et al., with slight 
modifications. Briefly, lecithin and silymarin ethanolic solu-
tion were prepared by dissolving accurately weighed amounts 
of lecithin and silymarin (with or without 0.02% w/v isopropyl 
myristate (IPM)). This solution was added to 4 mL of 96% 
ethanol to form 2.5% w/v lecithin/silymarin solution. Chitosan 
solution 1% w/v was prepared in 1% acetic acid solution and 
was diluted with distilled water before adding lecithin/sily-
marin solution, to obtain the required lecithin:chitosan ratio 
[22]. Lecithin/silymarin ethanolic solution was then injected 
into 46 mL diluted chitosan solution, using a 0.45-mm inner 
diameter syringe. Chitosan solution was kept under mechanical 
stirring at 9000 rpm (Ultraturrax TP 18/10–10N, IKA-Werke 
GmbH, Staufen, Germany) or water bath sonication (Jiotech 
UC-10, Serangoon, Singapore), where stirring or sonication 
was continued for the specified time, with or without heating, 
to obtain the L/CH liquid dispersion. Blank formulations were 
prepared as previously discussed but without adding silymarin.

Physicochemical Characterization

Particle size, Polydispersity Index, and Zeta Potential Par-
ticle size (PS), measured in terms of hydrodynamic diam-
eters, polydispersity index that measures the particle size 
distribution (PDI), and zeta potential (ζ-pot) were measured 
by photon correlation spectroscopy using Zetasizer (Mal-
ven Zetasizer version 6.20 serial number: MAL 104 4595, 
Worcestershire, UK). PS and PDI were measured after suit-
able dilution in disposable polystyrene cuvettes with scatter-
ing angle 25°C. ζ-pot was measured using fixed glass cell, 
after suitable dilution. A minimum of triplicate samples was 
used throughout the whole study [25].

Determination of Silymarin‑L/CH Interaction Using Infra‑red 
Spectroscopy (IR) Infra-red spectroscopy was used to test 
the interaction between silymarin and the nanoparticle for-
mulation. Moreover, to ensure the electrostatic interaction 
between lecithin and chitosan, IR spectrophotometer (Shi-
madzu, Japan) using KBr pellets, at 25°C with IR source, in 
the transmission mode, was used to test the absorption bands, 
in the wave number region from 3500 to 1000  cm−1 [26].

Morphological Determination Using Transmission Electron 
Microscopy Transmission electron microscopy (TEM) 
(JEM-1400 JEOL, Tokyo, Japan) was used to analyze the 
morphology of silymarin-loaded lecithin chitosan nanopar-
ticles. One drop of suitably diluted silymarin-loaded L/CH 
dispersion was deposited on a film-coated copper grid and 

stained with uranyl acetate and lead citrate. The sample was 
then allowed to dry for contrast enhancement, and was then 
morphologically examined using TEM [27].

Determination of Entrapment Efficiency

The entrapment efficiency (EE%) was measured using UV spec-
trophotometry, after separating the free drug from the entrapped 
one by centrifugation. One milliliter of the formed dispersion 
was centrifuged at 14,000 × g at 4°C for 20 min. The super-
natant was collected, filtered through 0.22-μm  Millipore®, and 
analyzed spectrophotometrically (using a predetermined calibra-
tion curve with a limit of quantification of 2 to 22 μg/mL) after 
suitable dilution at predetermined λmax = 286 nm. The entrap-
ment efficiency (EE%) was calculated according to Eq. 1 [28].

In Vitro Drug Release Study

In vitro release of silymarin from L/CH nanoparticles was car-
ried out using dialysis bag method at 37°C in a shaking water 
bath at 100 rpm. In vitro drug release was conducted in 100 mL 
simulated gastric fluid (SGF) at pH 1.2 and in 100 mL simu-
lated intestinal fluid (SIF) at pH 6.8. The optimized formula was 
compared with the aqueous suspension of silymarin in water 
(standard). The optimized formula equivalent to 4 mg or stand-
ard silymarin was placed in a dialysis bag (molecular weight 
cut off 12,000–14,000 Da), where the two ends of the bag were 
firmly clipped and placed in the release medium. A sampling 
volume of 2 mL was withdrawn at 0, 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 
24, and 48 h, and measured spectrophotometrically (using a pre-
determined calibration curve with a limit of quantification of 2 
to 22 μg/mL) at λmax = 286 nm to determine its concentration. 
Fresh buffer was added at each sampling interval to attain sink 
conditions [21]. Each experiment was replicated 3 times.

The in vitro release rate of the drug from the formula 
provides information about the dosage form and its behavior 
and gives key information about the drug’s safety and effi-
cacy [29]. Thus, deep learning is used in this study to predict 
the % release of the drug at time intervals 2, 8, and 12 h, in 
order to obtain a data-driven methodology for the % release 
of any drug from L/CH nanoparticles.

Machine Learning

Pharmaceutical Data The pharmaceutical dataset was 
extracted from Web of Science, which includes 23 formula-
tions of L/CH nanoparticles. The selected formulation data 
had similar excipients and processing parameters, except 
for the drug used. The percentage of the drug released at 

(1)
EE% =

(

(Total amount of drug used − Amount of drug in supernatant)

Total amount of drug used

)

× 100
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time intervals (2, 8, and 12 h) was chosen as the prediction 
target. The molecular descriptors were used for represent-
ing the properties of the active pharmaceutical ingredients. 
Eight molecular descriptors were used to describe each drug, 
namely molecular weight, LogP, hydrogen bond donor count, 
hydrogen bond acceptor count, rotatable bond count, topolog-
ical polar surface area, heavy atom count, and complexity [5].

Data Splitting Strategy The collected data were split into 
3 datasets: they were classified into 60% for training of the 
model, 20% for validation of the model, and 20% for the 
testing step, which gave the least errors after training the 
hyper parameters. The validation dataset was used for tuning 
the hyperparameters, to get the best model [30]. In order to 
overcome the drawback of small amount and imbalanced 
data and to perform the algorithm’s performance, a 10-fold 
cross validation was implemented [31].

Hyperparameters for Deep Neural Network A deep neu-
ral network was created using Neural Designer  software® 
V4.2.0. (Artificial Intelligence Techniques, Ltd.). Three mod-
els were generated, one for each % release at 2, 8, and 12 h.

Three deep neural networks were generated for each time 
interval having 3 layers: an input layer with 8 neurons, rep-
resenting the 8 molecular descriptors; a hidden layer with 2 
perceptron layers using a rectified linear unit (ReLu) activa-
tion function in 1 perceptron layer; and a linear activation 
function in the other. In addition, an output layer was repre-
sented with a single neuron, corresponding to the % release 
at the specified time interval, together with a bounding layer, 
as represented in Fig. 1.

In all networks, a feed-forward neural network with back-
propagation was implemented. The optimization algorithm 
was the Levenberg-Marquardt method, so as to reach a sec-
ond-order training speed with no need to calculate the Hes-
sian matrix [32]. Overfitting was prevented by early stop-
ping, with a minimum loss decrease and  L2 regularization 
[33]. A normalized square error was the minimized error 
function used for all neural networks.

Evaluation Criteria The goodness-of-fit of a statistical 
model was used for evaluation, which describes how well 

the data fits a set of observations, showing the relation-
ship between the observed and the expected results through 
the coefficient of determination, R2 [34]. Moreover, the 
expected results were compared with the observed results 
after performing the in vitro release study.

Stability Study

To test the stability of silymarin-loaded L/CH nanoparticles, 
the PS, PDI, and ζ-pot of the optimized formula were tested 
after storage of the optimized formula at 4°C and relative 
humidity of 55–60% for 3 months [35].

Construction of Quality Target Product Profile

Quality target product profile (QTPP) of a drug product 
could be defined as the whole quality properties needed to 
be in a drug product to ensure a desired quality product. 
QTPP ensures achieving safety and efficacy of the drug 
product, by determination of the proper critical quality 
attributes (CQA), critical process parameters (CPP), and 
material attributes (MA) [36]. In case of silymarin for-
mulation, the main target is to enhance the solubility of 
silymarin, in an attempt to enhance its bioavailability, by 
formulating silymarin into loaded L/CH nanoparticles. 
Thus, the highest risk factors affecting the nanoparticle 
formulation would be a smaller vesicular size, which 
could increase the drug’s solubility, with a smaller PDI to 
increase the system’s homogeneity. In addition, a higher 
entrapment efficiency might reflect a better performance 
of the formulation, due to a higher drug loading in the 
lipidic matrix [36].

Risk Assessment

Risk assessment aims to gather all information about the 
factors that significantly influence the QTPP. Risk assess-
ment starts with risk identification, which is followed by 
risk analysis, facilitating the ordering of the potential 
parameters according to their importance, which con-
tributes to the quality of the final product. This could be 
hierarchically presented in the form of Ishikawa diagrams. 

Fig. 1  Final architecture of the neural networks a for the release rate at 2 h, b for the release rate at 8 h, and c for the release rate at 12 h
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Three main CQA were identified, namely, PS, PDI, and 
drug EE%, which are assumed to be the most influential 
factors affecting the nanoparticle formulation [37]. Risk 
analysis resulted in six CPP/MA, which were studied in 
the subsequent screening study.

Screening Study Using I‑Optimal Design

Based on the results of the risk assessment, 6 CPP/MA were 
analyzed in screening using I-optimal design. The CPP/MA 
were X1, lecithin:chitosan (L:CH) molar ratio [22]; X2, drug 
amount [24, 38]; X3, mixing time [39]; X4, presence of heat 
[40]; X5, mixing type [22, 41]; and X6, presence of IPM 
[42], which were all studied at 2 levels. This resulted in 
the formulation of 13 formulae, as represented in Table I. 
The levels used were based on previous literature and some 
preliminary experiments.

Data were analyzed using ANOVA and multi-linear 
regression, in order to identify the CPP/MA that signifi-
cantly affected the studied CQA, so as to further proceed to 
the optimization step.

Optimization Study Using D‑Optimal Design

Based on the results from the screening step, two formula-
tion variables—X1, L:CH molar ratio and X2, drug amount—
were found to be mostly affecting the CQA and, thus, were 

deeply studied in the optimization step. Additional 16 for-
mulae were prepared to investigate the potential interaction 
between the studied MA as tabulated in Table II, where the 
measured CQA were Y1, P.S.; Y2, PDI; and Y3, EE%.

Data Optimization and Model Validation

Data optimization was successfully achieved depending on 
desirability criteria, based on a suggested optimized formula 
(O1) by the software, with the required constraints to pre-
pare nanoparticles having the smallest PS and PDI, together 
with the maximum EE%. Accordingly, O1 was prepared 
and tested in terms of these constraints, where the observed 
results were correlated with the suggested results and the % 
bias was calculated [43].

Design Space and Control Strategy Creation

Design space was created, which shows the relationship 
between the studied CPP/MA and the CQA. Design space 
was determined from the common successful operation 
ranges of the CQA. The successful operating ranges were 
elucidated from the targeted constraints as stated previously: 
minimum particle size and PDI with the maximum entrap-
ment efficiency. It is expected to have a product with the 
desired CQA, when operating within the design space [44]. 
Furthermore, a control strategy was created, which ensures 

Table I  I-Optimal Design with Results from the Screening Step

Data are expressed as mean ± S.D.

CPP/MA Low level (−1) High level (+1)

X1 L:CH molar ratio 10 40
X2 Drug amount (mg) 10 100
X3 Mixing time (min) 5 30
X4 Heat Absent Present
X5 Mixing type Mechanical stirring Probe sonication
X6 Isopropyl myristate Absent Present
Formula c X1 X2 X3 X4 X5 X6 Y1: PS (nm) Y2: PDI Y3: EE (%)
S1 10 100 30 Present Stirring Present 497.5 ± 3.76 0.27 ± 0.09 90.55 ± 2.87
S2 40 10 30 Present Sonication Present 388.7 ± 5.87 0.40 ± 0.07 96.46 ± 5.67
S3 40 55 5 Present Stirring Absent 211.9 ± 8.65 0.37 ± 0.07 84.59 ± 3.76
S4 10 100 30 Present Stirring Present 499.9 ± 4.76 0.21 ± 0.03 90.75 ± 4.17
S5 10 12.25 5 Present Sonication Present 247.5 ± 3.92 0.23 ± 0.08 92.68 ± 8.34
S6 10 55 30 Absent Sonication Absent 446.0 ± 2.31 0.26 ± 0.02 78.46 ± 3.67
S7 25 10 17.25 Absent Stirring Present 196.2 ± 4.76 0.19 ± 0.05 95.99 ± 3.61
S8 25 10 17.25 Absent Stirring Present 201.8 ± 4.87 0.20 ± 0.04 95.11 ± 9.76
S9 10 55 30 Absent Sonication Absent 444.9 ± 5.89 0.29 ± 0.02 78.35 ± 6.90
S10 40 100 30 Absent Stirring Absent 340.9 ± 2.87 0.40 ± 0.04 76.64 ± 5.43
S11 40 100 5 Absent Sonication Present 154.9 ± 1.98 0.32 ± 0.05 72.69 ± 2.74
S12 40 55 5 Present Stirring Absent 215.7 ± 1.73 0.34 ± 0.03 84.22 ± 1.98
S13 40 100 5 Absent Sonication Present 166.8 ± 2.93 0.30 ± 0.01 72.28 ± 4.67



 AAPS PharmSciTech (2023) 24:169

1 3

169 Page 6 of 20

that the product is consistently and reproducibly produced 
with required quality [45].

In Vitro Cytotoxicity

Cells were maintained in Dulbecco’s modified eagle’s 
medium (DMEM) supplemented with 100 mg/mL of strep-
tomycin, 100 units/mL of penicillin, 10% of heat-inactivated 
fetal bovine serum in humidified, and 5% (v/v) carbon diox-
ide atmosphere at 37°C.

Assessment of the Effect of Silymarin as a Free Drug and 
in the Optimized Formula on the Proliferation of HepG2 
Cells The effect of silymarin on the proliferation of HepG2 
cells were tested by sulforhodamine B (SRB) assay, which 
is based on the stoichiometric binding of SRB to the protein. 
The amount of bound dye indicates the cell mass and can be 
used as a measure of the cell proliferation [46].

Aliquots of 100 μL cell suspension (5 ×  103 cells) were 
seeded in 96-well plates and incubated in complete media 
for 24 h. Cells were treated with 100 μL media containing 
drug (silymarin dissolved in dimethylsulfoxide) at various 
concentrations, 0.1, 1, 10, 100, and 1000 μM, where the cells 
were exposed to the drug for 72 h. Fixing of the cells was 
accomplished by media replacement with 150 μL of 10% 
trichloroacetic acid (TCA) and its incubation at 4°C for 1 h. 
This was followed by TCA solution removal and washing 
of the cells 5 times with distilled water. Aliquots of 70 μL 
SRB solution (0.4% w/v) were added and incubated in a dark 

place at room temperature for 10 min. This was followed 
by washing of the plates 3 times with 1% acetic acid and 
air-drying overnight. Then, 150 μL of tris(hydroxymethyl)
aminomethane (TRIS) (10 mM) was used to dissolve protein-
bound SRB stain, to measure the absorbance at 540 nm using 
a BMG  LABTECH® FLUOstar Omega microplate reader 
(Ortenberg, Germany). Percentage of cell growth was plot-
ted versus the logarithm of drug concentration to determine 
the half maximal inhibitory concentration  (IC50), the drug 
concentration that causes 50% reduction in the cell growth.

The effects of silymarin as a free drug (standard) and 
in the optimized formula on the cell cycle of HepG2 cells 
were analyzed by flow cytometry [47]. HepG2 cells cultured 
in 12-well plates for 24 h were treated with 100 μL media 
containing the drug (standard) at a concentration equal to 
 IC50 or the optimized formula at the same concentration. 
After 72 h of drug exposure, cells were detached from plates 
using the enzyme-free cell dissociation buffer and fixed with 
70% ethanol. The nucleic acid content was stained with pro-
pidium iodide in RNase-containing buffer and analyzed on 
FACSVerse. Cell cycle (G0, G1, G2M, and S) was analyzed 
using FlowJo software (Becton and Dickinson, USA).

Data Analysis

Statistical analysis was performed using Design-Expert 
13.0.5.0® software (Stat-Ease Inc., Minneapolis, USA), 

Table II  D-Optimal Design with 
Results from the Optimization 
Step

Data are expressed as mean ± S.D.

MA Low level (−1) High level (+1)

X1 L:CH molar ratio 10 40
X2 Drug amount (mg) 10 70
Formula X1 X2 Y1: PS (nm) Y2: PDI Y3: EE (%)
F1 30.10 15.25 200.5 ± 14.60 0.222 ± 0.02 97.09 ± 3.87
F2 70 19 309.0 ± 21.60 0.215 ± 0.04 91.39 ± 9.43
F3 10 25 240.7 ± 5.88 0.215 ± 0.03 92.85 ± 4.67
F4 10 10 335.0 ± 13.87 0.311 ± 0.07 90.64 ± 1.87
F5 10 40 343.7 ± 12.12 0.380 ± 0.09 89.18 ± 5.87
F6 36.10 26.96 131.8 ± 23.65 0.223 ± 0.07 91.84 ± 9.52
F7 70 40 329.9 ± 3.60 0.265 ± 0.06 87.94 ± 4.76
F8 70 40 331.9 ± 16.77 0.263 ± 0.08 88.55 ± 3.76
F9 62.56 29.50 164.9 ± 16.93 0.183 ± 0.07 89.00 ± 5.76
F10 43 40 213.8 ± 15.98 0.260 ± 0.01 83.67± 7.18
F11 51.70 10 281.1 ± 10.82 0.304 ± 0.09 96.32 ± 6.27
F12 70 19 300.7 ± 6.87 0.209 ± 0.04 90.64 ± 7.34
F13 10 40 342.9 ± 11.43 0.371 ± 0.05 88.43 ± 5.87
F14 51.70 10 279.7 ± 14.76 0.306 ± 0.01 96.24 ± 6.98
F15 10 10 283.9 ± 6.87 0.293 ± 0.04 89.83 ± 6.99
F16 50.44 20.20 164.3 ± 23.12 0.132 ± 0.03 93.81 ±3.88
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which was used in the analysis of I-optimal and D-optimal 
designs. Responses were analyzed based on linear regression 
equations and analysis of variance (ANOVA). Several tools 
were used in the statistical analysis, including comparison of 
coefficient of variation (CV), multiple correlation coefficient 
(R2), adjusted and predicted multiple correlation coefficient 
(adjusted and predicted R2), and graphically by 3D response 
surface plot. A significance was considered at a level of 
p-value < 0.05 [3]. In vitro cytotoxicity and comparisons for 
deep learning model were analyzed using GraphPad Prism 
software package, version 9.3.1® (GraphPad Software, Inc., 
USA). All data was presented as mean ± S.D.

Results and Discussion

Preparation of Lecithin/Chitosan Nanoparticles 
by Ionic Gelation Technique

A successful formulation of L/CH nanoparticles was 
achieved by the ionic gelation method. Injection of alcoholic 
lecithin solution containing silymarin into chitosan solu-
tion led to electrostatic interaction between the negatively 
charged lecithin and the polycationic groups of chitosan. 
Stable vesicles were formed by self-assembly of the core 
of lecithin with a shell layer of chitosan, thus protecting the 
inner structure of the vesicles [21, 48]. It should be noted 
that the process was spontaneous [49], as evidenced by the 
turbidity observed when the two solutions were mixed.

FTIR Analysis

The infra-red spectrum of silymarin was analyzed to indi-
cate any interaction with the nanoparticle formulation. As 

can be observed from Fig. 2c, characteristic peaks of sily-
marin were observed, where a broad band was observed at 
3432  cm−1, corresponding to O-H stretching. Moreover, an 
absorption band was observed at 1639  cm−1 corresponding 
to C=O stretching [50], which was still present in both the 
physical mixture (Fig. 2b) and the nanoparticle formulation 
(Fig. 2a), confirming no interaction between silymarin and 
L/CH nanoparticles, ensuring its chemical stability.

Furthermore, in order to confirm the interaction 
between lecithin and chitosan, infra-red spectrum of indi-
vidual components, their physical mixture, and lyophilized 
L/CH nanoparticles were analyzed. As can be observed 
form Fig. 2e, chitosan showed characteristic absorption 
bands at 1654  cm−1, corresponding to C=O-NHR stretch-
ing and another band at 1553  cm−1 corresponding to N-H 
scissoring vibration of primary amino group. Furthermore, 
a band in the region of 3480–3411  cm−1 was observed, 
which corresponds to N-H and O-H stretching, as well as 
the intramolecular hydrogen bonds, which were present in 
the physical mixture (Fig. 2b). The nanoparticle formula-
tion (Fig. 2a) showed the disappearance of these bands 
indicating the possibility of the electrostatic interaction 
between the amino group of the chitosan and the phos-
phate group of the lecithin. Lecithin showed a character-
istic peak of P=O at 1230  cm−1, as can be deduced from 
Fig. 2d, which was present in the physical mixture, and 
disappeared in the nanoparticle formulation, confirming 
the interaction.

Quality Target Product Profile

The International Conference on Harmonization (ICH, 
Q8) covers the steps involved in the pharmaceutical QbD 

Fig. 2  FTIR spectrum of(a L/
CH nanoparticles, b physical 
mixture, c silymarin, d lecithin, 
and e chitosan
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process. It also provides a deep and comprehensive prod-
uct and process understanding [51]. A diagram of all the 
steps in the current study involved in the QbD is shown in 
Fig. 3. The first and most important step in the QbD is to 
define the QTPP, which describes the quality characteris-
tics of the product, which, when achieved, will accomplish 
the aim of the study [52]. QbD focuses on establishing 
a relationship between different variables, which allows 
a comprehensive understanding of the product and the 
process. This would finally assure consistent quality with 
continual improvement [45].

Risk Assessment

The most influential potential factors affecting the CQA were 
represented and strategically narrowed down by Ishikawa dia-
grams construction. Accordingly, 2 Ishikawa diagrams were 
constructed, one showing the most influential factors affect-
ing the PS and PDI and another one for the EE% as demon-
strated in Fig. 4. These diagrams were used to gather all the 
factors affecting each of the CQA. Some of these factors were 
found to have great impact on the CQA and, thus, were used 
as the fundamental CPP/MA for the experimental runs, start-
ing from the screening step and ending with the optimization 
step [53]. The most significant attributes which were used in 
the screening study were lecithin:chitosan molar ratio, drug 
amount, time and type of mixing, presence of heat, and using 
IPM as a solubilizing agent.

As the main target of the current to study is to enhance the 
solubility of silymarin to be used as an effective anticancer 
agent, the critical quality attributes considered in this study 
were the PS of the nanoparticles, and their uniform distribu-
tion, in addition to a high entrapment efficiency of the drug.

It is well known that a smaller particle size increases 
the surface area of the drug exposed to the solvent action 
and, hence, increases its solubility [54]. Moreover, a small 
particle size is of great use in targeting the tumor cells, as 
it has been reported that a vesicular size of less than 400 
nm would increase the residence time of the nanoparticles 
in the systemic circulation and would passively target the 
tumor cells through enhanced permeability and retention 
effect [55]. The PDI measures the homogeneity and uni-
formity of the particle size, and it gives indication about 
the nanoparticle aggregation and, hence, its stability [56]. 
Thus, measuring the particle size and the size distribution 
are considered main attributes. These two CQA can affect 
the product performance, processability, and stability and, 
thus, are considered fundamental quality control assays for 
the product [57]. It is worth noting that a low PDI (<0.4) 
highly affects the stability and the reproducibility of the 
release of the drug from the nanoparticles [38].

In similar studies, Lomis et al. and Patra et al. have 
reported that higher drug solubility enhances entrapment 
efficiency, loading capacity, and bioavailability [58, 59]. 
Thus, the current study aims to minimize each of the PS 
and PDI and to maximize entrapment efficiency of the drug.

Screening and Analysis of I‑Optimal Design

The risk assessment study resulted in 6 CPP/MA that were 
screened using an I-optimal design, as optimal designs are ben-
eficial in reducing the costs of experimentation. This is because 
fewer experimental runs are being estimated using statistical 
models. Moreover, it uses different types of variables, numeri-
cal or categorical, with different levels to each factor [60].

Screening is implemented to determine the main effects 
of the CPP/MA on each of the PS, PDI, and EE%. The 

Fig. 3  The steps in QbD for 
enhancement of the solubility of 
silymarin
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software suggested 13 formulae (S1-S13), which were pre-
pared and measured in terms of the aforementioned CQA 
as presented in Table I. Table III shows the ANOVA results 
from the I-optimal design. A significant fitting to the model 
was observed with a correlation coefficient (R2) of 0.9964, 
0.9385, and 0.9994 for the PS, PDI, and EE%, respectively.

Further analysis revealed that L:CH molar ratio had a sig-
nificant effect on each of the PS, PDI, and EE%. An increase 
in the L:CH molar ratio resulted in a smaller particle size, as 
can be deduced form the negative coefficient of X1. Further-
more, the increase in the L:CH ratio resulted in a larger PDI 
and lower entrapment efficiency of the drug. These results 
were in accordance with several research findings [22, 61–63].

The drug amount significantly affected each of the PS and 
EE%, where a lower drug amount was more favorable, as it 
produced a smaller particle size and a higher encapsulation 
of the drug, as can be observed from Table III.

A shorter time of mixing was preferable for the PS and 
PDI, as it resulted in a smaller PS and a lower PDI. Thus, 
the time of mixing will be fixed at the lower level in the 
subsequent optimization step. Similar results were obtained 
by Vaezifar et al. [39].

The use of heat during the preparation resulted in a bigger 
PS, a larger PDI value, and a higher entrapment efficiency. 
This may be due to the fact that thermal treatment might 
expose more reactive non-polar and sulfhydryl group in the 
lecithin molecule, which, in turn, increases the hydrophobic 
attraction and disulfide-bond formation within and between 
the silymarin and the nanoparticles, which finally increases 
the vesicular size [64]. Moreover, heating may lead to the 
evaporation of the residual water that is present in the chi-
tosan solution [40], which may lead to an increase in the 
chitosan viscosity, which consequently influence the homo-
geneity of the vesicles [65]. Furthermore, a larger particle 

Fig. 4  Ishikawa diagrams for a 
PS and PDI and b EE%
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size can accommodate more drugs within the nanoparticles, 
which consequently increases the entrapment of the silyma-
rin [66]. Thus, the formulations in the optimization step will 
be prepared without heat, as the effect of heat on increasing 
the PS was more pronounced than its effect on increasing 
the EE%.

Mechanical stirring showed favorable results over soni-
cation. Using the mechanical stirring resulted in a smaller 
PS and PDI with higher EE%. The reason for this could be 
attributed to the effect of sonication that may lead to exten-
sive agglomeration of the nanoparticles, resulting in rapid 
sedimentation [67], with a larger PS and higher PDI. Moreo-
ver, sonication could probably increase the membrane’s flu-
idity of the nanoparticles, which in turn could reduce the 
entrapment of the drug [68].

Isopropyl myristate was used as a solubilizing agent for 
the hydrophobic drug silymarin. Thus, the presence of IPM 
showed very good results as it reduced the PS and PDI and 
increased the EE%. The lipophilic drug silymarin is mostly 
present in the lipidic core of the nanoparticles, and the lipid 
core could be modified by the presence of IPM, which would 
improve the entrapment of silymarin within the nanoparticles 
[42]. Moreover, it is well known that the presence of surfactant 
decreases the particle size due to the reduction in the surface 
tension, which facilitates the disruption of the droplets [69].

Thus, the screening study resulted in the adjustment of 
some process variables at certain levels, in order to obtain 
better results. The best conditions obtained from the I-opti-
mal design were minimal mixing time without heating, using 
the mechanical stirrer for mixing, and adding IPM. On the 
other hand, the L:CH molar ratio, together with the drug 
amount, will be explored in the optimization design in order 
to evaluate their individual and combined effects.

D‑Optimal Design

Statistical Analysis of D‑Optimal Design

D-optimal design was the chosen response surface design 
(RSD) for optimization, as it produces better prediction than 
I-optimal design [60].

Fitting of the studied model could be indicated by the 
non-significance of the lack of fit as shown in Table IV. 
The ANOVA results of all studied CQA for the D-optimal 
design are shown in Table IV, together with the correlation 
coefficient (R2), adjusted and predicted R2, and the adequate 
precision. All these values ensure the capability of the model 
to navigate the design space. As indicated by the high value 
of correlation coefficient of each CQA (approaching to 1), 
the close agreement between the studied adjusted and pre-
dicted R2 (less than 0.2 difference), and the high value of 
the adequate precision (>4) [3], this model could be used to 
navigate the design space.

Particle Size Analysis

As can be observed from Table II, particle size ranged from 
131.8 ± 23.65 to 343.7 ± 12.12 nm. The results indicate an 
excellent size range for tumor targeting, with enhanced per-
meability and retention (<400 nm) [55]. Moreover, reduc-
tion in the opsonization and detection by the macrophages 
due to the small vesicular size could result in a longer cir-
culation time [28].

The effect of the MA on the PS, together with the 
regression equation showing the relationship between the 
MA and the particle, is presented in Table IV. As can be 
deduced, the PS was significantly affected by both L:CH 
molar ratio and the drug amount. A decrease in the L:CH 
ratio resulted in a larger particle size, as can be deduced 
from the negative coefficient of X1 in Eq. 2. However, as 
the effect was quadratic (Fig. 5a), further analysis showed 
that there were 2 zones characterizing the effect of L:CH 
on the PS. At low levels of L:CH, a decrease in the PS 
was observed. Increasing the L:CH molar ratio may have 
a direct impact on the vesicular size, which may be attrib-
uted to the decrease in the amount of the chitosan [20]. 
The lower concentration of chitosan would result in a 
lower viscosity, which might decrease the liquid-phase 
resistance against dispersion, thus forming smaller nano-
particles [70].

At low levels of L:CH ratio, which means a low amount 
of lecithin relative to chitosan, enough chitosan would be 

Table III  Statistical Analysis of 
I-Factorial Design

Y1: PS (nm) Y2: PDI Y3: EE %

Coefficient p-value Coefficient p-value Coefficient p-value

β0 +309.86 < 0.0001 +0.29 0.0021 +84.88 < 0.0001
X1 L:CH molar ratio −39.86 < 0.0001 +0.067 0.0003 −0.67 0.0009
X2 Drug amount (mg) +33.02 0.0001 +0.013 0.1965 −6.81 < 0.0001
X3 Mixing time (min) +102.51 < 0.0001 +0.030 0.0154 +2.37 < 0.0001
X4 Heating +44.52 < 0.0001 +0.028 0.0101 +2.81 < 0.0001
X5 Type of mixing +17.97 0.0016 +0.029 0.0151 −3.23 < 0.0001
X6 Isopropyl myristate −15.39 0.0034 −0.029 0.0087 +3.49 < 0.0001
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present to cap the growing nanoparticles, preventing its 
growth, hence a smaller particle size, whereas a further 
increase in the L:CH ratio, to more than 25:1, will lead 
to a relative reduction in the availability of the chitosan, 
which will give a chance for the lecithin nanoparticles to 
grow, leading to a larger vesicular size [63]. This finding 
was in accordance with Sonvico et al. [22], who attributed 
the reason for the change in particle size to the aggrega-
tion of the particles that could occur at a ratio greater 
than 30:1. The aggregation was due to the lack of elec-
trostatic stabilization of the L/CH nanoparticles at higher 

L:CH ratio [22]. Moreover, an increase in the lecithin 
concentration may lead to stronger electrostatic interac-
tion within the nanoparticles, with subsequent increase 
in the bilayer of the nanoparticles, which could result in 
a larger particle size [24].

Furthermore, the PS was significantly affected by the 
drug amount, where an increase in the PS was observed as 
the drug amount increased. The particle size showed an ini-
tial decrease as the drug amount increased (till 40 μg/mL). 
By further increasing the drug amount, the PS increased 
(Fig. 5a). These results were in accordance with Souza et 

Fig. 5  The effect of the MA on the studied CQA, a quadratic effect of each MA on the PS and b 3-D plot of the PS, c cubic effect of each MA 
on the PDI and d 3-D plot of the PDI, and e cubic effect of each MA on the EE% and f 3-D plot of the EE%
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al. [38], who attributed the increase in the vesicular size at 
high drug levels to the interference of the drug with the self-
assembly of L/CH nanoparticle formation. The repulsive 
forces may be blocked as a result of the decrease in the spac-
ing between the adjacent nanoparticles. This resulted in more 
aggregation, which consequently increased the vesicular size 
[38]. Moreover, the increase in the drug amount above a cer-
tain point causes an increase in the viscosity of the disperse 
phase, with the consequence of forming larger particles [71].

As shown in the 3-D interaction surface plot in Fig. 5b, 
the PS has a bipolar pattern where PS decreased initially by 
increasing both the L:CH and the drug amount. This was 
followed by an increase in PS, when L:CH and drug amount 
were further increased.

Polydispersity Index Analysis

As mentioned earlier, a uniform monodisperse system is an 
important attribute for attaining the stability and the targeted 
delivery of the nanoparticles. As observed in Table II, the 
PDI range was from 0.132 ± 0.03 to 0.380 ± 0.09, which is 
considered monodisperse (< 0.4) [38]. As can be observed 
from Table IV, the PDI was significantly affected by both 
MA. Further analysis showed a cubic order of interaction. 
As can be deduced from Fig. 5c, at the low level of L:CH 
molar ratio (up to 1:20), an initial reduction in the PDI was 
observed with the increase in L:CH as can be deduced from 
Eq. 3. It is worth noting that this occurs as far as the chi-
tosan is still sufficient to coat lecithin nanoparticles and will 
result in a homogenous distribution of the particles, which 
is achieved at the low L:CH levels. A further increase in 
the L:CH ratio will reverse the relationship, resulting in a 
higher PDI. This could be related to the relative increase 
in the lecithin amount without enough chitosan to coat the 
nanoparticles, which leads to an increase in the heterogene-
ity of the system [63].

The amount of silymarin also affected the PDI in a cubic 
manner as represented in Fig. 5c. At the beginning, nearly 
no change in the PDI was observed by increasing the drug 
amount. An increase in the drug amount (>20 mg) resulted 
in a lower PDI. However, when the drug amount was further 
increased, the PDI increased. The increase in the PDI with 
the increase in the drug may be attributed to the increase in 
aggregation, which could result in the increase in the system 
heterogeneity [21].

The 3-D plots presented in Fig. 5d show an extreme non-
linear relationship between the PDI and the studied MA, due 
to their cubic effects, as discussed earlier.

Entrapment Efficiency Analysis

As can be deduced from Table II, the L/CH nanoparticles 
were capable of entrapping a large amount of silymarin, as the 

EE% ranged from 83.67 ± 7.18 to 97.09 ± 3.87%. This could 
be attributed to the high lipophilicity of silymarin, which 
gives it a big chance to reside in the hydrophobic lecithin 
nanoparticles. These findings were in agreement with Hafner 
et al., Şenyiğit et al., and Souza et al. [20, 38, 72]. It can be 
inferred from Eq. 1 that the EE% increases as the L:CH molar 
ratio decreases. This could be attributed to the higher relative 
chitosan amount at the low level of L:CH, which is sufficient 
for capping the lecithin nanovesicles and increasing the tight 
packing of the particles, thus retaining more drug within and 
allowing less leakage of the drug [24, 49, 73].

As can be deduced from Fig. 5e, an increase in the drug 
amount resulted in almost no effect on the EE%, at the begin-
ning. A further drug increase resulted in a lower EE%. This 
could be because when the drug amount increased, the total 
amount of polymers present was not enough to solubilize 
the high level of hydrophobic silymarin, thus resulting in a 
lower EE% [71, 74].

It should be mentioned that the model showed a cubic 
order, which is obvious from the 3-D response surface plot, 
as presented in Fig. 5f.

Optimization, Design Space Creation, and Control 
Strategy

Construction of a design space was based on preparing L/CH 
nanoparticles with minimal vesicular size and minimal PDI, 
together with the maximum EE%. Hence, the design space, 
shown in Fig. 6, is characterized by two regions: a yellow 
region, which delivers the desired outcomes if worked 
within; a grey region, where working within this area will 
result in undesirable limits. A numerical technique depend-
ing on the desirability approach was applied to get an opti-
mized formula with the desirable CQA [52]. Accordingly, 
a new formula was suggested by the software with a desir-
ability of 0.898. This optimized formula (O1) was prepared 
and was tested in terms of the previously mentioned CQA, 
to create the control space and to check the validity of the 
design by calculating the % bias. The control space has been 
created which ensures the reproducibility of the measured 
and studied attributes.

As can be observed in Table V, the low level of % bias 
confirmed the validity of the design.

Tests on Optimized Formula for Establishing Control 
Space

Morphological Structure Using TEM

The micrographs of TEM, as depicted in Fig. 7, show that 
nanoparticles were in the nanoscale range, with an average 
size of 115.52 ± 12.71 nm. This was in close agreement with 
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the PS measured by the DLS. The slight difference in the 
size as determined by DLS method could be due to the dif-
ference in the sample preparation [35]. The particles showed 
a spherical shape, which are almost uniform. The particles 
were characterized by the presence of a corona surrounding 
the lecithin nanoparticles, where the drug is most likely to 
dissolve [42]. It should be noted that the dehydration of the 
sample might be the reason behind the slightly corrugated 
surface of the outer shell [67].

Zeta Potential Measurement

The zeta potential was +38.06 ± 3.87 mV. This value indi-
cated the stability of the dispersion, as a zeta potential value 
above +30 mv indicates the stability of the system, due to 
the electrostatic repulsion between particles, which prevents 
their further aggregation [75]. The positive value could be 
attributed to the cationic chitosan groups on the surface of 
the vesicles [76]. It is worth noting that the negative value 
of many nanoparticle systems hinders their use due to their 
limited cellular uptake [77]. Thus, the formation of posi-
tively charged particles is expected to enhance the cellular 
uptake and, hence, its bioavailability.

In Vitro Release of Silymarin from L/CH Nanoparticles

As the preparation was intended for oral administration, the 
drug release was tested in both SGF and SIF. As can be 
observed from Fig. 8, standard silymarin was almost com-
pletely released after 3 h in both SGF and SIF. The drug 
release from the nanoparticles in both media showed a 
biphasic release, where an initial burst release of the drug 
followed by a sustained release was observed. This might 
be attributed to the initial release of the unencapsulated 
drug, or the drug present on the surface of the vesicles, in 
addition to the initial swelling of the chitosan that creates 
pores through which some of the drug is released [78]. This 
release was followed by a slow passage of the drug out of the 
nanoparticles core and bilayer [24]. The sustained release 
pattern could be attributed to the presence of lecithin with a 
hydrophobic matrix, which may have a great role in improv-
ing and prolonging the release of lipophilic drugs [23]. It 
was observed that the release of silymarin from the nano-
particles in SGF (Fig. 8a) showed a different behavior than 
that released from SIF (Fig. 8b), where a faster release was 
observed from the SGF. The reason for this difference might 
be due to the higher dissolution of chitosan in the acidic 

Fig. 6  Design space for silyma-
rin-loaded L/CH nanoparticles

Table V:  Optimized Formula 
with Expected and Observed 
Results from Response Surface 
Design

L:CH molar ratio Drug amount (mg) PS PDI EE%

18.331 38.354
Expected results 152.597 0.172 96.016
Observed results 161.401 ± 6.78 0.204 ± 0.05 97.060 ± 8.76
% Bias* 5.786% 18.604% 1.087%

∗ % bias =
(|Expected−Observed|)

Expected
× 100  
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Fig. 7  TEM micrographs of silymarin L/CH nanoparticles

Fig. 8  % Release of silymarin 
from standard solution and L/
CH nanoparticles in a simulated 
gastric conditions and b simu-
lated intestinal conditions
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medium [79], which may increase the leakage and, hence, 
the release of the drug from the nanoparticles [78].

Deep Learning Model for Prediction of the % Release

Deep learning is a type of representation learning with 
multiple levels of transform modules, which contains more 
parameters than other learning algorithms [30].

Three models were built for the prediction of the % release 
of silymarin at 2, 8, and 12 h, respectively, from L/CH nano-
particles, using deep learning models. Optimization of the 3 
models was obtained using Levenberg-Marquardt algorithm 
which was found to be very effective in reducing the errors, as 
represented in Fig. 9, which shows the training and selection 
error after each iteration. As shown in Fig. 9a, a training error 
with an initial value of 2.36812 and a final value of 0.00345765 
was observed after 87 epochs for % release at 2 h and an initial 
value of 2.11435 and a final value of 0.0145122 for the selec-
tion error. Moreover, Fig. 9b shows an initial training error 
of 1.10094 and a final value of 0.00786269 after 83 epochs 
and an initial selection error of 1.07315 with a final value of 
0.0152207 after 83 epochs. Furthermore, Fig. 9c represents an 
initial training value of 1.93733 ending with 0.072098 after 
33 epochs and an initial selection error of 1.65334 and a final 
value of 0.0930787, for the % release after 12 h.

A goodness-of-fitness test for each time interval showed a 
very good correlation between the expected and the observed 

results, as depicted in Fig. 10. A coefficient of determination, R2, 
was 0.981, 0.991, and 0.937 for 2 h, 8 h, and 12 h release mod-
els, respectively. The values of the expected and the observed 
results, as shown in Table VI, showed a non-significant differ-
ence between the predicted results as obtained from the deep 
learning model and the experimental results. Thus, the deep 
learning model for predicting the % release of silymarin from L/
CH nanoparticles has been validated and could be used for pre-
dicting the % release of any drug form L/CH system at pH 6.8.

Stability Testing

The optimized formula showed insignificant change in PS, 
PDI, and zeta potential after 3 months, where the PS was 
164.56 ± 7.91, the PDI was 0.213 ± 0.09, and the zeta 
potential was +37.67 ± 2.34 mV, after 3 months of storage 
at 4°C. Moreover, no evidence of aggregation was observed. 
This confirms that L/CH nanoparticles have been established 
at a temperature of 4°C.

In Vitro Cytotoxicity

Silymarin has been used for centuries as a hepatoprotective 
agent, and its anticancer effect on various malignancies has 
been reported. Silymarin was proved to suppress the prolif-
eration of a variety of tumor cells, including prostate, ovar-
ian, breast, lung, skin, liver, and bladder [80–84].

Fig. 9  Levenberg-Marquardt optimization algorithm error history for % release of silymarin from L/CH nanoparticles at a 2 h, b 8 h, and c 12 h

Fig. 10  Goodness-of-fit chart for the deep learning model at a 2 h, b 8 h, and c 12 h
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The effects of silymarin, both as a standard solution and 
as formulated in L/CH nanoparticles, on the proliferation of 
HepG2 cells for 72 h were examined by SRP assay. Accord-
ing to Fig. 11 and Table VII, both standard and optimized 
silymarin significantly (p-value < 0.05) inhibited the growth 
of HepG2 cells in a concentration-dependent manner, but 
the optimized formula showed a significant inhibition of the 
proliferation in the human hepatocellular carcinoma cell line 
HepG2 more than the standard. A lower  IC50 of 90.2 μM for 
silymarin from the optimized formula was observed, while 
an  IC50 of 140 μM for standard silymarin was observed. 
The effects of silymarin on the cell cycle of HepG2 cells 
as a free drug and in the optimized formula were assessed 
after exposing the cells to 140 μM for 72 h. A significant 
suppression of the S phase was observed after treating the 
HepG2 cell with the optimized formula, but not with the 
standard. This could be due to the increase in the cytotoxic-
ity of silymarin due to the enhanced cellular uptake when 
formulated into L/CH nanoparticles. These results were in 
accordance with [11].

A pervious study by Scambia et al. demonstrated the anti-
proliferative effect of silymarin on gynecological malignan-
cies, including human ovarian and breast cancer cell lines, 
and showed that silymarin induced G0/G1 phase arrest with 
a concomitant decrease in the percentage of cells in the S 

phase of the cell cycle [80]. Sharma et al. also showed that 
silymarin induced growth inhibition and apoptotic cell death 
in human lung carcinoma cells [85]. Deep et al. also reported 
that silymarin (50–100 μg/mL) inhibited the proliferation of 
human prostatic carcinoma PC3 cells, induced cell death, 
and caused G1 cell cycle arrest and suppression of S phase 
in a dose-/time-dependent manner [86]. Another study done 
by Ramakrishnan et al. also reported the antiproliferative 
effect of silymarin on the growth of the hepatocellular carci-
noma cells, in addition to the increase of apoptotic cell per-
centage, the proportion of cells with reduced DNA content 
(Sub-Go peak), and the loss of cells in the G1 phase [87].

Conclusion

Quality by design approach was successfully used in the 
preparation of silymarin-L/CH nanoparticles, using different 
tools. A systemized and risk-based approach was adopted for 
a robust process and product understanding. A risk assess-
ment study was conducted, where Ishikawa diagrams were 
constructed showing the whole attributes affecting the CQA. 
Optimal designs were very useful in the screening and the 
optimization steps, where the screening resulted in the fil-
tration of the CPP/MA from 6 to 2 MA, which were deeply 
studied in the optimization design. Response surface plots 
were very useful in interpreting the results, which showed 
how each of the PS, PDI, and EE% was affected by L:CH 
and silymarin amount. Artificial intelligence was applied 
to detect the % release of the drug from the nanoparticle 
system at various time intervals and showed a great success. 
A control strategy was established for continual improve-
ment, where the optimized formula was further evaluated 
for its morphology, zeta potential, drug release, and stabil-
ity, which all showed promising results. In vitro cytotoxicity 
study showed an enhancement in the cytotoxicity of sily-
marin when formulated in nanoparticles, with a decreased 
 IC50 when compared with standard silymarin. Thus, lecithin 
chitosan nanoparticles can serve as potential drug carrier for 
increasing the effectiveness of poorly soluble drugs, where 

Table VI  The Expected and the Observed Results as Obtained from 
the Deep Learning Model

*Statistically significant

Expected Observed p-value

% Release at 2 h 22.80% 21.78 ± 4.3% 0.8452
% Release at 8 h 43.23% 44.09 ± 3.3% 0.9281
% Release at 12 h 84.98% 79.90 ± 2.4% 0.5397

Fig. 11  Effects of silymarin as standard and in the optimized formula 
on the proliferation of HepG2 cells. Cells were treated for 72 h with 
1000 μM of standard silymarin or from the optimized formula; con-
trol cells were treated with DMSO. The cell growth was assessed by 
SRB assay. The data shown are average of three samples for each 
treatment

Table VII  Effect of Standard Silymarin and Silymarin from the Opti-
mized Formula on Cell Cycle Distribution in Human Hepatocellular 
Carcinoma Cells (HepG2)

Data are presented as mean ± S.D. of percent cell population in dif-
ferent phases of cell cycle
*p-value < 0.05

G1 phase S phase G2/M phase Sub-Go

Control 50.5 ± 2.0 26.9 ± 2.0 18.8 ± 0.4 1.7 ± 0.6
Standard 59.1 ± 0.8 23.9 ± 0.7 11.8 ± 0.3 3.2 ± 0.1
Optimized for-

mula
55.2 ± 1.1 19.7 ± 0.3* 21.17 ± 1.2 2.8 ± 0.15
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QbD could be applied for the comprehensive understanding 
of the whole process of preparation. Integrating artificial 
intelligence into QbD may create a paradigm for pharma-
ceutical research and industries, transferring studies based 
on experiences to a new era of methodologies based on data.
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