Skip to main content

Advertisement

Log in

An Application of Tumor-Associated Macrophages as Immunotherapy Targets: Sialic Acid–Modified EPI-Loaded Liposomes Inhibit Breast Cancer Metastasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Breast cancer metastasis is an important cause of death in patients with breast cancer and is closely related to circulating tumor cells (CTCs) and the metastatic microenvironment. As the most infiltrating immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs), which highly express sialic acid (SA) receptor (Siglec-1), are closely linked to tumor progression and metastasis. Furthermore, the surface of CTCs also highly expressed receptor (Selectin) for SA. A targeting ligand (SA-CH), composed of SA and cholesterol, was synthesized and modified on the surface of epirubicin (EPI)-loaded liposomes (EPI-SL) as an effective targeting delivery system. Liposomes were evaluated for characteristics, stability, in vitro release, cytotoxicity, cellular uptake, pharmacokinetics, tumor targeting, and pharmacodynamics. In vivo and in vitro experiments showed that EPI-SL enhanced EPI uptake by TAMs. In addition, cellular experiments showed that EPI-SL could also enhance the uptake of EPI by 4T1 cells, resulting in cytotoxicity second only to that of EPI solution. Pharmacodynamic experiments have shown that EPI-SL has optimal tumor inhibition with minimal toxicity, which can be ascribed to the fact that EPI-SL can deliver drugs to tumor based on TAMs and regulate TME through the depletion of TAMs. Our study demonstrated the significant potential of SA-modified liposomes in antitumor metastasis.

Graphical abstract

Schematic diagram of the role of SA-CH modified EPI-loaded liposomes in the model of breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TAMs:

Tumor-associated macrophages

CTCs:

Circulating tumor cells

EPI-S:

EPI solution

Glu:

Glucose

EPI-CL:

EPI-loaded conventional liposomes

EPI-PL:

EPI-loaded PEGylated liposomes

EPI-SL:

EPI-loaded SA-CH modified liposomes

DiR-CL:

DiR-loaded conventional liposomes

DiR-PL:

DiR-loaded PEGylated liposomes

DiR-SL:

DiR-loaded SA-CH modified liposomes

References

  1. Neophytou C, Boutsikos P, Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front Oncol. 2018;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stuart EC, Jarvis RM, Rosengren RJ. In vitro mechanism of action for the cytotoxicity elicited by the combination of epigallocatechin gallate and raloxifene in MDA-MB-231 cells. Oncol Rep. 2010;24:779–85.

    CAS  PubMed  Google Scholar 

  3. Newman L. Breast cancer screening in low and middle-income countries. Best Pract Res Clin Obstet Gynaecol. 2022;83:15–23.

    Article  PubMed  Google Scholar 

  4. Hutchinson L. Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol. 2010;7:669–70.

    Article  PubMed  Google Scholar 

  5. Hong J, Shen Y-A, Hsu C-Y, et al. Targeting glutamine metabolism enhances responses to platinum-based chemotherapy in triple-negative breast cancers (TNBC). Genes Dis. 2022.

  6. Al-Khanbashi M, Caramuta S, Alajmi AM, et al. Tissue and serum miRNA profile in locally advanced breast cancer (LABC) in response to neo-adjuvant chemotherapy (NAC) treatment. PLoS ONE. 2016;11: e0152032.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ridwan SM, Hainfeld JF, Ross V, et al. Novel Iodine nanoparticles target vascular mimicry in intracerebral triple negative human MDA-MB-231 breast tumors. Sci Rep. 2021;11:1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harquail J, Benzina S, Robichaud GA. MicroRNAs and breast cancer malignancy: an overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark. 2012;11:269–80.

    Article  CAS  PubMed  Google Scholar 

  9. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;23:573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu Y, Lian S, Cheng Y, et al. Circulation patterns and seed-soil compatibility factors cooperate to cause cancer organ-specific metastasis. Exp Cell Res. 2019;375:62–72.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou M, Zuo Q, Huang Y, Li L. Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B. 2022;12:3383–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Follain G, Herrmann D, Harlepp S, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020;20:107–24.

    Article  CAS  PubMed  Google Scholar 

  14. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2:1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patil P, Madhuprasad M, Kumeria T, et al. Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Adv. 2015;5:89745–62.

    Article  CAS  Google Scholar 

  17. Medeiros B, Allan AL. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives. Int J Mol Sci. 2019;20:2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu X, Li B. Seed or soil: tracing the immune subsets in metastatic tumors. Cancer Cell. 2022;40:353–5.

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Qi Y, Han M, et al. Computed tomography reveals microenvironment changes in premetastatic lung. Eur Radiol. 2021;31:4340–9.

    Article  PubMed  Google Scholar 

  20. Celia-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol. 2018;20:868–77.

    Article  CAS  PubMed  Google Scholar 

  21. Altorki NK, Markowitz GJ, Gao D, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19:9–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu L-Q, Du W-L, Cai M-H, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020;353: 104119.

    Article  CAS  PubMed  Google Scholar 

  23. Hagemann T, Wilson J, Kulbe H, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J Immunol. 2005;175:1197–205.

    Article  CAS  PubMed  Google Scholar 

  24. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64:7022–9.

    Article  CAS  PubMed  Google Scholar 

  25. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  26. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo Z, Wu S, Zhou J, et al. All-stage targeted therapy for the brain metastasis from triple-negative breast cancer. Acta Pharm Sin B. 2022.

  28. Howard J, Goh CY, Gorzel KW, et al. The potential role of cofilin-1 in promoting triple negative breast cancer (TNBC) metastasis via the extracellular vesicles (EVs). Transl Oncol. 2022;15:101247.

    Article  CAS  PubMed  Google Scholar 

  29. Malla R, Puvalachetty K, Vempati RK, et al. Cancer stem cells and circulatory tumor cells promote breast cancer metastasis. Clin Breast Cancer. 2022;22:507–14.

    Article  CAS  PubMed  Google Scholar 

  30. Atukorale PU, Raghunathan SP, Raguveer V, et al. Nanoparticle encapsulation of synergistic immune agonists enables systemic co-delivery to tumor sites and interferon β-driven anti-tumor immunity. Cancer Res. 2019;79:5394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Qian D, Lin HP, et al. Nanoparticle-delivered miriplatin ultrasmall dots suppress triple negative breast cancer lung metastasis by targeting circulating tumor cells. J Control Release. 2021;329:833–46.

    Article  CAS  PubMed  Google Scholar 

  32. Choi MR, Stanton-Maxey KJ, Stanley JK, et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7:3759–65.

    Article  CAS  PubMed  Google Scholar 

  33. Fu JJ, Wang D, Mei D, et al. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release. 2015;204:11–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou S, Zhang T, Peng B, et al. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm. 2017;523:203–16.

    Article  CAS  PubMed  Google Scholar 

  35. Ding J, Zhao D, Hu Y, et al. Terminating the renewal of tumor-associated macrophages: a sialic acid-based targeted delivery strategy for cancer immunotherapy. Int J Pharm. 2019;571: 118706.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou S, Zhang T, Peng B, et al. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm. 2017;523:203–16.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang T, Zhou S, Hu L, et al. Polysialic acid-modifying liposomes for efficient delivery of epirubicin, in-vitro characterization and in-vivo evaluation. Int J Pharm. 2016;515:449–59.

    Article  CAS  PubMed  Google Scholar 

  38. Yang T, Cui FD, Choi MK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338:317–26.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuoka Y, Onohara E, Kojima N, Kuroda Y. Importance of particle size of oligomannose-coated liposomes for induction of Th1 immunity. Int Immunopharmacol. 2021;99: 108068.

    Article  CAS  PubMed  Google Scholar 

  40. Ikonen M, Murtomaki L, Kontturi K. Microcalorimetric and zeta potential study on binding of drugs on liposomes. Colloids Surf B Biointerfaces. 2010;78:275–82.

    Article  CAS  PubMed  Google Scholar 

  41. Duggan ST, Keating GMJD. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi’s sarcoma. Drugs. 2011;71:2531–58.

    Article  CAS  PubMed  Google Scholar 

  42. Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169(+) Macrophages capture and dendritic cells instruct: the interplay of the gatekeeper and the general of the immune system. Front Immunol. 2018;9:2472.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nath D, Hartnell A, Happerfield L, et al. Macrophage–tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology. 1999;98:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jayant S, Khandare JJ, Wang Y, et al. Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment. Pharm Res. 2007;24:2120–30.

    Article  CAS  PubMed  Google Scholar 

  45. Steiniger B, Barth P, Herbst B, et al. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immulogy. 1997;92:307–16.

    CAS  Google Scholar 

  46. Florence AT. Nanoparticle flow: implications for drug delivery. 2006. p. 9–27.

  47. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  CAS  PubMed  Google Scholar 

  48. Yang VC. Personal perspectives and concerns over the so-called nanomedicine. J Control Release. 2019;311:322–3.

    Article  PubMed  Google Scholar 

  49. Widjaya AS, Liu Y, Yang Y, et al. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release. 2022;344:62–79.

    Article  CAS  PubMed  Google Scholar 

  50. Catania G, Malaguti P, Gasparro S, et al. Activity of eribulin mesylate in brain metastasis from breast cancer: a stone in a pond? Oncology. 2018;94(Suppl 1):29–33.

    Article  CAS  PubMed  Google Scholar 

  51. Delozier T, Vernhes JC. Comparative study of adriamycin, epirubicin and mitoxantrone in cancer of the breast. Review of the literature. Bull Cancer. 1991;78:1013–25.

    CAS  PubMed  Google Scholar 

  52. Song Y, Huang Z, Luo X, et al. Pharmacodynamics of liposomes modified with different chain length of sialic acid derivatives. Yao Xue Xue Bao. 2016;51:316–24.

    PubMed  Google Scholar 

  53. Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol. 2017;241:313–5.

    Article  CAS  PubMed  Google Scholar 

  54. Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167:195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lo UG, Pong RC, Yang D, et al. IFNgamma-induced IFIT5 promotes epithelial-to-mesenchymal transition in prostate cancer via miRNA processing. Cancer Res. 2019;79:1098–112.

    Article  CAS  PubMed  Google Scholar 

  56. Chen HC, Chou AS, Liu YC, et al. Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-gamma. Lab Invest. 2011;91:1502–13.

    Article  PubMed  Google Scholar 

  57. Mumm JB, Emmerich J, Zhang X, et al. IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell. 2011;20:781–96.

    Article  CAS  PubMed  Google Scholar 

  58. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev. 2012;64:206–12.

    Article  Google Scholar 

  59. Sun TM, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Edit. 2014;53:12320–64.

    CAS  Google Scholar 

  60. Alasvand N, Urbanska AM, Rahmati M, et al. Therapeutic nanoparticles for targeted delivery of anticancer drugs. In: Multifunctional systems for combined delivery, biosensing and diagnostics. 2017. p. 245–59.

  61. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Song XW, Qi QT, Liu WL. Interaction of DPPC liposomes with cholesterol and food protein during in vitro digestion using dynamic light scattering and FTIR spectroscopy analysis. Food Chem. 2022;375:131893.

    Article  CAS  PubMed  Google Scholar 

  63. von Filseck JM, Vanni S, Mesmin B, et al. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat Commun. 2015;6:6671.

    Article  Google Scholar 

  64. Arriaga LR, López-Montero I, Monroy F, et al. Stiffening effect of cholesterol on disordered lipid phases: a combined neutron spin echo + dynamic light scattering analysis of the bending elasticity of large unilamellar vesicles. Biophys J. 2009;96:3629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao L, Temelli F, Curtis JM, Chen LJFRI. Preparation of liposomes using supercritical carbon dioxide technology: effects of phospholipids and sterols. Food Res Int. 2015;77:63–72.

    Article  CAS  Google Scholar 

  66. Kocisova E, Antalik A, Prochazka M. Drop coating deposition Raman spectroscopy of liposomes: role of cholesterol. Chem Phys Lipids. 2013;172–173:1–5.

    Article  PubMed  Google Scholar 

  67. Luo X. Pharmacodynamics of liposomes modified by sialic acid derivatives with different chain length.

  68. Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol modified self-assemblies and their application to nanomedicine. Biomacromol. 2015;16:1886–914.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Career Development Support Plan for Young and Middle-aged Teachers at the Shenyang Pharmaceutical University (ZDN2021009).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xianmin Meng and Yanzhi Song; data curation: Xianmin Meng, Yihui Deng and Yanzhi Song; acquisition: Mingqi Wang, Kaituo Zhang, Zihan Xu and Tiantian Guo; writing: Xianmin Meng; analysis: Dezhi Sui and Meng Chen; supervision: Xinrong Liu. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yanzhi Song.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wang, M., Zhang, K. et al. An Application of Tumor-Associated Macrophages as Immunotherapy Targets: Sialic Acid–Modified EPI-Loaded Liposomes Inhibit Breast Cancer Metastasis. AAPS PharmSciTech 23, 285 (2022). https://doi.org/10.1208/s12249-022-02432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02432-4

Keywords

Navigation