Skip to main content
Log in

Calcium Ion-Sodium Alginate-Piperine-Based Microspheres: Evidence of Enhanced Encapsulation Efficiency, Bio-Adhesion, Controlled Delivery, and Oral Bioavailability of Isoniazid

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Isoniazid (INH) is a first-line chemotherapeutic drug employed in the management of tuberculosis. However, its extensive first-pass metabolism, short-life life, and low oral bioavailability confined its medical application. Therefore, the calcium ion-alginate-piperine microspheres (INH-CaSP Ms) was prepared to enhance encapsulation efficiency, controlled delivery, and oral bioavailability of INH. The INH-CaSP Ms was developed using a modified emulsification method and optimized via Box-Behnken design (BBD). Optimized INH-CaSP Ms were characterized for encapsulation efficiency, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), bio-adhesion, in vitro dissolution, ex vivo permeation, and oral bioavailability studies. Characterization studies confirmed the formation of microspheres. The INH-CaSP Ms showed spherical microspheres with enhanced encapsulation efficiency (~ 93.03 ± 1.54% w/w). The optimized INH-CaSP Ms exhibited higher bio-adhesion around (~ 81.41 ± 1.31%). The INH-CaSP Ms enhanced the dissolution rate of INH (~ 57%) compared to pure INH (~ 57%) and INH-SA Ms (~ 81%) in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4). The same formulations improved the permeation rate of INH (~ 90%) compared to pure INH (~ 55%) and INH-SA Ms (~ 80%). The oral bioavailability results indicated that INH-CaSP Ms appreciably improved the oral bioavailability of INH via increasing the Cmax, Tmax, t1/2, and AUC parameters compared to pure INH. The study demonstrates that the development of INH-CaSP Ms via cross-linked coordinate bond interaction between divalent cation calcium ion-alginate complex and anion piperine bio-enhancer is an effective approach for enhancing the encapsulation efficiency, bio-adhesion, controlled release, and oral bioavailability of INH.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11.

  2. Date AA, Justin Hanes LME. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, et al. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine. 2019;14:5303–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adeola O, Adebisi BRC. No TitleModification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv. 2015;6:741–62.

    Article  CAS  Google Scholar 

  5. Hüsch J, Dutagaci B, Glaubitz C, Geppert T, Schneider G, Harms M, Müller-Goymann CC, Fink L, Schmidt MU, Setzer C, Zirkel J, Rebmann H, Schubert-Zsilavecz M, Abdel-Tawab M. Structural properties of so-called NSAID-phospholipid-complexes. Eur J Pharm Sci. 2011;44:103–16.

    Article  PubMed  CAS  Google Scholar 

  6. Wilcox MD, Van Rooij LK, Chater PI, Pereira De Sousa I, Pearson JP. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine. Eur J Pharm Biopharm [Internet] Elsevier BV; 2015;96:484–487. Available from: https://doi.org/10.1016/j.ejpb.2015.02.029

  7. Fievez V, Plapied L, des Rieux A, Pourcelle V, Freichels H, Wascotte V, et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2009;73:16–24. Available from: https://doi.org/10.1016/j.ejpb.2009.04.009

  8. Trevaskis NL, Charman WN, Porter CJH. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv Drug Deliv Rev. 2008;60:702–16.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J Drug Target. 2016;24:579–89.

    Article  CAS  PubMed  Google Scholar 

  10. Canevari M, Castagliuolo I, Brun P, Cardin M, Schiavon M, Pasut G, Veronese FM. Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. Int J Pharm. 2009;368:171–7.

    Article  CAS  PubMed  Google Scholar 

  11. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–65.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci [Internet]. Elsevier Ltd; 2012;37:106–26. Available from: https://doi.org/10.1016/j.progpolymsci.2011.06.003

  13. Tone Ostberg EML. a CG. Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media. Int J Pharm. 1994;112:241–8.

    Article  Google Scholar 

  14. Abulateefeh SR, Taha MO. Enhanced drug encapsulation and extended release profiles of calcium–alginate nanoparticles by using tannic acid as a bridging cross-linking agent. J Microencapsul. 2015;32:96–105.

    Article  CAS  PubMed  Google Scholar 

  15. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973;32:195–8.

    Article  CAS  Google Scholar 

  16. Kumar K, Dhawan N, Sharma H, Vaidya S, Vaidya B. Bioadhesive polymers: novel tool for drug delivery. Artif Cells, Nanomedicine Biotechnol. 2014;42:274–83.

    Article  CAS  Google Scholar 

  17. Johri RK, Thusu N, Khajuria A, Zutshi U. Piperine-mediated changes in the permeability of rat intestinal epithelial cells. Biochem Pharmacol. 1992;43:1401–7.

    Article  CAS  PubMed  Google Scholar 

  18. Khajuria A, Zutshi U, Bedi KL. Permeability characteristics of piperine on oral absorption—an active alkaloid from peppers and a bioavailability enhancer. Indian J Exp Biol. 1998;36:46–50.

    CAS  PubMed  Google Scholar 

  19. Mark S. Moosekar. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–41.

    Article  Google Scholar 

  20. Santoveña-Estévez A, Suárez-González J, Cáceres-Pérez AR, Ruiz-Noda Z, Machado-Rodríguez S, Echezarreta M, Soriano M, Fariña JB. Stability study of isoniazid and rifampicin oral solutions using hydroxypropyl-Β-cyclodextrin to treat tuberculosis in paediatrics. Pharmaceutics. 2020;12:1–13.

    Article  CAS  Google Scholar 

  21. Vilchèze C, Wang F, Arai M, Hazbón MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR Jr. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med. 2006;12:1027–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mdluli K, Slayden RA, Zhu YQ, Ramaswamy S, Pan X, Mead D, et al. Inhibition of a Mycobacterium tuberculosis β-Ketoacyl ACP synthase by isoniazid. Science (80- ). 1998;280:1607–10.

  23. Mariappan TT, Singh S. Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis. 2003;7:797–803.

    CAS  PubMed  Google Scholar 

  24. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 2003;52:981–6.

    Article  CAS  PubMed  Google Scholar 

  25. Pandey R, Sharma S, Khuller GK. Liposome-based antitubercular drug therapy in a guinea pig model of tuberculosis [1]. Int J Antimicrob Agents. 2004;23:414–5.

    Article  CAS  PubMed  Google Scholar 

  26. Dutt M, Khuller GK. Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int J Antimicrob Agents. 2001;17:115–22.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou H, Zhang Y, Biggs DL, Manning MC, Randolph TW, Christians U, Hybertson BM, Ng KY. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J Control Release. 2005;107:288–99.

    Article  CAS  PubMed  Google Scholar 

  28. Labana S, Pandey R, Sharma S, Khuller GK. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int J Antimicrob Agents. 2002;20:301–4.

    Article  CAS  PubMed  Google Scholar 

  29. Pandey G, Yadav SK, Mishra B. Preparation and characterization of isoniazid and lamivudine co-loaded polymeric microspheress. Artif Cells, Nanomedicine Biotechnol. 2016;44:1867–77.

    Article  CAS  Google Scholar 

  30. Rastogi R, Sultana Y, Aqil M, Ali A, Kumar S, Chuttani K, et al. Alginate microspheress of isoniazid for oral sustained drug delivery. Int J Pharm. 2007;334:71–7.

    Article  CAS  PubMed  Google Scholar 

  31. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. Elsevier B.V.; 2017;108:36–49.

  32. Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur J Pharm Sci. Elsevier B.V.; 2019;131:23–38.

  33. Telange DR, Jain SP, Pethe AM, Kharkar PS, Rarokar NR. Use of combined nanocarrier system based on chitosan nanoparticles and phospholipids complex for improved delivery of ferulic acid. Int J Biol Macromol [Internet]. Elsevier B.V.; 2021;171:288–307. Available from: https://doi.org/10.1016/j.ijbiomac.2020.12.211

  34. Telange DR, Jain SP, Pethe AM, Kharkar PS. Egg white protein carrier-assisted development of solid dispersion for improved aqueous solubility and permeability of poorly water soluble hydrochlorothiazide. AAPS PharmSciTech AAPS PharmSciTech. 2021;22:1–15.

    CAS  Google Scholar 

  35. Telange DR, Ukey SA, Hemke AT, Umekar MJ, Pethe AM, Kharkar PS. LIPOID SPC-3-based coprecipitates for the enhancement of aqueous solubility and permeability of Ranolazine. J Pharm Innov. Journal of Pharmaceutical Innovation; 2020

  36. Telange DR, Sohail NK, Hemke AT, Kharkar PS, Pethe AM. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv Transl Res. 2021;11:1056–83.

    Article  CAS  PubMed  Google Scholar 

  37. Rao KVR, Buri P. A novel in situ method to test polymers and coated microparticles for bioadhesion. Int J Pharm. 1989;52:265–70.

    Article  CAS  Google Scholar 

  38. Dinarvand R, Rahmani E, Farbod E. Gelatin microspheress for the controlled release of all-trans-retinoic acid topical formulation and drug delivery evaluation. Iran J Pharm Res. 2010;2:47–50.

    Google Scholar 

  39. Phutane P, Shidhaye S, Lotlikar V, Ghule A, Sutar S, Kadam V. In vitro evaluation of novel sustained release microspheress of glipizide prepared by the emulsion solvent diffusion-evaporation method. J Young Pharm. 2010;2:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm. 2013;456:31–40.

    Article  CAS  PubMed  Google Scholar 

  41. Bhandari R. A sensitive HPLC method for determination of isoniazid in rat plasma, brain, liver and kidney. J Chromatogr Sep Tech. 2012;03.

  42. Lemoine D, Wauters F, S. Bouchend’homme VP. Preparation and characterization of alginate microspheress containing a model antigen. Int J Pharm. 1998;176:9–19.

    Article  CAS  Google Scholar 

  43. Samer R. Abulateefeh1 and Mutasem O. Taha. Enhanced drug encapsulation and extended release profiles of calcium–alginate nanoparticles by using tannic acid as a bridging cross-linking agent. J Microencapsul. 2014;2–11.

  44. Rajinikanth PS, Sankar C, Mishra B. Sodium alginate microspheress of metoprolol tartrate for intranasal systemic delivery: Development and evaluation. Drug Deliv J Deliv Target Ther Agents. 2003;10:21–8.

    CAS  Google Scholar 

  45. Uyen NTT, Hamid ZAA, Nurazreena A. Fabrication and characterization of alginate microspheress. Mater Today Proc [Internet]. Elsevier Ltd.; 2019;17:792–7. Available from: https://doi.org/10.1016/j.matpr.2019.06.364

  46. Khatri S, Awasthi R. Piperine containing floating microspheress: an approach for drug targeting to the upper gastrointestinal tract. Drug Deliv Transl Res. 2016;6:299–307.

    Article  CAS  PubMed  Google Scholar 

  47. Chun KH, Kwon IC, Kim YH, La SB, Sohn YT, Jeong SY. Preparation of sodium alginate microspheress containing hydrophilic β-lactam antibiotics. Arch Pharm Res. 1996;19:106–11.

    Article  CAS  Google Scholar 

  48. Sibum I, Hagedoorn P, Frijlink HW, Grasmeijer F. Characterization and formulation of isoniazid for high-dose dry powder inhalation. Pharmaceutics. 2019;11.

  49. Salisu A, Sanagi MM, Abu Naim A, Abd Karim KJ, Wan Ibrahim WA, Abdulganiyu U. Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull. Springer. Berlin Heidelberg. 2016;73:519–37.

    CAS  Google Scholar 

  50. Mandal S, Senthil Kumar S, Krishnamoorthy B, Basu SK. Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Brazilian J Pharm Sci. 2010;46:785–93.

    Article  CAS  Google Scholar 

  51. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82:912–7.

    Article  CAS  PubMed  Google Scholar 

  52. Chong-Kook K (Seoul NU, Eun-Jin L (Seoul NU. The controlled release of blue dextran from alginate beads. Int J Pharm. 1992;79:11–9.

  53. EL-Kamel AH, O.M.N. AL-Gohary EAH. Alginate diltiazem hydrochloride beads: optimization of formulation factors, in vitro and in vivo availability. J Microencapsul 2003;20, 799, 810.

  54. Costa P, Manuel J. Lobô´´ S. Modeling and comparison of dissolution profiles [Internet]. Eur J Pharm Sci. 2001; Available from: www.elsevier.nl/locate/ejps.

  55. Cárdenas PA, Kratz JM, Hernández A, Costa GM, Ospina LF, Baena Y, Simões CMO, Jimenez-Kairuz Á, Aragon M. In vitro intestinal permeability studies, pharmacokinetics and tissue distribution of 6-methylcoumarin after oral and intraperitoneal administration in Wistar rats. Brazilian J Pharm Sci. 2017;53.

  56. Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H, Ahmad N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res. 2011;55:1169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin MJ, Han HK. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J Food Sci. 2010;75:H93–6.

    Article  CAS  PubMed  Google Scholar 

  58. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.

    Article  CAS  PubMed  Google Scholar 

  59. Smita Pattanaik, Debasish Hota, Sudesh Prabhakar PK and, Pandhi P. Effect of Piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsy. Phyther Res 2006;20:683–686

  60. Khajuria A, Thusu N, Zutshi U. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine. 2002;9:224–31.

    Article  CAS  PubMed  Google Scholar 

  61. Singh A, Pawar VK, Jakhmola V, Parabia MH, Awasthi R, Sharma G. In - vivo assessment of enhanced bioavailability of metronidazole with piperine in rabbits. Res J Pharm, Biol Chem Sci. 2010;1:273–8.

    CAS  Google Scholar 

  62. Wang P, Pradhan K, Zhong X bo, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B [Internet]. Elsevier; 2016;6:384–92. Available from: https://doi.org/10.1016/j.apsb.2016.07.014

  63. DB M, S S, KR M. Role of piperine as an effective bioenhancer in drug absorption. Pharm Anal Acta 2018;09:7–10.

  64. Ajazuddin, Alexander A, Qureshi A, Kumari L, Vaishnav P, Sharma M, et al. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia [Internet]. Elsevier B.V.; 2014;97:1–14. Available from: https://doi.org/10.1016/j.fitote.2014.05.005

  65. Gollapudi S, Reddy M, Gangadharam P, Takashi Tsuruo SG. Mycobacetrium tuberculosis induces expression of P-glycoprotein in promonocytic U1 cells chronically infected with HIV type 1. Biochem Biophys Res Commun. 1994;199:1181–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks Dr. Ravindra RP, Ph.D. supervisor of School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur, for providing all the essential facilities to complete this project.

Funding

The conducted research did not receive any funding from the university and government agencies.

Author information

Authors and Affiliations

Authors

Contributions

Darshan R Telange: analysis, interpretation of data for the work, drafting of the work, editing. Ravindra R Pandharinath: conceptualization, supervision, visualization, interpretation of the data for the work. Anil M Pethe: design of the work, writing of the original draft, investigation. Shirish P Jain: Analysis, validation, data curation. Prashant L Pingale: design of the work, analysis, interpretation of data for the work, final approval of the version to be published.

Corresponding author

Correspondence to Prashant L. Pingale.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

The ethics committee is "Institute of Animal Ethical Committee" protocol number "RSCOP/IAEC/2019 - 20 dated August 17 , 2020.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telange, D.R., Pandharinath, R.R., Pethe, A.M. et al. Calcium Ion-Sodium Alginate-Piperine-Based Microspheres: Evidence of Enhanced Encapsulation Efficiency, Bio-Adhesion, Controlled Delivery, and Oral Bioavailability of Isoniazid. AAPS PharmSciTech 23, 99 (2022). https://doi.org/10.1208/s12249-022-02236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02236-6

KEY WORDS

Navigation